
Browser Fingerprinting using Combinatorial Sequence Testing

Bernhard Garn Dimitris E. Simos Stefan Zauner
SBA Research SBA Research FH Campus Wien
Vienna, Austria Vienna, Austria Vienna, Austria

bgarn@sba-research.org dsimos@sba-research.org stefan.zauner@stud.fh-campuswien.ac.at

Rick Kuhn
NIST

Gaithersburg, MD, USA
d.kuhn@nist.gov

ABSTRACT
In this paper, we propose an approach for browser fngerprinting
using their behavior during the TLS 1.2 handshake with a server.
Using combinatorial methods, we created test sets consisting of
TLS server-side messages as sequences that are sent to the client
as server responses during the TLS handshake. We created an ap-
propriate abstract model of the TLS handshake protocol and used
it to map browser behavior to a feature vector and use them to
derive a distinguisher. We evaluate our approach with a case study
showing that combinatorial properties have an impact on browsers’
behavior.

KEYWORDS
combinatorial testing, security testing, browser fngerprinting

ACM Reference Format:
Bernhard Garn, Dimitris E. Simos, Stefan Zauner, Rick Kuhn, and Raghu
Kacker. 2019. Browser Fingerprinting using Combinatorial Sequence Test-
ing. In Proceedings of Hot Topics in the Science of Security: Symposium
and Bootcamp (HoTSoS ’19). ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The security and threat landscape of the computer systems of to-
day can be viewed from a macroscopic and a microscopic point
of view. Both views are essential, independent and infuence each
other. In this work, we focus on fngerprinting Internet browsers by
analyzing their behavior when they are processing non-standard
response messages from a server. These non-standard messages
are derived using combinatorial methods and no other means are
used in the fngerprinting approach. Browsers, a type of end-user
software which is paramount, constitute the central piece of soft-
ware by which computing power and the Internet are consumed
on a variety of mobile and classic devices. A lot of efort is spent to
annotate vulnerabilities found not only with the specifc software
where the vulnerability was discovered, but to also determine all
other software that is also afected. In a defensive position, these

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Raghu Kacker
NIST

Gaithersburg, MD, USA
raghu.kacker@nist.gov

eforts usually lead to security advisories where users are then
asked to update the afected software to a version for which this
vulnerability has been resolved. From an ofensive or penetration
testing position, a list of pairs consisting of a software-vulnerability
combination provides the means for planning concrete penetra-
tion tests on systems. A prerequisite to this step is, however, that
sufcient knowledge is available about the target system so that a
detailed software version-vulnerabilities list can be used efectively.
In such a hypothetical scenario, the process likely begins with a re-
connaissance phase to determine the exact versions of the software
that is running on the target system. To this end, in this paper, we
employ a combinatorial sequence testing technique in a black-box
testing approach tailored to fngerprint software in use. Specif-
cally, we assume the role of a classical web server where users
of that service want to connect with a secure connection (HTTP
over TLS 1.2 [1]). Our idea is that by responding with certain TLS
handshake messages (on some connection attempts), the resulting
error messages (if any are sent) can be used to uniquely identify
the used browser. After a successful fngerprinting of the browser,
the next attack steps can be planned with the precise knowledge of
the browser version in use on the target. We would like to note that
it is possible to create a database of browser behavior depending
on TLS sequences independent from any specifc target and most
importantly, in advance, and that it can be continuously updated
to have it available for later usage.

Over the last couple of years, there has been a trend to ofer more
and more content over HTTPS, for a variety of reasons. Apart from
the previously described use case, browser fngerprinting might be
used in a variety of scenarios, like identifying users or obtaining
information about the type and version of a browser in order to
deliver suitable malware.

Our approach maps the behavior of browsers to feature vectors,
upon which we base our classifcation. The resulting analysis on
the obtained partitions of all considered browsers can be regarded
as a way to quantify and reason about the similarities in observed
browser behavior.

Contribution. In particular, this paper makes the following con-
tributions:

• Proposes certain combinatorial sequences as test cases for
HoTSoS ’19, April 2–3, 2019, Nashville, TN, USA fngerprinting browser behavior;
© 2019 Copyright held by the owner/author(s).

• Presents experimental results of a case study demonstrating ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn our approach;

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
mailto:raghu.kacker@nist.gov
mailto:d.kuhn@nist.gov

HoTSoS ’19, April 2–3, 2019, Nashville, TN, USA Garn et al.

This paper is structured as follows. In Section 2 we discuss related
work. We present our approach to fngerprinting of browsers using
combinatorial methods in Section 3 and describe our developed
testing framework in Section 4. In Section 5 we describe the setup
of our case study and analyze the obtained results in Section 6. Last,
Section 7 concludes the paper.

2 RELATED WORK
Approaches for browser fngerprinting often rely on properties
exposed by the browser about itself and the underlying operating
system. The authors of [5] followed this approach, and in [16] this
methodology was strengthened by additionally considering browser
plug-ins. In [2], the authors focused on fngerprinting scripts.

