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Abstract

The Complexity-entropy causality plane (CECP) is a parsimonious repre-

sentation space for time series. It has only two dimensions: normalized

permutation entropy (HS) and Jensen-Shannon complexity (CJS) of a time

series. This two-dimensional representation allows for detecting slow or rapid

drifts in the condition of mechanical components monitored through sensor

measurements. The CECP representation can be used for both predictive

analytics and visual monitoring of changes in component condition. This

method requires minimal pre-processing of raw signals. Furthermore, it is in-

sensitive to noise, stationarity, and trends. These desirable properties make

CECP a good candidate for machine condition monitoring and fault diagnos-

tics. In this work we demonstrate the effectiveness of CECP on three rotary
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component condition assessment applications. We use CECP representation

of vibration signals to differentiate various machine component health condi-

tions for rotary machine components, namely roller bearing and gears. The

results confirm that the CECP representation is able to detect, with high ac-

curacy, changes in underlying dynamics of machine component degradation

states. From class separability perspective, the CECP method is able to gen-

erate linearly separable classes for the classification of different fault states.

The classification performance improves with increasing signal length. For

signal length of 16,384 data points, the fault classification accuracy varies

from 90% to 100% for bearing applications, and from 85% to 100% for gear

applications. We observe that the optimum parameter for CECP depends on

the application. For bearing applications we find that embedding dimension

D = 4, 5, 6, and embedding delay τ = 1, 2, 3 are suitable for fault classifica-

tion. For gear applications we find that embedding dimension D = 4, 5, and

embedding delay τ = 1, 5 are suitable for fault classification.

Keywords: Complexity-Entropy Plane, Permutation Entropy, Support

Vector Machine, Machine Fault Diagnostics Component Condition

Visualization
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1. Introduction

Prognostics and Health Management (PHM) and its functions, diag-

nostics and prognostics, are key areas of interest for smart manufacturing.

While, diagnostics detects and identifies a failure mode within a component,

prognostics predicts the degradation trends of a component and estimates

the remaining useful life (RUL) of a component or system. Table 1 lists the

common machine component problems addressed by PHM [1]. This paper

investigates a novel sensor data representation method that allows both au-

tomatic and visual detection of health condition of bearings and gears, which

are the most prevalent components among the ones listed in Table 1.

Table 1: Common machine component and machine subsystem problems in PHM [1]

Machine Component/Subsystem Problems

Bearing Outer-race, inner- race, roller, cage failures

Gear Manufacturing error, missing tooth, tooth pitting, gear crack, gear fatigue/wear

Shaft Unbalance, bend, crack, misalignment, rub

Pump (machine subsystem) Valve impact,score, fracture,pistons lap, defective bearing and revolving crank, hydraulic problem

Alternator (machine subsystem) Stator faults, rotor electrical faults, rotor mechanical faults

Bearings perform a key function of converting sliding friction into rolling

friction in rotary machines. A bearing consists of an inner ring, an outer ring,

a set of ball rollers or cylindrical rollers (usually termed as rolling elements),

and a cage. The rolling elements are placed inside a cage which is then set
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between the inner ring and outer ring. The bearing fault can occur in any

of the aforementioned four components of a roller bearing. The causes for

faults in bearing include, increase of operating loads, shaft imbalance or bent

shaft, surface defects, surface roughness, surface contamination, and presence

of particles on inner or outer raceway [2]. El-Thalji and Jantunen [3] present

dynamics of wear progression of roller bearings.

Gears, like bearings, serve a critical function in a rotary machine. Like

bearings, gears operate in tough operating conditions involving static and

impact forces. Gears are subjected to wear in the form of cracking, pitting,

and scaling which eventually culminates into a chipped tooth or broken tooth

condition. When such a fault state is reached, gears do not perform as ex-

pected and hence they are, like bearings, ought to be continuously monitored

for their health condition.

