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ABSTRACT 
In this paper, we propose an approach for browser fngerprinting 
using their behavior during the TLS 1.2 handshake with a server. 
Using combinatorial methods, we created test sets consisting of 
TLS server-side messages as sequences that are sent to the client 
as server responses during the TLS handshake. We created an ap-
propriate abstract model of the TLS handshake protocol and used 
it to map browser behavior to a feature vector and use them to 
derive a distinguisher. We evaluate our approach with a case study 
showing that combinatorial properties have an impact on browsers’ 
behavior. 
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1 INTRODUCTION 
The security and threat landscape of the computer systems of to-
day can be viewed from a macroscopic and a microscopic point 
of view. Both views are essential, independent and infuence each 
other. In this work, we focus on fngerprinting Internet browsers by 
analyzing their behavior when they are processing non-standard 
response messages from a server. These non-standard messages 
are derived using combinatorial methods and no other means are 
used in the fngerprinting approach. Browsers, a type of end-user 
software which is paramount, constitute the central piece of soft-
ware by which computing power and the Internet are consumed 
on a variety of mobile and classic devices. A lot of efort is spent to 
annotate vulnerabilities found not only with the specifc software 
where the vulnerability was discovered, but to also determine all 
other software that is also afected. In a defensive position, these 
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eforts usually lead to security advisories where users are then 
asked to update the afected software to a version for which this 
vulnerability has been resolved. From an ofensive or penetration 
testing position, a list of pairs consisting of a software-vulnerability 
combination provides the means for planning concrete penetra-
tion tests on systems. A prerequisite to this step is, however, that 
sufcient knowledge is available about the target system so that a 
detailed software version-vulnerabilities list can be used efectively. 
In such a hypothetical scenario, the process likely begins with a re-
connaissance phase to determine the exact versions of the software 
that is running on the target system. To this end, in this paper, we 
employ a combinatorial sequence testing technique in a black-box 
testing approach tailored to fngerprint software in use. Specif-
cally, we assume the role of a classical web server where users 
of that service want to connect with a secure connection (HTTP 
over TLS 1.2 [1]). Our idea is that by responding with certain TLS 
handshake messages (on some connection attempts), the resulting 
error messages (if any are sent) can be used to uniquely identify 
the used browser. After a successful fngerprinting of the browser, 
the next attack steps can be planned with the precise knowledge of 
the browser version in use on the target. We would like to note that 
it is possible to create a database of browser behavior depending 
on TLS sequences independent from any specifc target and most 
importantly, in advance, and that it can be continuously updated 
to have it available for later usage. 

Over the last couple of years, there has been a trend to ofer more 
and more content over HTTPS, for a variety of reasons. Apart from 
the previously described use case, browser fngerprinting might be 
used in a variety of scenarios, like identifying users or obtaining 
information about the type and version of a browser in order to 
deliver suitable malware. 

Our approach maps the behavior of browsers to feature vectors, 
upon which we base our classifcation. The resulting analysis on 
the obtained partitions of all considered browsers can be regarded 
as a way to quantify and reason about the similarities in observed 
browser behavior. 

Contribution. In particular, this paper makes the following con-
tributions: 

• Proposes certain combinatorial sequences as test cases for 
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This paper is structured as follows. In Section 2 we discuss related 
work. We present our approach to fngerprinting of browsers using 
combinatorial methods in Section 3 and describe our developed 
testing framework in Section 4. In Section 5 we describe the setup 
of our case study and analyze the obtained results in Section 6. Last, 
Section 7 concludes the paper. 

2 RELATED WORK 
Approaches for browser fngerprinting often rely on properties 
exposed by the browser about itself and the underlying operating 
system. The authors of [5] followed this approach, and in [16] this 
methodology was strengthened by additionally considering browser 
plug-ins. In [2], the authors focused on fngerprinting scripts. 