Another line of research uses not only properties, but also ca-
pabilities of browsers for developing fngerprinting approaches. A
fngerprinting technique based on the onscreen dimension of font
glyphs was presented in [7]. The rendering of 3D scenes together
with text rendering in a web page on an HTML5 <canvas> element
was used in [12] to base a fngerprinting method upon it. Other
browser capabilities have also been used to create fngerprinting
approaches [22].

In [13], the underlying JavaScript engine was used to devise a
fngerprinting approach. The correlation between feature combina-
tions and identifcation accuracy has been considered in [20].

In [17], the authors used planning with combinatorial methods
for providing test cases for testing diferent TLS implementations.

3 COMBINATORIAL METHODS FOR
FINGERPRINTING

In this section, we detail how combinatorial methods arising in
the feld of discrete mathematics in conjunction with an abstract
modelling methodology can be used to create test sequences that
enable fngerprinting of browsers. First, we describe the combina-
torial structures employed in this paper, and then we present our
modelling methodology and how the constructed sequences can
be used for testing. While combinatorial methods have been used
in the past in the context of combinatorial security testing [18], in
this paper combinatorial methods are used for the frst time as the
underlying means to create a fngerprinting approach.

3.1 Sequence Covering Arrays
Sequence covering arrays (SCAs) [9],[3] are matrices designed to
test software behavior that depends on the order of events, by
ensuring that any t events will occur in every possible t-way order
(allowing interleaving events among each subset of t events). A
sequence covering array, SCA (N , S, t) , is defned as an N ×S matrix
where entries are from a fnite set S of s symbols, such that every
t-way permutation of symbols from S occurs in at least one row and
each row is a permutation of the s symbols [9]. The t symbols in
the permutation are not required to be adjacent. That is, for every t-
way arrangement of symbols x1, x2, . . . , xt , the regular expression
. ∗ x1. ∗ x2 · · · . ∗ xt .∗ matches at least one row in the array.

Table 1: All 3-event sequences of 6 events.

Test Sequence

1 a b c d e f
2 f e d c b a
3 d e f a b c
4 c b a f e d
5 b f a d c e
6 e c d a f b
7 a e f c b d
8 d b c f e a
9 c e a d b f
10 f b d a e c

For example, with six events, a,b, c, d, e, f , one subset of three
events is {a, c, e}, which can be arranged in six possible permuta-
tions. There are1 �6 � = 20 sets of three events, and each can be 3
arranged in 3! = 6 orders. Using only 10 tests, it is possible to
include all 3-way orders of these six events, as shown in Table 1.
It can be shown that, for a given value of t , the number of tests
required to cover all t-way orders grows with log S . For the case
where t = 2, N = 2 for all values of S , i.e., testing 2-way sequences
never requires more than two tests, regardless of the number of
events.

Sequence covering arrays have been used in a variety of testing
applications, including industrial control systems [4], web applica-
tions [10], cryptographic hash functions [11], and laptop utilities
[9]. They can be constructed using a simple greedy algorithm ap-
proach [9], although search and logic based strategies have been
used as well [6],[8]. Greedy algorithms are generally faster, while
other approaches may produce slightly smaller test arrays. To our
knowledge, they have not been used for device fngerprinting or
other applications outside of conventional software testing.

SCA generation. We implemented the algorithm given in [9] in
the Python 2 programming language [15]. It takes as input the
number of events n and the desired interaction strength t and
returns a SCA for the specifed confguration over the alphabet
{0, . . . , n − 1}. The sizes of the SCAs that this program generated
are given in Table 2.

SCA verifcation. Test sequences used in this work were verifed
for coverage using the Combinatorial Sequence Coverage Measure-
ment (CSCM) tool [23],[24]. CSCM was designed to allow testers to
evaluate the sequence coverage of test sets that have not necessarily
been generated to cover sequences. Event sequence testing has long
been known to be important in felds such as communication proto-
cols, and many methods exist to generate sequences that cover the
state transition graphs for protocol testing. Many consumer-level
applications, particularly for web sites and smartphone apps, also
have the potential for complex interactions that are difcult to test
fully. CSCM allows testers to determine the extent to which t-way
sequences are covered in a test set, and to supplement existing tests
as needed to enhance test thoroughness. � � n 1For two nonnegative integers n and k with k ≤ n we denote with the binomial k
coefcient. For a positive integer i we denote with i ! the factorial of i .

Browser Fingerprinting using Combinatorial Sequence Testing

Table 2: Number of tests for generated SCAs.

n t #tests

2 2 2
3 2 2
3 3 6
4 2 2
4 3 8
4 4 24
5 2 2
5 3 10
5 4 28
5 5 120
6 2 2
6 3 10
6 4 36
6 5 156
6 6 720

3.2 Application to fngerprinting
Now, we explain how to use SCAs in the context of browser fn-
gerprinting. First, we briefy summarize some facts about the TLS
protocol, which is used to establish a secure connection between
two parties.