For both bearings and gears, sensor-based monitoring methods are viable

options for fault detections and estimation of RUL. The common indirect

measurements include vibration, acoustic emission, and power sensors. The

general steps for implementing machine learning models for machine compo-

nent fault detection are signal acquisition, signal processing, feature extrac-

tions, and building a machine learning model for classification and regression.
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Most of the sensor generated structured data are time series data. Di-

mensionality reduction is an inherent challenge, particularly when real-time

data processing is required and data streams are generated continuously at

high volume and high rate [4]. Dimensionality reduction through parsimo-

nious signal representation and feature extraction are necessary for diagnos-

tics and prognostics of mechanical systems. Time domain features commonly

include Root Mean Square (RMS), Average, Kurtosis, crest factor, autore-

gressive models [2]. Studies have found that RMS extracted from vibration

measurements exhibits a strong correlation with bearing wear [2, 5–8]. Sim-

ilarly, kurtosis and crest factor are sensitive to the signal shape; kurtosis is

also sensitive to rotational speed and the frequency bandwidth of the signal

[2]. Fast-Fourier Transform (FFT) is the most widely applied method for

frequency domain analysis. However due to the non-stationary nature of the

signals, time-frequency domain analysis is preferred. WignerVille distribu-

tion (WVD), wavelet transform (WT) [9], discrete wavelet transform (DWT)

[10], and short time Fourier transform (STFT) are some of the methods of

choice for bearing fault diagnosis. Several studies have used time domain

analysis for gear fault detection [11–14]. RMS and kurtosis are found to

be sensitive to gear faults, especially cracked gear [14]. Apart from time
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domain, frequency domain has been explored to represent features for gear

fault detection [15–18] and time-frequency domain [19–21] has been used for

enhancing accuracy, robustness, and reducing sensitivity to noise.

This paper presents a different approach signal processing for diagnostics

and prognostics of bearings and gears. It investigates a complexity-entropy

causality plane (CECP) based sensor data representation that is parsimo-

nious and effective in detection of faults in bearings and gears. In Section

1 we reviewed the different sensor representation methods which includes,

time, frequency and time-frequency methods. In section 2 we review the

different entropic methods used for characterizing time series signals. In Sec-

tion 3 we present the formulation for the CECP representation and discuss

the parameter selection for machine component monitoring applications. In

Section 4 we present the results for roller bearing fault detection and helical

gear fault detection and discuss the merits of the proposed approach. In the

conclusion section we discuss the advantages of CECP method over exist-

ing time, frequency, and time-frequency based approaches commonly used in

PHM applications.
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2. Sensor Data Representation Methods

The representation of the sensor data is the process of transforming a raw

time series vector X = {x1, x2, . . . , xn} into a vector F = {f1, f2, . . . , fk} in

transformation space such that k < n, where n is the number of data points

in a given time series, and k is the number of entities in the transformed

space. By reducing the dimension, the computational complexity is reduced

from O(n) to O(k). The desired properties of a good representation are

preservation of local and global characteristics with low information loss and

high robustness in the presence of noise and outliers.

The sensor signal analysis using time, frequency, or time-frequency do-

main are well suited when the underlying system dynamics exhibit a linear

behavior. In case of machine components like bearing, gears, or combina-

tion of coupled systems, sensor signals exhibit high complexity and nonlin-

ear characteristics. In recent years, entropic measures have proven to be

effective to deal with complex and nonlinear sensor signals for feature ex-

traction in rotary component fault classification and estimation problems.

Approximate Entropy (ApEn) [22–24] and Sample Entropy (SampEn) [25]

were developed for characterizing nonlinear time series in biomedical appli-

cations. SampEn is an improvement over ApEn, where ApEn performance
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depends on the signal length and yields lower estimation for shorter lengths

[25]. For PHM applications, ApEn [26, 27] method has been adopted for

monitoring machine health and SampEn [28–30] has been adopted for bear-

ing fault diagnosis. The multi-scale entropy (MSE) method developed by

Costa et al. [31, 32] proved effective in case of machine health monitoring

where interaction between multiple components (bearing, gear, and shafts)

generate vibration signals that contain multiple intrinsic oscillatory modes

in which case single scale entropic methods such as ApEn and SampEn may

be less effective in characterization of the measured signals [33, 34]. Unlike

ApEn and SampEn, MSE analyzes signals in multiple time scales rather than

in a single time scale, since entropy values do not necessarily capture com-

plexity changes. Zhang et al. [33] applied MSE method for bearing fault

application.

Permutation entropy, introduced by Bandt and Pompe [35] has been used

for analyzing and characterizing nonlinear time series data. Studies have

adopted Permutation entropy for fault classification of mechanical compo-

nents [36, 37]. Using permutation entropy alone as a feature limits its ability

to classify different types of faults within fault domain. Wu et al. [38] found

that permutation entropy on its own as a feature does not fare well with
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classification algorithms. They used a technique called as multi-scale per-

mutation entropy for feature extraction and used support Vector Machine

(SVM) to classify fault signals. However, using multi-scale permutation en-

tropy, one may end up with as many features as scales used with redundant

information, hampering accuracy, and causing further increase in analysis

time. Li et al. [39] used Laplacian score [40] to select the important features

generated by multi-scale permutation entropy technique.