Another line of research uses not only properties, but also ca-
pabilities of browsers for developing fngerprinting approaches. A 
fngerprinting technique based on the onscreen dimension of font 
glyphs was presented in [7]. The rendering of 3D scenes together 
with text rendering in a web page on an HTML5 <canvas> element 
was used in [12] to base a fngerprinting method upon it. Other 
browser capabilities have also been used to create fngerprinting 
approaches [22]. 

In [13], the underlying JavaScript engine was used to devise a 
fngerprinting approach. The correlation between feature combina-
tions and identifcation accuracy has been considered in [20]. 

In [17], the authors used planning with combinatorial methods 
for providing test cases for testing diferent TLS implementations. 

3 COMBINATORIAL METHODS FOR 
FINGERPRINTING 

In this section, we detail how combinatorial methods arising in 
the feld of discrete mathematics in conjunction with an abstract 
modelling methodology can be used to create test sequences that 
enable fngerprinting of browsers. First, we describe the combina-
torial structures employed in this paper, and then we present our 
modelling methodology and how the constructed sequences can 
be used for testing. While combinatorial methods have been used 
in the past in the context of combinatorial security testing [18], in 
this paper combinatorial methods are used for the frst time as the 
underlying means to create a fngerprinting approach. 

3.1 Sequence Covering Arrays 
Sequence covering arrays (SCAs) [9],[3] are matrices designed to 
test software behavior that depends on the order of events, by 
ensuring that any t events will occur in every possible t-way order 
(allowing interleaving events among each subset of t events). A 
sequence covering array, SCA (N , S, t) , is defned as an N ×S matrix 
where entries are from a fnite set S of s symbols, such that every 
t-way permutation of symbols from S occurs in at least one row and 
each row is a permutation of the s symbols [9]. The t symbols in 
the permutation are not required to be adjacent. That is, for every t-
way arrangement of symbols x1, x2, . . . , xt , the regular expression 
. ∗ x1. ∗ x2 · · · . ∗ xt .∗ matches at least one row in the array. 

Table 1: All 3-event sequences of 6 events. 

Test Sequence 

1 a b c d e f 
2 f e d c b a 
3 d e f a b c 
4 c b a f e d 
5 b f a d c e 
6 e c d a f b 
7 a e f c b d 
8 d b c f e a 
9 c e a d b f 
10 f b d a e c 

For example, with six events, a,b, c, d, e, f , one subset of three 
events is {a, c, e}, which can be arranged in six possible permuta-
tions. There are1 �6 � = 20 sets of three events, and each can be 3 
arranged in 3! = 6 orders. Using only 10 tests, it is possible to 
include all 3-way orders of these six events, as shown in Table 1. 
It can be shown that, for a given value of t , the number of tests 
required to cover all t-way orders grows with log S . For the case 
where t = 2, N = 2 for all values of S , i.e., testing 2-way sequences 
never requires more than two tests, regardless of the number of 
events. 

Sequence covering arrays have been used in a variety of testing 
applications, including industrial control systems [4], web applica-
tions [10], cryptographic hash functions [11], and laptop utilities 
[9]. They can be constructed using a simple greedy algorithm ap-
proach [9], although search and logic based strategies have been 
used as well [6],[8]. Greedy algorithms are generally faster, while 
other approaches may produce slightly smaller test arrays. To our 
knowledge, they have not been used for device fngerprinting or 
other applications outside of conventional software testing. 

SCA generation. We implemented the algorithm given in [9] in 
the Python 2 programming language [15]. It takes as input the 
number of events n and the desired interaction strength t and 
returns a SCA for the specifed confguration over the alphabet 
{0, . . . , n − 1}. The sizes of the SCAs that this program generated 
are given in Table 2. 