Transport Layer Security. The transport layer security protocol
(TLS) can be used by browsers to establish a secure connection
with a web server. The setup of this secure channel is achieved via
the exchange of a sequence of messages, where the two parties
negotiate some parameter values for later use. This procedure is
encoded in the handshake protocol within the TLS specifcation,
and both client and server should follow it. We regard all TLS
messages that are specifed for the server as a set of six abstract
events E, consisting of:

E = {ServerHello, Certifcate, ECDHEServerKeyExchange, (1a)
ServerHelloDone, ChangeCipherSpec, Finished}. (1b)

If we use the ordering derived from the message exchange in the
TLS specifcation, then the following mapping of TLS events to
numbers is canonical:

(0) ServerHello
(1) Certifcate
(2) ECDHEServerKeyExchange
(3) ServerHelloDone
(4) ChangeCipherSpec
(5) Finished

We denote fnite, nonempty sequence over the alphabet E is as-
cending order between angle brackets, for example ⟨0, 3, 5⟩.

Combinatorial Sequence Model and derived test cases. Given a
nonempty subset of cardinality κ of abstract TLS events2 of the set
E, it is possible to construct a SCA for any strength t ∈ {1, . . . , κ}.

2It would also be possible to consider not only subsets, but also sub-multisets, i.e.,
by allowing at least one event to appear strictly more than once in the considered
selection. We leave this as future work.

HoTSoS ’19, April 2–3, 2019, Nashville, TN, USA

For later evaluation purposes, for any ∅ , E ⊆ E of cardinality3 κ
we created and stored the image of E under the symmetric group
of κ elements in the database. In other words, for any nonempty
subset of sequences, we created all of its permutations and stored
them in the database in the Sequence table and we denote the
corresponding set of all test sequences with S. It follows that we
have in total

6 � � Õ 6
· i! = 1956 (2)

i
i=1

test sequences in the database.
Since we store, for any nonempty subset E of E, all of its permu-

tations in the database, it follows that we can fnd any SCA defned
over the elements of E in the database (i.e., fetching exactly those
rows from the database which correspond to the rows of the SCA).

For later use, we also fx an enumeration of the set S, that is we
fx a bijection4 from the set {1, . . . , |S|} −→ S.

Given a SCA, we refer to a sequence as a test sequence (i.e., row
in the array) and to the array in its entirety as a test set. Such an
abstract test sequence can now be translated into a concrete TLS
message that will be sent to the client over the wire by instantiat-
ing its values with defaults from the specifcation. We would like
to emphasize that while we are considering permutations of sub-
sets of the set E, the concrete message values are taken from the
specifcation5.

4 TESTING FRAMEWORK
In this section, we describe our testing setup of our automated
framework. It is composed of several components and their general
interactions are depicted in Figure 1. The frameworks’ test execu-
tion component uses TLS attacker [19] for sending and receiving
of TLS messages of clients (browsers). TLS test sequences are taken
from a specifed list, created using combinatorial methods. Subse-
quently, the logging component of the framework stores annotated
results for each browser in a dedicated relational database. In other
words, for any given browser, the framework executes the following
steps:

(1) TLS attacker is started as a server and given as input the
XML translation of a test sequence from a set test.

(2) The browser is instrumented to connect via HTTPS to a
specifc local url of TLS attacker.

(3) The framework (i.e., the server side in this connection at-
tempt) will respond according to the encoded messages of
the test sequence given in XML format.

(4) The exchange of TLS messages between the client (browser)
and server will continue as long as possible until all mes-
sages from the test case have been sent from the server. The
complete message exchange is recorded.

(5) The recorded message exchange is be annotated and stored
in a relational database.

Next, we describe each component in detail.

3For a set S , we denote its cardinality with |S |.
4We obtained such an enumeration from the sequence identifers in the database.
5We leave their additional manipulation as future work.

HoTSoS ’19, April 2–3, 2019, Nashville, TN, USA

Figure 1: Overwiew of the fngerprinting process.

Test cases. In our experiments we considered all possible injective
ordered sequences S over the alphabet E of length one to six. This
means that, in particular, the set S has as a subset all t-SCAs for
all t ∈ {1, 2, 3, 4, 5, 6}. In Section 6, during the evaluation, we will
make use of this fact and compare the distinguishing capabilities
of various subsets of S, in particular those of SCAs for diferent
event selections and diferent strengths. Due to the size advantage
of SCAs compared to the set of all permutations of some fxed set
of elements, it is clear that while for our initial experiments we
were able to work the complete set S, in future extension steps of
an existing analysis database it would be more desirable to follow
a test set augmentation strategy based on higher strength of SCAs
instead of adding all permutations.