In this work we investigate Complexity-Entropy Causality Plane (CECP)

as a data representation and feature extraction technique for machine fault

diagnostic applications. The key interest in CECP stems from the fact that

it handles both stationary and non-stationary signals, reduces the number

of features required for accurate classification and prediction, and allows

for visualization of time series in two-dimensional space. We demonstrate

the effectiveness of CECP method to detect machine component faults on

publicly available sensor datasets on bearings and gears.

3. CECP Representation of Sensor Data

Shannon entropy, S[P ], is a popular measure to compute the information

associated with a process described by a probability distribution {P = pi : i = 1, 2, . . .M}.
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However, for differentiating simple processes from complex processes, which

exhibit organizing patterns, S[P ], is ineffective [41, 42]. In addition, Shannon

entropy on its own does not capture temporal relationship between values in

a time series. It requires prior knowledge about the process in the form of an

underlying probability distribution function [43], yet it poorly characterizes

highly non-linear processes (e.g. chaotic systems).

To overcome the aforementioned limitations, Bandt and Pompe (BP) [35]

provided a method to extract the underlying probability distribution from

the time series. The BP method is effective since the emergence of different

permutation patterns reflects the dynamics of the underlying process. The

BP method is non-parametric, rank based, and the probability of the ordinal

patterns is invariant to nonlinear monotonic changes [42, 44]. This renders a

good quantifier which is robust against nonlinear drifts and scaling [42] with

ability to handle non-stationary time series [44–46]. The BP method for

generating probability distributions is a simple symbolization technique that

incorporates causality in the evaluation of the probability distributions asso-

ciated with a time series [43]. For a given time series X = {xt : t = 1, 2, ...N},

at each time instance s, a sequence of values Xs =
{
xs, xs+τ(1), ..., xs+τ(D−1)

}
is selected, where D represents the embedding dimension and τ represents
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the embedding delay. The embedding dimension D captures the amount of

information contained in Xs. An ordinal pattern (0 1 ... D − 1) is assigned

to Xs such that (0 1 ... D − 1) 7→
{
xs, xs+τ(1), ..., xs+τ(D−1)

}
. The values of

Xs are then sorted in ascending order and the corresponding ordinal pattern

is shuffled in parallel. The shuffled ordinal patterns are represented as π. In

case the elements of the time series segment are identical, the correspond-

ing ordinal pattern is taken (without shuffling) as the resulting permutation

pattern. When the embedded dimension is D, D! permutation patterns are

possible. The relative frequency pi of each πi is obtained by dividing the

count of permutation pattern π in the signal by the total number of per-

mutation patterns (of any type) in the signal. Thus, pi = |πi|/
∑D!

i=1 |πi| for

i = 1, 2, . . . , D! and P = {pi : i = 1, 2, . . . , D!} is the probability distribution

of the permutation patterns in the signal. Here |πi| is the count of occurrence

of permutation pattern πi. The permutation entropy is computed as

S[P ] = −
D!∑
i=1

pilog(pi) (1)

The permutation entropy as defined above takes maximum value when pi =

p = 1
D!

for all i. From this the max S[P ] = logD!. Thus the normalized
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permutation entropy is given by

HS =
S[P ]

logD!
(2)

where HS ∈ (0, 1).

Entropic measures, including permutation entropy, are able to quantify in-

formation but they do not capture the structure or patterns in a process

[43, 47]. To uncover organizational patterns of a process, several statistical

complexity measures (SCM) have been developed [42]. Of the many SCM

metrics, Jensen-Shannon complexity CJS combines both information and dis-

equilibrium measures has demonstrated effective detection of the underlying

dynamics and is defined as [48, 49]

CJS = QJ [P, Pe]HS (3)

where Pe = {1/D!, 1/D!, . . . , 1/D!} is the uniform distribution and disequi-

librium QJ is Jensen-Shannon divergence J [P, Pe] that links two probability

distributions.