SCA verifcation. Test sequences used in this work were verifed 
for coverage using the Combinatorial Sequence Coverage Measure-
ment (CSCM) tool [23],[24]. CSCM was designed to allow testers to 
evaluate the sequence coverage of test sets that have not necessarily 
been generated to cover sequences. Event sequence testing has long 
been known to be important in felds such as communication proto-
cols, and many methods exist to generate sequences that cover the 
state transition graphs for protocol testing. Many consumer-level 
applications, particularly for web sites and smartphone apps, also 
have the potential for complex interactions that are difcult to test 
fully. CSCM allows testers to determine the extent to which t-way 
sequences are covered in a test set, and to supplement existing tests 
as needed to enhance test thoroughness. � � n 1For two nonnegative integers n and k with k ≤ n we denote with the binomial k 
coefcient. For a positive integer i we denote with i ! the factorial of i . 
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Table 2: Number of tests for generated SCAs. 

n t #tests 

2 2 2 
3 2 2 
3 3 6 
4 2 2 
4 3 8 
4 4 24 
5 2 2 
5 3 10 
5 4 28 
5 5 120 
6 2 2 
6 3 10 
6 4 36 
6 5 156 
6 6 720 

3.2 Application to fngerprinting 
Now, we explain how to use SCAs in the context of browser fn-
gerprinting. First, we briefy summarize some facts about the TLS 
protocol, which is used to establish a secure connection between 
two parties. 

Transport Layer Security. The transport layer security protocol 
(TLS) can be used by browsers to establish a secure connection 
with a web server. The setup of this secure channel is achieved via 
the exchange of a sequence of messages, where the two parties 
negotiate some parameter values for later use. This procedure is 
encoded in the handshake protocol within the TLS specifcation, 
and both client and server should follow it. We regard all TLS 
messages that are specifed for the server as a set of six abstract 
events E, consisting of: 

E = {ServerHello, Certifcate, ECDHEServerKeyExchange, (1a) 
ServerHelloDone, ChangeCipherSpec, Finished}. (1b) 

If we use the ordering derived from the message exchange in the 
TLS specifcation, then the following mapping of TLS events to 
numbers is canonical: 

(0) ServerHello 
(1) Certifcate 
(2) ECDHEServerKeyExchange 
(3) ServerHelloDone 
(4) ChangeCipherSpec 
(5) Finished 

We denote fnite, nonempty sequence over the alphabet E is as-
cending order between angle brackets, for example ⟨0, 3, 5⟩. 

Combinatorial Sequence Model and derived test cases. Given a 
nonempty subset of cardinality κ of abstract TLS events2 of the set 
E, it is possible to construct a SCA for any strength t ∈ {1, . . . , κ}. 

2It would also be possible to consider not only subsets, but also sub-multisets, i.e., 
by allowing at least one event to appear strictly more than once in the considered 
selection. We leave this as future work. 

HoTSoS ’19, April 2–3, 2019, Nashville, TN, USA 

For later evaluation purposes, for any ∅ , E ⊆ E of cardinality3 κ 
we created and stored the image of E under the symmetric group 
of κ elements in the database. In other words, for any nonempty 
subset of sequences, we created all of its permutations and stored 
them in the database in the Sequence table and we denote the 
corresponding set of all test sequences with S. It follows that we 
have in total 

6 � � Õ 6 
· i! = 1956 (2) 

i 
i=1 

test sequences in the database. 
Since we store, for any nonempty subset E of E, all of its permu-

tations in the database, it follows that we can fnd any SCA defned 
over the elements of E in the database (i.e., fetching exactly those 
rows from the database which correspond to the rows of the SCA). 

For later use, we also fx an enumeration of the set S, that is we 
fx a bijection4 from the set {1, . . . , |S|} −→ S. 

Given a SCA, we refer to a sequence as a test sequence (i.e., row 
in the array) and to the array in its entirety as a test set. Such an 
abstract test sequence can now be translated into a concrete TLS 
message that will be sent to the client over the wire by instantiat-
ing its values with defaults from the specifcation. We would like 
to emphasize that while we are considering permutations of sub-
sets of the set E, the concrete message values are taken from the 
specifcation5. 