Test execution. The test execution component uses TLS attacker6

[19], which is an open source framework that allows the creation
of custom TLS message fows, both from a client and server side.
Since we want to fngerprint clients (i.e., browsers), we use TLS
attacker in the server role. For each abstract test sequence, an XML
encoded TLS handshake sequence is created, which is one of the
input formats of TLS attacker. If available, we start the browsers
in headless mode. The browsers connect to a locally running TLS
attacker. A self-signed root certifcate was created and added to the
list of trusted certifcates for each browser and the certifcate that
is sent by TLS attacker was signed with the private key of the root
certifcate (no intermediate certifcate). Also, the certifcate sent
by our server has a V3-Extension called subjectaltname. This was
necessary since Google Chrome uses this extension to validate the
certifcate and otherwise it would not accept it.

The browser process is terminated as soon as the stream (from
TLS attacker) is closed and all the results are stored. This is the
same process for both headless and not headless.

Logging and database. While instrumenting TLS attacker, we
parse its comprehensive output. This output includes detailed infor-
mation about sent and received TLS messages. It also outputs TLS
alert messages and prints out exceptions that happened during
execution (stored in the feld ExceptionHandshake), for example
if the browser closed the socket or if TLS attacker failed to parse a
received message. The tests also send an HTTPS-response to the
browser, so it is possible to record exceptions that happened af-
ter the handshake (stored in the feld ExceptionPostHandshake),
when data should be sent over the now secure channel. We added
this information to make it possible to have more data in the feature

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Garn et al.

vectors used as distinguishers (e.g.: no exception is thrown during
the handshake, but the socket is closed as soon as TLS attacker tries
to send data).

This logging information, together with the tested client (i.e.,
browser) is then stored in a SQLite database [14]. Moreover, the
database also contains tables with

• the list of browsers, their paths and command line options
for how to start them, respectively;

• the set of TLS events E;
• a workfow skeleton that is populated with the saved TLS
messages;

• the list of all considered test sequences S.
We give some examples for results obtained in Table 3, as they

are stored in the database.

Walk through example. We illustrate our approach and the test
case execution with an example. Consider a fve event selection out
of the set E where the event Certifcate is omitted, i.e. we choose
the following sequence

⟨ServerHello, Finished, ServerHelloDone, (3a)
ChangeCipherSpec, ECDHEServerKeyExchange⟩ (3b)

= ⟨0, 5, 3, 4, 2⟩ (3c)

built from these events. The corresponding XML encoded sequence
is depicted in Listing 1.

<?xml v e r s i o n = " 1 . 0 " encod ing = "UTF−8 " s t a nd a l on e = "
yes " ?>

<workf lowTrace >
<Rece ive >

<expec tedMessages >
<C l i e n tH e l l o / >

</ expec tedMessages >
</ Rece ive >
<Send >

<messages >
< S e r v e rHe l l o / >
< F i n i s h e d / >
<Serve rHe l loDone / >
<ChangeCipherSpec / >

</messages >
</ Send >
<Rece ive >

<expec tedMessages >
<ECDHClientKeyExchange / >
<ChangeCipherSpec / >

< F i n i s h e d / >
</ expec tedMessages >
</ Rece ive >
<Send >

<messages >
<ECDHEServerKeyExchange / >

</messages >
</ Send >
<Send >
<messages >

<HttpsResponse >
</ HttpsResponse >

</messages >
6Release v2.6. 33 </ Send >

Browser Fingerprinting using Combinatorial Sequence Testing HoTSoS ’19, April 2–3, 2019, Nashville, TN, USA

Table 3: Excerpt from the Results table.

ID ReceivedMsgs1 ReceivedMsgs2 AlertMessage ExceptionHandshake ExceptionPostHandshake br_id Seq_id

6 CLIENT_HELLO AlertMessage UNEXPECTED_MESSAGE 1 2

761 CLIENT_HELLO AlertMessage UNEXPECTED_MESSAGE java.net.SocketException: Connection reset by peer: socket write error 1 153

3881 CLIENT_HELLO java.net.SocketException: Connection reset by peer:
socket write error

java.net.SocketException: Connection reset by peer: socket write error 1 777

3882 CLIENT_HELLO java.net.SocketException: Software caused connection abort: socket write error 2 777

3883 CLIENT_HELLO AlertMessage UNEXPECTED_MESSAGE java.net.SocketException: Software caused connection abort: socket write error 3 777

3884 CLIENT_HELLO java.net.SocketException: Software caused connection abort: socket write error 4 777

3885 CLIENT_HELLO AlertMessage UNEXPECTED_MESSAGE java.net.SocketException: Software caused connection abort: socket write error 5 777

34 </ workf lowTrace >

Listing 1: TLS 1.2 altered handshake workfow.