QJ [P, Pe] = Q0J [P, Pe] (4)

where

J [P, Pe] = S[(P + Pe)/2]− S[P ]/2− S[Pe]/2 (5)
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and Q0 is a normalization constant equal to the inverse of the maximum

possible value of J [P, Pe], which happens when one of the values of P is

1 and all other values are 0 [42]. The Q0 is computed using the following

equation [50]

Qo =
1

−(1
2
)
[
D!+1
D!

log(D! + 1)− 2 log(2D!) + log(D!)
] . (6)

. The inclusion of factor Q0 ensures that 0 ≤ QJ [P, Pe] ≤ 1. The Jensen-

Shannon divergence quantifies the difference between two probability dis-

tributions and is a non-trivial function of entropy, which uses two different

probability distributions; P is the probability distribution, which represents

the state of the system and Pe is a uniform distribution, which serves as a

reference [42]. As implied by the second law of thermodynamics, HS can be

regarded as the time dimension and the HS versus CJS mapping can be used

to study the temporal evolution of the SCM [51]. Also, for a given value of

HS, the values of complexity CJS varies between a minimum and maximum

boundary which are termed as limit curves [52]

Signal length N , and embedding dimension D effect the value of permutation

entropy. A large value of N may result in a near constant features on CECP,

thereby reducing the ability of CECP to capture the dynamic changes. On

the other hand a small value of N may yield statistically insignificant results.
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Literature points out that in order to use CECP to differentiate between

chaotic and stochastic processes it is necessary to satisfy the condition that

signal length is relatively much larger than D!, i.e., N � D! [44, 53]. CECP

approach is able to distinguish stochastic processes with different long range

correlations when D is between 3 and 6 [44–46]. For practical purposes Bandt

and Pompe [35] recommended 3 ≤ D ≤ 7 and τ = 1.

With respect to vibration signals for component fault diagnostics, Yan et al.

[36] studied the relationship between N and HS. After analyzing signal of

different lengths (N=32, 64, 128, 256, 512, 1024, and 2048), they reported

that variation in HS values for N > 256 is insignificant; they found a stable

and consistent HS value when N = 128 or N = 256. Yan et al. [36]

observed that (1) when D < 4 permutation entropy is not able to detect

the exact dynamic changes in the mechanical vibration signals; (2) a D > 8

is computationally expensive; and (3) time delay τ > 5 is not conducive

for detecting small changes in the signal. They used D = 6 and τ = 3 for

computing permutation entropy values for component fault diagnostics.

CECP analysis is extensively used in characterizing correlated stochastic pro-

cesses [45, 54, 55], and distinguishing chaotic and stochastic processes [44, 51].

In econophysics, CECP is used to quantify stock market inefficiencies [56],
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asses efficiency of bond markets [57], and perform commodity analysis [58].

In addition, CECP is used in river flow characterization [42], temperature

variation in mountain streams [59], and song classification [50].

In this paper, we demonstrate the performance of CECP method for

characterizing faults of rotary machine components in three different applica-

tions: (1) ball bearing dataset from Machinery Failure Prevention Technology

(MFPT) Society, (2) bearing dataset from Case Western Reserve University,

and (3) gear dataset from PHM Society.

4. Results

4.1. MFPT Ball Bearing Experiment

In this application we consider two classes of vibration signal samples

from ball bearing dataset provided by the MFPT Society [60]. Bechhoefer

[60] complied this dataset from a bearing test rig experiment. The dataset

contains labeled signatures of faulty outer race and inner race of ball bear-

ings. The signatures of faulty outer race and inner race were generated at

a constant shaft rotational speed of 1500 rpm and at seven different load

conditions: 11.33, 22.67, 45.35, 68.0388, 90.71, 113.39, and 136.07 kg (or 25,

50, 100, 150, 200, 250, and 300 lbs). Each vibration signal is recorded for 3
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seconds at 48,828 Hz frequency; it resulted in a signal of length 146,484 data

points. Figures 1(a) and 1(b) show the sample vibration signals representing

the fault signatures of inner race and outer race of the ball bearing collected

at 45.35 kg (100 lb) load and shaft rotational speed of 25 rps (1500 rpm). The

vibration signals for both inner race fault and the outer race fault are peri-

odic. The fault characteristics frequencies for inner race fault and outer race

fault are outlined by Zhang et al. [61]. We performed Augmented Dickey-

Fuller (ADF) test to verify the stationarity of the signals. For both the inner

race and outer race fault we obtain a p value of 0.01 < 0.05 confirming the

stationary characteristics of the signals.

Figure 1: Sample vibration signals representing (a) inner race fault and (b) outer race

fault

The raw data includes inner race fault and outer race fault signals of

146,484 data points each. For demonstration , we split each set of signals into
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35 sub-signals of 4,096 data points. Figure 2(a) plots Permutation Entropy

(HS) values of 35 outer race and 35 inner race sub-signals. The overlap of HS

values for inner race and outer race signals indicates that HS is not effective

parameter to distinguish inner race faults from outer race faults correctly.