4 TESTING FRAMEWORK 
In this section, we describe our testing setup of our automated 
framework. It is composed of several components and their general 
interactions are depicted in Figure 1. The frameworks’ test execu-
tion component uses TLS attacker [19] for sending and receiving 
of TLS messages of clients (browsers). TLS test sequences are taken 
from a specifed list, created using combinatorial methods. Subse-
quently, the logging component of the framework stores annotated 
results for each browser in a dedicated relational database. In other 
words, for any given browser, the framework executes the following 
steps: 

(1) TLS attacker is started as a server and given as input the 
XML translation of a test sequence from a set test. 

(2) The browser is instrumented to connect via HTTPS to a 
specifc local url of TLS attacker. 

(3) The framework (i.e., the server side in this connection at-
tempt) will respond according to the encoded messages of 
the test sequence given in XML format. 

(4) The exchange of TLS messages between the client (browser) 
and server will continue as long as possible until all mes-
sages from the test case have been sent from the server. The 
complete message exchange is recorded. 

(5) The recorded message exchange is be annotated and stored 
in a relational database. 

Next, we describe each component in detail. 

3For a set S , we denote its cardinality with |S |. 
4We obtained such an enumeration from the sequence identifers in the database. 
5We leave their additional manipulation as future work. 
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Figure 1: Overwiew of the fngerprinting process. 

Test cases. In our experiments we considered all possible injective 
ordered sequences S over the alphabet E of length one to six. This 
means that, in particular, the set S has as a subset all t-SCAs for 
all t ∈ {1, 2, 3, 4, 5, 6}. In Section 6, during the evaluation, we will 
make use of this fact and compare the distinguishing capabilities 
of various subsets of S, in particular those of SCAs for diferent 
event selections and diferent strengths. Due to the size advantage 
of SCAs compared to the set of all permutations of some fxed set 
of elements, it is clear that while for our initial experiments we 
were able to work the complete set S, in future extension steps of 
an existing analysis database it would be more desirable to follow 
a test set augmentation strategy based on higher strength of SCAs 
instead of adding all permutations. 

Test execution. The test execution component uses TLS attacker6 

[19], which is an open source framework that allows the creation 
of custom TLS message fows, both from a client and server side. 
Since we want to fngerprint clients (i.e., browsers), we use TLS 
attacker in the server role. For each abstract test sequence, an XML 
encoded TLS handshake sequence is created, which is one of the 
input formats of TLS attacker. If available, we start the browsers 
in headless mode. The browsers connect to a locally running TLS 
attacker. A self-signed root certifcate was created and added to the 
list of trusted certifcates for each browser and the certifcate that 
is sent by TLS attacker was signed with the private key of the root 
certifcate (no intermediate certifcate). Also, the certifcate sent 
by our server has a V3-Extension called subjectaltname. This was 
necessary since Google Chrome uses this extension to validate the 
certifcate and otherwise it would not accept it. 

The browser process is terminated as soon as the stream (from 
TLS attacker) is closed and all the results are stored. This is the 
same process for both headless and not headless. 

Logging and database. While instrumenting TLS attacker, we 
parse its comprehensive output. This output includes detailed infor-
mation about sent and received TLS messages. It also outputs TLS 
alert messages and prints out exceptions that happened during 
execution (stored in the feld ExceptionHandshake), for example 
if the browser closed the socket or if TLS attacker failed to parse a 
received message. The tests also send an HTTPS-response to the 
browser, so it is possible to record exceptions that happened af-
ter the handshake (stored in the feld ExceptionPostHandshake), 
when data should be sent over the now secure channel. We added 
this information to make it possible to have more data in the feature 
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vectors used as distinguishers (e.g.: no exception is thrown during 
the handshake, but the socket is closed as soon as TLS attacker tries 
to send data). 