For this example, we consider the case of testing the behavior of
the browser Firefox. It is started in headless mode pointing to a
local resource from the execution framework using the following
command:
C:\Program Files\Mozilla Firefox\firefox.exe

-headless -url https://localhost:5555

Upon execution, this test sequence led to the following exchange
of TLS messages:

(1) ClientHallo sent from Firefox.
(2) The framework sends the following messages:

⟨ServerHello, Finished, ServerHelloDone, (4a)
ChangeCipherSpec⟩ (4b)

(3) The client (Firefox in this case) responds and the response is
identifed by the execution framework as a TLS alert mes-
sage of type UNEXPECTED_MESSAGE. Furthermore, we obtain
from TLS attacker an exception of type
java.net.SocketException: Connection reset by peer:
socket write error.

(4) Finally, an annotated version of the above test execution
result is stored in the database.

5 CASE STUDY
In this section, we describe in detail the sequences used as test sets
and the tested browsers and their version.

Test sets. As already mentioned in Section 3.2, our automated
approach made it possible to work with the complete set S con-
taining all permutations for all nonempty subset selections of TLS
messages.

Independently, we used the generated SCAs (see Section 3.1)
to obtain for every compatible selection of events a list of test se-
quence IDs. These IDs were used to obtain a subset of rows from the
Sequence table in the database corresponding to the instantiated
abstract SCA with the TLS messages selection.

Since we can fnd these SCAs as subsets of S, by executing all
test sequences of S against all browsers, we have also tested all
SCAs of interest.

Browsers. In total, we tested fve browsers for a case study, con-
sisting of the following:

(1) Mozilla Firefox, version 64.0.0.6914;

(2) Opera, version 57.0.3098.106;
(3) Google Chrome, version 71.0.3578.98;
(4) Microsoft Internet Explorer, version 11.0.17134.1;
(5) Microsoft Edge, version 11.00.17134.471.

Framework setup. All experiments were performed on Windows
10 Pro, 64-bit Build 17134.472 Version 1803 running inside a virtual
machine created with VMware Workstation 12 Pro 12.5.9 build-
7535481. During the testing, all browsers connected to a locally
running instance of TLS attacker.

6 EVALUATION
In this section, we present our results from running the experiments
described in Section 5 and the theoretical criteria upon which we
base our analysis. We explain how we instantiate feature vectors
for abstract analysis in Section 6.1 and subsequently remark on how
we compare them in Section 6.2. Afterwards, we elaborate on the
results obtained in Section 6.3. The evaluation was performed with
a program written in Perl v5.24.1 [21], which queried the results
database and carried out the necessary steps for the analysis of our
results.

Results show that the method presented in this paper is efective
for distinguishing between browser classes. That is, a very large
number of the SCA tests were able to determine the browser type as
belonging to one of the three categories: {Firefox}, {Google Chrome,
Opera}, {Microsoft Internet Explorer, Microsoft Edge}.

6.1 Feature vector defnition
For given browser and nonempty set of test sequences S ⊆ S, we
defne a feature vector as follows:

• For each s ∈ S , let rs be the result of executing test sequence s
against the given browser (queried from the results database),
stored as an array of strings. Note that the length of this array
is uniform for all browsers and all test sequences in the set
S.

• Let fv denote an array of length |S |, where each entry is
a reference to the array rs , in ascending order according
to the chosen enumeration of the set S. The result can be
interpreted as a two-dimensional array where the the frst
position of a two-dimensional index pair corresponds to the
enumeration identifer of a test sequence and the second
position to a column in the Result table schema.

• We defne the array fv as feature vector for the given browser
and set S of sequences.

http:71.0.3578.98
https://localhost:5555

HoTSoS ’19, April 2–3, 2019, Nashville, TN, USA Garn et al.

We exemplify our defnition of feature vectors with an example.
Consider the browser Mozilla Firefox together with the following
set of S ⊆ S of test sequences:

S = {⟨Certifcate⟩, ⟨Finished, ChangeCipherSpec, ServerHello⟩}
(5)

The result of these two test sequences executed against Firefox
(which has browser_id equal to one) are depicted in Table 3, where

• the sequence ⟨Certifcate⟩ has Sequence_id equal to two
and the corresponding result is stored in the Result table
with ID equal to six.

• the sequence ⟨Finished, ChangeCipherSpec, ServerHello⟩ has
Sequence_id equal to 153 and the corresponding result is
stored in the Result table with ID equal to 761.

The resulting feature vector fv has length two. The frst entry points
to an array of strings with the respective values shown in Table 3
for ID equal to six7:
("CLIENT_HELLO"|"AlertMessage"|"UNEXPECTED_MESSAGE"|""|"")

(6)
The second entry points to an array of strings with the respective
values shown in Table 3 for ID equal to 7618:
("CLIENT_HELLO"|"AlertMessage"|"UNEXPECTED_MESSAGE"|""| (7a)

"java.net.SocketException: (7b)
Connection reset by peer: socket write error") (7c)

6.2 Classifcation of feature vectors
Since we are interested in fnding nonempty subsets of the set S
where we can observe diferent behavior of the tested browsers, we
now give a precise defnition of how the term diferent behavior is
to be understood in this paper. Suppose we are given a nonempty
subset S ⊆ S and two diferent browsers, then we say that they
exhibit diferent behavior with respect to S , if and only if, their
respective feature vectors difer9.