Figure 2(b) plots CECP map (i.e., scatter plot of CJS vs. HS) of 35 outer

race and 35 inner race sub-signals. We observe that the CECP representation

of outer and inner race sub-signals is able to separate outer and inner race

faults in the plot.
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Figure 2: (a) Permutation entropy values of 35 inner race fault signals and 35 outer race

fault signals, and (b) CECP values of 35 inner race fault signals and 35 outer race fault

signals. The dashed lines represent the lower and upper limit curves. N = 4096, D = 6,

and τ = 1. Inset figure is a scaled version of subplot (b)
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Figure 3: Complexity CJS vs. Entropy HS feature plane for different values of subsample

length N for the case of 45.35 kg (100 lb) load and 25 rps (1500 rpm) rotational speed: (a)

N = 2048, (b) N = 4096, (c) N = 8192,and (d) N = 16384; the CECP parameters are set

to D = 6 and τ = 1. The stars represent inner race fault and the circles represent outer

race fault. The dashed lines represent the lower and upper limit curves. Some figures may

not show the limit curves due to axis scale effects.
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Figure 3 presents CECP maps for four different signal lengths. It is

evident from the figure that separability between fault classes widens and

cluster variance of HS decreases with increasing signal length. This leads to

improvement of Dunn index of HS with increasing signal length (see Figure

4). Dunn index, which is the ratio of minimum inter-cluster distance to max-

imum intra-cluster distance [62], measures the quality of cluster formations.

The higher the Dunn index the better the cluster quality. Dunn index for m

number of clusters is defined as

Dunn Index =
min1≤i<j≤m d(Ci, Cj)

max1≤k≤m diam(Ck)
(7)

where d(Ci, Cj) is dissimilarity (inter-cluster) between clusters Ci and Cj; it is

defined as d(Ci, Cj) = mina∈Ci,b∈Cj
E(a,b), where E(a,b) is the Euclidean

distance between points a and b. diam(Ck) = maxa,b∈Ck
E(a,b) is the

diameter of cluster Ck.
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Figure 4: Effect of signal length N on Dunn Index. In this example, N=2048, 4096, 8192,

and 16384. (Case: 45.35 kg (100 lb) load, 25 rps (1500 rpm) rotational speed)

As mentioned in the earlier section, D < 4 for mechanical vibration is not

desired since the permutation entropy is not able to detect exact dynamic

changes. On the other hand D > 8 is computationally expensive. Similarly,

τ > 5 is not recommended for vibration signals. We perform sensitivity

analysis for all the load conditions by varying N , D, and τ . The results

of the sensitivity analysis are given in the supporting information Figures

S1 to S12. We set the parameter values as follows, N=2048, 4096, 8192,

16384, and 32768, D= 3, 4, 5, and 6, and τ= 1, 2, 3, 4, and 5. We did

not increase the length of the signal beyond 16384 because it results in fewer

training records. In general, CECP is used for characterizing time series

21



and the parameter choice effects the characterizations. Here we are more

interested is selecting parameter values that enhances class separability (or

classification accuracy). From the sensitivity analysis we find that for load

conditions 11.33 kg and 22.67 kg, parameters D =4, 5, 6, and τ =1, 2, 3, 4

are suitable to achieve class separability. For load conditions 45.35 kg, 68.03

kg, and 90.71 kg, parameters D =4, 5, 6, and τ =1, 4 are suitable to achieve

class separability. For load conditions 113.39 kg, and 136.07 kg, parameters

D =4, 5, 6, and τ =1, 2, 3 are suitable to achieve class separability. To

overcome the visual limitations of observing the separability, we use support

vector machine (SVM) to see how the classification accuracy improves with

respect to the increase in the signal length. For demonstration purpose we use

D = 6 and τ = 1 (for practical purposes Bandt and Pompe [35] recommended

3 ≤ D ≤ 7 and τ = 1). We use Receiver Operating Characteristic (ROC),

Area Under Curve (AUC), and classification accuracy (ACC) to evaluate

the performance of the SVM classifier. We use linear SVM model with 5

cross validation. The results of the SVM are given in supporting information

Table ST1. Figures S13 to S15 (supporting information) plot the ROC, AUC

and ACC values. We observe that for all load conditions the SVM classifier

performance improves with increase in signal length which is consistent with
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the earlier analysis using Dunn Index.