This logging information, together with the tested client (i.e., 
browser) is then stored in a SQLite database [14]. Moreover, the 
database also contains tables with 

• the list of browsers, their paths and command line options 
for how to start them, respectively; 

• the set of TLS events E; 
• a workfow skeleton that is populated with the saved TLS 
messages; 

• the list of all considered test sequences S. 
We give some examples for results obtained in Table 3, as they 

are stored in the database. 

Walk through example. We illustrate our approach and the test 
case execution with an example. Consider a fve event selection out 
of the set E where the event Certifcate is omitted, i.e. we choose 
the following sequence 

⟨ServerHello, Finished, ServerHelloDone, (3a) 
ChangeCipherSpec, ECDHEServerKeyExchange⟩ (3b) 

= ⟨0, 5, 3, 4, 2⟩ (3c) 

built from these events. The corresponding XML encoded sequence 
is depicted in Listing 1. 

<?xml v e r s i o n = " 1 . 0 " encod ing = "UTF−8 " s t a nd a l on e = " 
yes " ?> 

<workf lowTrace > 
<Rece ive > 

<expec tedMessages > 
<C l i e n tH e l l o / > 

</ expec tedMessages > 
</ Rece ive > 
<Send > 

<messages > 
< S e r v e rHe l l o / > 
< F i n i s h e d / > 
<Serve rHe l loDone / > 
<ChangeCipherSpec / > 

</messages > 
</ Send > 
<Rece ive > 

<expec tedMessages > 
<ECDHClientKeyExchange / > 
<ChangeCipherSpec / > 

< F i n i s h e d / > 
</ expec tedMessages > 
</ Rece ive > 
<Send > 

<messages > 
<ECDHEServerKeyExchange / > 

</messages > 
</ Send > 
<Send > 
<messages > 

<HttpsResponse > 
</ HttpsResponse > 

</messages > 
6Release v2.6. 33 </ Send > 
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Table 3: Excerpt from the Results table. 

ID ReceivedMsgs1 ReceivedMsgs2 AlertMessage ExceptionHandshake ExceptionPostHandshake br_id Seq_id 

6 CLIENT_HELLO AlertMessage UNEXPECTED_MESSAGE 1 2 

761 CLIENT_HELLO AlertMessage UNEXPECTED_MESSAGE java.net.SocketException: Connection reset by peer: socket write error 1 153 

3881 CLIENT_HELLO java.net.SocketException: Connection reset by peer: 
socket write error 

java.net.SocketException: Connection reset by peer: socket write error 1 777 

3882 CLIENT_HELLO java.net.SocketException: Software caused connection abort: socket write error 2 777 

3883 CLIENT_HELLO AlertMessage UNEXPECTED_MESSAGE java.net.SocketException: Software caused connection abort: socket write error 3 777 

3884 CLIENT_HELLO java.net.SocketException: Software caused connection abort: socket write error 4 777 

3885 CLIENT_HELLO AlertMessage UNEXPECTED_MESSAGE java.net.SocketException: Software caused connection abort: socket write error 5 777 

34 </ workf lowTrace > 

Listing 1: TLS 1.2 altered handshake workfow. 

For this example, we consider the case of testing the behavior of 
the browser Firefox. It is started in headless mode pointing to a 
local resource from the execution framework using the following 
command: 
C:\Program Files\Mozilla Firefox\firefox.exe 

-headless -url https://localhost:5555 

Upon execution, this test sequence led to the following exchange 
of TLS messages: 

(1) ClientHallo sent from Firefox. 
(2) The framework sends the following messages: 

⟨ServerHello, Finished, ServerHelloDone, (4a) 
ChangeCipherSpec⟩ (4b) 

(3) The client (Firefox in this case) responds and the response is 
identifed by the execution framework as a TLS alert mes-
sage of type UNEXPECTED_MESSAGE. Furthermore, we obtain 
from TLS attacker an exception of type 
java.net.SocketException: Connection reset by peer: 
socket write error. 

(4) Finally, an annotated version of the above test execution 
result is stored in the database. 