For fve browsers, there are ten possible pairwise comparisons
between their behaviors (i.e., pairwise comparisons between their
respective feature vectors). We use these pairwise comparisons to
defne an equivalence relation on the set of all browsers. For fxed
nonempty set S ⊆ S, two browsers are equivalent, if and only
if, they exhibit the same behavior. In other words, two browsers
are members of the same equivalence class, if and only if, they
exhibit the same behavior for the set S . Due to our interest in
fngerprinting browsers according to their behavior using test cases
created with combinatorial methods, we are especially interested
in analyzing the resulting partitions for diferent nonempty sets of
test sequences.

6.3 Analysis of results
Firstly, we make some general observations on our results in Section
6.3.1. Then, we proceed with our analysis for groups of sequences
of the same length for lengths from 1 up to 6 in Section 6.3.2 until
7The characters (and) denote the start and end of the array, respectively; the double
high quotes delimit strings; and the character | is used as array element seperator.
8See Footnote 7.
9Equality of feature vectors is to be understood as canonical equality between two-
dimensional arrays with the same dimensions; i.e., in each position equality for the
respective strings holds.

Section 6.3.7. For i ∈ {1, 2, 3, 4, 5, 6} we denote with Si the subset
of S consisting of exactly those sequences of length i . Note that in
the case of n = t , the notions of the image of a set of cardinality n
under the full permutation group and a SCA of strength n result in
the same set of sequences.

6.3.1 General observations. For each individual test sequence in
the set S, we have seen at least the following pairwise equalities
between behavior of two specifc selections of two browsers:

• The browsers Microsoft Internet Explorer and Microsoft
Edge exhibit the same behavior.

• The browsers Google Chrome and Opera exhibit the same
behavior.

It follows that:
• Both of these selections of two browsers will have the same
behavior for any nonempty subset of the set S.

• For both of these selections of two browsers, for any non-
empty set of test sequences, the resulting partition will have
at most three classes.

• The approach for fngerprinting presented in this paper is
currently not able to distinguish browsers within these two
browser pairs.

• The result that those two browser-pair selections always
exhibit the same behavior is not surprising, since they in-
ternally use closely related libraries for handling TLS hand-
shakes.

It is possible to make the above statements more precise, which
we state in the form of an explicit description of the appearing
partitions. For each test sequence, the number of equivalence classes
in the corresponding partition is an element of the set

C = {1, 2, 3}, (8)

and for each number in the set C there is at least one test sequence
where the partition corresponding to this sequence (i.e., singleton
of test sequence selection) has exactly this number of equivalence
classes.

For each number in the set C, we give now a more detailed
description for the occurring partitions.

• Number of equivalence classes equal to one: All browsers
have the same behavior and the corresponding partitions
are equal. This partition occurs seven times.

• Number of equivalence classes equal to two: There are two
diferent partitions:
– One partition consisting of the two classes:
(1) {Firefox, Google Chrome, Opera},
(2) {Microsoft Internet Explorer, Microsoft Edge}
occurring 22 times.

– The other partition consisting of the two classes:
(1) {Firefox},
(2) {Microsoft Internet Explorer, Microsoft Edge,

Google Chrome, Opera},
occurring only once.

• Number of equivalence classes equal to three: We denote
this unique class as P3 and the classes for the respective
partitions are equal to:

(1) {Firefox},

Browser Fingerprinting using Combinatorial Sequence Testing HoTSoS ’19, April 2–3, 2019, Nashville, TN, USA

(2) {Google Chrome, Opera},
(3) {Microsoft Internet Explorer, Microsoft Edge}.
This case occurs 1926 times.

After this analysis of all possible singletons of test sequence
selections, next we analyze test sets for the same length and of
cardinality at least two, in particular SCAs for diferent strengths.

6.3.2 Sequences of length 1. There are six selections of one event.

⟨ServerHello⟩: In this case, the resulting partition contains only
one class with fve elements, i.e., all browsers behave the same way.

⟨Certifcate⟩, ⟨ECDHEServerKeyExchange⟩, ⟨ServerHelloDone⟩,
⟨ChangeCipherSpec⟩, ⟨Finished⟩: All of these cases resulted in the
same partition of the set of all browsers, which has the following
structure:

• Class I: {Microsoft Internet Explorer, Microsoft Edge}
• Class II: {Firefox, Google Chrome, Opera}

In the case of singleton selections of test sequences of length
one, the concepts of test sequence, SCA of strength one and image
under the full permutation group all coincide. We conclude that
diferent singleton selections (i.e., diferent selections of one event),
have diferent diferentiation capabilities.

6.3.3 Sequences of length 2. For all subset selections of cardinal-
ity two, for our generated SCAs of strength two, the result is the
partition P3.