5 CASE STUDY 
In this section, we describe in detail the sequences used as test sets 
and the tested browsers and their version. 

Test sets. As already mentioned in Section 3.2, our automated 
approach made it possible to work with the complete set S con-
taining all permutations for all nonempty subset selections of TLS 
messages. 

Independently, we used the generated SCAs (see Section 3.1) 
to obtain for every compatible selection of events a list of test se-
quence IDs. These IDs were used to obtain a subset of rows from the 
Sequence table in the database corresponding to the instantiated 
abstract SCA with the TLS messages selection. 

Since we can fnd these SCAs as subsets of S, by executing all 
test sequences of S against all browsers, we have also tested all 
SCAs of interest. 

Browsers. In total, we tested fve browsers for a case study, con-
sisting of the following: 

(1) Mozilla Firefox, version 64.0.0.6914; 

(2) Opera, version 57.0.3098.106; 
(3) Google Chrome, version 71.0.3578.98; 
(4) Microsoft Internet Explorer, version 11.0.17134.1; 
(5) Microsoft Edge, version 11.00.17134.471. 

Framework setup. All experiments were performed on Windows 
10 Pro, 64-bit Build 17134.472 Version 1803 running inside a virtual 
machine created with VMware Workstation 12 Pro 12.5.9 build-
7535481. During the testing, all browsers connected to a locally 
running instance of TLS attacker. 

6 EVALUATION 
In this section, we present our results from running the experiments 
described in Section 5 and the theoretical criteria upon which we 
base our analysis. We explain how we instantiate feature vectors 
for abstract analysis in Section 6.1 and subsequently remark on how 
we compare them in Section 6.2. Afterwards, we elaborate on the 
results obtained in Section 6.3. The evaluation was performed with 
a program written in Perl v5.24.1 [21], which queried the results 
database and carried out the necessary steps for the analysis of our 
results. 

Results show that the method presented in this paper is efective 
for distinguishing between browser classes. That is, a very large 
number of the SCA tests were able to determine the browser type as 
belonging to one of the three categories: {Firefox}, {Google Chrome, 
Opera}, {Microsoft Internet Explorer, Microsoft Edge}. 

6.1 Feature vector defnition 
For given browser and nonempty set of test sequences S ⊆ S, we 
defne a feature vector as follows: 

• For each s ∈ S , let rs be the result of executing test sequence s 
against the given browser (queried from the results database), 
stored as an array of strings. Note that the length of this array 
is uniform for all browsers and all test sequences in the set 
S. 

• Let fv denote an array of length |S |, where each entry is 
a reference to the array rs , in ascending order according 
to the chosen enumeration of the set S. The result can be 
interpreted as a two-dimensional array where the the frst 
position of a two-dimensional index pair corresponds to the 
enumeration identifer of a test sequence and the second 
position to a column in the Result table schema. 

• We defne the array fv as feature vector for the given browser 
and set S of sequences. 

http:71.0.3578.98
https://localhost:5555
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We exemplify our defnition of feature vectors with an example. 
Consider the browser Mozilla Firefox together with the following 
set of S ⊆ S of test sequences: 

S = {⟨Certifcate⟩, ⟨Finished, ChangeCipherSpec, ServerHello⟩}
(5) 

The result of these two test sequences executed against Firefox 
(which has browser_id equal to one) are depicted in Table 3, where 

• the sequence ⟨Certifcate⟩ has Sequence_id equal to two 
and the corresponding result is stored in the Result table 
with ID equal to six. 

• the sequence ⟨Finished, ChangeCipherSpec, ServerHello⟩ has 
Sequence_id equal to 153 and the corresponding result is 
stored in the Result table with ID equal to 761. 