6.3.4 Sequences of length 3. For all subset selections of cardinality
three, for all our generated SCAs of strengths t ∈ {2, 3}, the result
is the partition P3.

6.3.5 Sequences of length 4. For all subset selections of cardinality
four, for all our generated SCAs of strength t ∈ {2, 3, 4}, the result
is the partition P3.

6.3.6 Sequences of length 5. For all subset selections of cardinality
fve, for all our generated SCAs of strength t ∈ {2, 3, 4, 5}, the result
is the partition P3.

6.3.7 Sequences of length 6. For all subset selections of cardinality
six, for all our generated SCAs of strength t ∈ {2, 3, 4, 5, 6}, the
result is the partition P3.

6.4 Interpretation of results
An analysis of the results in the previous evaluation shows that
testing with the selection of only one test sequence of only one
event leads to the weakest results in terms of diferentiation. It is
interesting to note that for some selections of only individual test
sequences consisting of at least two events, the resulting partition
is equal to P3. This case even occurs for about 98% of all individual
event sequence selections. When considering test sequence selec-
tions of cardinality at least two, the resulting partition is also always
equal to P3 and the best distinguishing capabilities obtained in this
paper are reached. In particular, whenever there are at least two
events appearing in the test sequence and a SCA is chosen as test
set, then the best possible partition P3 is obtained.

7 CONCLUSION AND FUTURE WORK
In this paper, we used combinatorial methods to create fnite non-
empty sequences of TLS messages to be used as the underlying
means for a method of browser fngerprinting. An experimental
evaluation shows that test sets of TLS sequences where the defned
order of events compared to the specifcation is changed, lead to
higher diferentiation capabilities.

However, our results also showcase that a refned modelling is
needed to strengthen the approach. This model development could
be done in parallel to the extension of our set of tested browsers.
As briefy mentioned before, the additional manipulation of TLS
message contents and the extension to also consider multi-sets of
events are directions for future research. Finally, any diference
in observed behavior could be analyzed from the point of view
of conformance testing, linking browser fngerprinting to prob-
lems in the feld of conformance testing like undefned behavior or
conformance quantifcation.

ACKNOWLEDGEMENTS
The research presented in this paper was carried out in the context
of the Austrian COMET K1 program and partly publicly funded
by the Austrian Research Promotion Agency (FFG) and the Vienna
Business Agency (WAW).

Moreover, this work was performed partly under the following
fnancial assistance award 70NANB18H207 from U.S. Department
of Commerce, National Institute of Standards and Technology.

Disclaimer: Products may be identifed in this document, but identifcation
does not imply recommendation or endorsement by NIST, nor that the products
identifed are necessarily the best available for the purpose.

REFERENCES
[1] [n. d.]. RFC 5246 - The Transport Layer Security (TLS) Protocol Version 1.2.

https://tools.ietf.org/html/rfc5246. ([n. d.]). Accessed: 2019-01-07.
[2] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank

Piessens, and Bart Preneel. 2013. FPDetective: Dusting the Web for Finger-
printers. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security (CCS ’13). ACM, New York, NY, USA, 1129–1140.
https://doi.org/10.1145/2508859.2516674

[3] Y. Chee, C. Colbourn, D. Horsley, and J. Zhou. 2013. Sequence Covering Arrays.
SIAM Journal on Discrete Mathematics 27, 4 (2013), 1844–1861. https://doi.org/
10.1137/120894099 arXiv:https://doi.org/10.1137/120894099

[4] G. Dhadyalla, N. Kumari, and T. Snell. 2014. Combinatorial Testing for an Au-
tomotive Hybrid Electric Vehicle Control System: A Case Study. In 2014 IEEE
Seventh International Conference on Software Testing, Verifcation and Validation
Workshops. 51–57. https://doi.org/10.1109/ICSTW.2014.6

[5] Peter Eckersley. 2010. How Unique Is Your Web Browser?. In Privacy Enhancing
Technologies, Mikhail J. Atallah and Nicholas J. Hopper (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 1–18.

[6] Esra Erdem, Katsumi Inoue, Johannes Oetsch, Jörg Pührer, Hans Tompits, and
Cemal Yılmaz. 2011. Answer-set programming as a new approach to event-
sequence testing. (2011).

[7] David Fifeld and Serge Egelman. 2015. Fingerprinting Web Users Through Font
Metrics. In Financial Cryptography and Data Security, Rainer Böhme and Tatsuaki
Okamoto (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 107–124.