The resulting feature vector fv has length two. The frst entry points 
to an array of strings with the respective values shown in Table 3 
for ID equal to six7: 
("CLIENT_HELLO"|"AlertMessage"|"UNEXPECTED_MESSAGE"|""|"") 

(6) 
The second entry points to an array of strings with the respective 
values shown in Table 3 for ID equal to 7618: 
("CLIENT_HELLO"|"AlertMessage"|"UNEXPECTED_MESSAGE"|""| (7a) 

"java.net.SocketException: (7b) 
Connection reset by peer: socket write error") (7c) 

6.2 Classifcation of feature vectors 
Since we are interested in fnding nonempty subsets of the set S 
where we can observe diferent behavior of the tested browsers, we 
now give a precise defnition of how the term diferent behavior is 
to be understood in this paper. Suppose we are given a nonempty 
subset S ⊆ S and two diferent browsers, then we say that they 
exhibit diferent behavior with respect to S , if and only if, their 
respective feature vectors difer9. 

For fve browsers, there are ten possible pairwise comparisons 
between their behaviors (i.e., pairwise comparisons between their 
respective feature vectors). We use these pairwise comparisons to 
defne an equivalence relation on the set of all browsers. For fxed 
nonempty set S ⊆ S, two browsers are equivalent, if and only 
if, they exhibit the same behavior. In other words, two browsers 
are members of the same equivalence class, if and only if, they 
exhibit the same behavior for the set S . Due to our interest in 
fngerprinting browsers according to their behavior using test cases 
created with combinatorial methods, we are especially interested 
in analyzing the resulting partitions for diferent nonempty sets of 
test sequences. 

6.3 Analysis of results 
Firstly, we make some general observations on our results in Section 
6.3.1. Then, we proceed with our analysis for groups of sequences 
of the same length for lengths from 1 up to 6 in Section 6.3.2 until 
7The characters ( and ) denote the start and end of the array, respectively; the double 
high quotes delimit strings; and the character | is used as array element seperator. 
8See Footnote 7. 
9Equality of feature vectors is to be understood as canonical equality between two-
dimensional arrays with the same dimensions; i.e., in each position equality for the 
respective strings holds. 

Section 6.3.7. For i ∈ {1, 2, 3, 4, 5, 6} we denote with Si the subset 
of S consisting of exactly those sequences of length i . Note that in 
the case of n = t , the notions of the image of a set of cardinality n 
under the full permutation group and a SCA of strength n result in 
the same set of sequences. 

6.3.1 General observations. For each individual test sequence in 
the set S, we have seen at least the following pairwise equalities 
between behavior of two specifc selections of two browsers: 

• The browsers Microsoft Internet Explorer and Microsoft 
Edge exhibit the same behavior. 

• The browsers Google Chrome and Opera exhibit the same 
behavior. 

It follows that: 
• Both of these selections of two browsers will have the same 
behavior for any nonempty subset of the set S. 

• For both of these selections of two browsers, for any non-
empty set of test sequences, the resulting partition will have 
at most three classes. 

• The approach for fngerprinting presented in this paper is 
currently not able to distinguish browsers within these two 
browser pairs. 

• The result that those two browser-pair selections always 
exhibit the same behavior is not surprising, since they in-
ternally use closely related libraries for handling TLS hand-
shakes. 

It is possible to make the above statements more precise, which 
we state in the form of an explicit description of the appearing 
partitions. For each test sequence, the number of equivalence classes 
in the corresponding partition is an element of the set 

C = {1, 2, 3}, (8) 

and for each number in the set C there is at least one test sequence 
where the partition corresponding to this sequence (i.e., singleton 
of test sequence selection) has exactly this number of equivalence 
classes. 

For each number in the set C, we give now a more detailed 
description for the occurring partitions. 

• Number of equivalence classes equal to one: All browsers 
have the same behavior and the corresponding partitions 
are equal. This partition occurs seven times. 

• Number of equivalence classes equal to two: There are two 
diferent partitions: 
– One partition consisting of the two classes: 
(1) {Firefox, Google Chrome, Opera}, 
(2) {Microsoft Internet Explorer, Microsoft Edge} 
occurring 22 times. 