[8] M. Z. Mohd Hazli, Z. Kamal Z., and O. Rozmie R. 2012. Sequence-based interac-
tion testing implementation using Bees Algorithm. In 2012 IEEE Symposium on
Computers Informatics (ISCI). 81–85. https://doi.org/10.1109/ISCI.2012.6222671

[9] D. R. Kuhn, J. M. Higdon, J. F. Lawrence, R. N. Kacker, and Y. Lei. 2012.
Combinatorial Methods for Event Sequence Testing. In 2012 IEEE Fifth Inter-
national Conference on Software Testing, Verifcation and Validation. 601–609.
https://doi.org/10.1109/ICST.2012.147

[10] H. Mercan and C. Yilmaz. 2014. Pinpointing Failure Inducing Event Orderings. In
2014 IEEE International Symposium on Software Reliability Engineering Workshops.
232–237. https://doi.org/10.1109/ISSREW.2014.34

https://tools.ietf.org/html/rfc5246
https://doi.org/10.1145/2508859.2516674
https://doi.org/10.1137/120894099
https://doi.org/10.1137/120894099
http://arxiv.org/abs/https://doi.org/10.1137/120894099
https://doi.org/10.1109/ICSTW.2014.6
https://doi.org/10.1109/ISCI.2012.6222671
https://doi.org/10.1109/ICST.2012.147
https://doi.org/10.1109/ISSREW.2014.34

HoTSoS ’19, April 2–3, 2019, Nashville, TN, USA

[11] N. Mouha, M. S. Raunak, D. R. Kuhn, and R. Kacker. 2018. Finding Bugs in
Cryptographic Hash Function Implementations. IEEE Transactions on Reliability
67, 3 (Sep. 2018), 870–884. https://doi.org/10.1109/TR.2018.2847247

[12] Keaton Mowery and Hovav Shacham. 2012. Pixel perfect: Fingerprinting canvas
in HTML5. Proceedings of W2SP (2012), 1–12.

[13] Martin Mulazzani, Philipp Reschl, Markus Huber, Manuel Leithner, Sebastian
Schrittwieser, Edgar Weippl, and FC Wien. 2013. Fast and reliable browser
identifcation with javascript engine fngerprinting. In Web 2.0 Workshop on
Security and Privacy (W2SP), Vol. 5. Citeseer.

[14] SQLite project. 2019. SQLite. https://www.sqlite.org/index.html. (2019). Accessed:
2019-01-07.

[15] Python Software Foundation. 2019. Python. https://www.python.org/. (2019).
Accessed: 2019-01-07.

[16] Research project of the Electronic Frontier Foundation. 2019. Panopticlick. https:
//panopticlick.ef.org/. (2019). Accessed: 2019-01-07.

[17] Dimitris E Simos, Josip Bozic, Bernhard Garn, Manuel Leithner, Feng Duan,
Kristofer Kleine, Yu Lei, and Franz Wotawa. 2018. Testing TLS using planning-
based combinatorial methods and execution framework. Software Quality Journal
(2018), 1–27.

Garn et al.

[18] D. E. Simos, R. Kuhn, A. G. Voyiatzis, and R. Kacker. 2016. Combinatorial methods
in security testing. IEEE Computer 49 (2016), 40–43.

[19] Juraj Somorovsky. 2016. Systematic Fuzzing and Testing of TLS Libraries. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’16). ACM, New York, NY, USA, 1492–1504.

[20] Kazuhisa Tanabe, Ryohei Hosoya, and Takamichi Saito. 2019. Combining Features
in Browser Fingerprinting. In Advances on Broadband and Wireless Computing,
Communication and Applications, Leonard Barolli, Fang-Yie Leu, Tomoya Enokido,
and Hsing-Chung Chen (Eds.). Springer International Publishing, Cham, 671–681.

[21] The Perl Foundation. 2019. Perl. https://www.perl.org/. (2019). Accessed:
2019-01-07.

[22] Thomas Unger, Martin Mulazzani, Dominik Fruhwirt, Markus Huber, Sebastian
Schrittwieser, and Edgar Weippl. 2013. Shpf: Enhancing http (s) session security
with browser fngerprinting. In Availability, Reliability and Security (ARES), 2013
Eighth International Conference on. IEEE, 255–261.

[23] Z. B. Ratlif. 2018. Black-box Testing Mobile Applications Using Sequence Cover-
ing Arrays. (2018). undergraduate thesis, Texas A&M University.

[24] Zachary Ratlif. 2019. CSCM-Tool. https://github.com/zachratlif22/CSCM-Tool.
(2019). Accessed: 2019-01-07.

https://doi.org/10.1109/TR.2018.2847247
https://www.sqlite.org/index.html
https://www.python.org/
https://panopticlick.eff.org/
https://panopticlick.eff.org/
https://www.perl.org/
https://github.com/zachratliff22/CSCM-Tool

	Abstract
	1 Introduction
	2 Related Work
	3 Combinatorial methods for fingerprinting
	3.1 Sequence Covering Arrays
	3.2 Application to fingerprinting

	4 Testing framework
	5 Case study
	6 Evaluation
	6.1 Feature vector definition
	6.2 Classification of feature vectors
	6.3 Analysis of results
	6.4 Interpretation of results

	7 Conclusion and Future Work
	References