– The other partition consisting of the two classes: 
(1) {Firefox}, 
(2) {Microsoft Internet Explorer, Microsoft Edge, 

Google Chrome, Opera}, 
occurring only once. 

• Number of equivalence classes equal to three: We denote 
this unique class as P3 and the classes for the respective 
partitions are equal to: 

(1) {Firefox}, 
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(2) {Google Chrome, Opera}, 
(3) {Microsoft Internet Explorer, Microsoft Edge}. 
This case occurs 1926 times. 

After this analysis of all possible singletons of test sequence 
selections, next we analyze test sets for the same length and of 
cardinality at least two, in particular SCAs for diferent strengths. 

6.3.2 Sequences of length 1. There are six selections of one event. 

⟨ServerHello⟩: In this case, the resulting partition contains only 
one class with fve elements, i.e., all browsers behave the same way. 

⟨Certifcate⟩, ⟨ECDHEServerKeyExchange⟩, ⟨ServerHelloDone⟩, 
⟨ChangeCipherSpec⟩, ⟨Finished⟩: All of these cases resulted in the 
same partition of the set of all browsers, which has the following 
structure: 

• Class I: {Microsoft Internet Explorer, Microsoft Edge} 
• Class II: {Firefox, Google Chrome, Opera} 

In the case of singleton selections of test sequences of length 
one, the concepts of test sequence, SCA of strength one and image 
under the full permutation group all coincide. We conclude that 
diferent singleton selections (i.e., diferent selections of one event), 
have diferent diferentiation capabilities. 

6.3.3 Sequences of length 2. For all subset selections of cardinal-
ity two, for our generated SCAs of strength two, the result is the 
partition P3. 

6.3.4 Sequences of length 3. For all subset selections of cardinality 
three, for all our generated SCAs of strengths t ∈ {2, 3}, the result 
is the partition P3. 

6.3.5 Sequences of length 4. For all subset selections of cardinality 
four, for all our generated SCAs of strength t ∈ {2, 3, 4}, the result 
is the partition P3. 

6.3.6 Sequences of length 5. For all subset selections of cardinality 
fve, for all our generated SCAs of strength t ∈ {2, 3, 4, 5}, the result 
is the partition P3. 

6.3.7 Sequences of length 6. For all subset selections of cardinality 
six, for all our generated SCAs of strength t ∈ {2, 3, 4, 5, 6}, the 
result is the partition P3. 

6.4 Interpretation of results 
An analysis of the results in the previous evaluation shows that 
testing with the selection of only one test sequence of only one 
event leads to the weakest results in terms of diferentiation. It is 
interesting to note that for some selections of only individual test 
sequences consisting of at least two events, the resulting partition 
is equal to P3. This case even occurs for about 98% of all individual 
event sequence selections. When considering test sequence selec-
tions of cardinality at least two, the resulting partition is also always 
equal to P3 and the best distinguishing capabilities obtained in this 
paper are reached. In particular, whenever there are at least two 
events appearing in the test sequence and a SCA is chosen as test 
set, then the best possible partition P3 is obtained. 

7 CONCLUSION AND FUTURE WORK 
In this paper, we used combinatorial methods to create fnite non-
empty sequences of TLS messages to be used as the underlying 
means for a method of browser fngerprinting. An experimental 
evaluation shows that test sets of TLS sequences where the defned 
order of events compared to the specifcation is changed, lead to 
higher diferentiation capabilities. 

However, our results also showcase that a refned modelling is 
needed to strengthen the approach. This model development could 
be done in parallel to the extension of our set of tested browsers. 
As briefy mentioned before, the additional manipulation of TLS 
message contents and the extension to also consider multi-sets of 
events are directions for future research. Finally, any diference 
in observed behavior could be analyzed from the point of view 
of conformance testing, linking browser fngerprinting to prob-
lems in the feld of conformance testing like undefned behavior or 
conformance quantifcation. 
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