4.2. Bearing Dataset from CWRU

Case Western Reserve University (CWRU) bearing dataset [63] includes

high quality signals collected at normal and faulty working conditions of

bearings. Figure 5 shows the setup of the experiment. The testbed con-

sists of a 2-hp motor (left side), a torque transducer/encoder (center), and a

dynamometer (right side).

Figure 5: Schematic of CWRU experimental setup for bearing fault data collection [63]

The setup has test bearings located at the drive-end and the fan-end of

the motor. The faults were introduced in inner race, outer race and ball

for both drive-end bearings and the fan-end bearings using electro-discharge

machining.
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The accelerometers attached to the motor housing using magnetic bases

were used to measure vibration signals from the setup. One accelerometer

was attached on the drive-end of the motor and another on the fan-end of

the motor. For some experiments, an additional accelerometer was attached

to base plate supporting the motor. Vibration signals were collected using

a 16-channel DAT recorder. Sensor signals were collected at a frequency

of 12,000 Hz. The length of each fault-related signals was varied between

120,000 and 130,000 data points while the length of the baseline signals was

varied between 200,000 and 500,000 data points. Figure 6 shows the sample

vibration signals representing the baseline condition, ball fault and inner

race fault. The fault characteristics of the CWRU dataset are exhaustively

studied in time and frequency domains by Smith et al. [64]. We performed

Augmented Dickey-Fuller (ADF) test to verify the stationarity of the signals.

For all the three cases of baseline, inner race fault and ball fault we obtain a

p value of 0.01 < 0.05 confirming the stationary characteristics of the signals.

24



Figure 6: Sample vibration signals representing (a) baseline condition, (b) ball fault, and

(c) inner race fault. In this case, the fault diameter for both the ball and inner race is

0.17 mm (0.007 inches), load is 0 kW (0 hp), and rotational speed is 29.95 rps (1797 rpm).

The bearing considered is drive-end bearing

Speed and horsepower data were hand-recorded from the torque trans-

ducer/encoder. In this case we analyze only baseline signals (normal working

condition), inner race fault signals, and ball fault signals. The experimental

parameters are outlined in Table 2. For all the parameter variations the fault

depth was maintained at 0.2794 mm (0.011 inches).
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Table 2: Drive-end bearing and fan-end bearing data for analysis [63]

Fault Diameter (mm) Motor Load (kW) Approx. Motor Speed (rps)

0.17 mm (0.007”) 0 29.95 rps (1797 rpm)

0.73 kW (1 hp) 29.53 rps (1772 rpm)

1.47 kW (2 hp) 29.16 rps (1750 rpm)

2.20 kW (3 hp) 28.83 rps (1730 rpm)

0.35 mm (0.014”) 0 29.95 rps (1797 rpm)

0.73 kW (1 hp) 29.53 rps (1772 rpm)

1.47 kW (2 hp) 29.16 rps (1750 rpm)

2.20 kW (3 hp) 28.83 rps (1730 rpm)

0.53 mm (0.021”) 0 29.95 rps (1797 rpm)

0.73 kW (1 hp) 29.53 rps (1772 rpm)

1.47 kW (2 hp) 29.16 rps (1750 rpm)

2.20 kW (3 hp) 28.83 rps (1730 rpm)

We perform sensitivity analysis for all the load conditions by varying N ,

D, and τ . The results of the sensitivity analysis for selected operating con-

ditions are given in the supporting information Figures S16 to S23. We set

the parameter values as follows, N=2048, 4096, 8192, 16384, and 32768, D=

3, 4, 5, and 6, and τ= 1, 2, 3, 4, and 5. e did not increase the length of the

signal beyond 16384 because it results in fewer training records. From the

sensitivity analysis we find that for all operating conditions given in Table 2,

for fan-end and drive-end bearing D=4, 5, 6 and τ= 1, 2 are suitable param-

eters to obtain class separability. For both drive-end bearing and fan-end

bearing the baseline condition exhibit higher complexity and lower permu-
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tation entropy compared to inner race and ball fault condition. We observe

that the fan-end bearing exhibits higher class separation between baseline

and faulty conditions while in case of drive-end bearing the class separability

are almost equal between baseline, ball fault and inner race fault conditions.

To overcome the visual limitations of observing the separability, we use

support vector machine (SVM) to see how the classification accuracy im-

proves with respect to the increase in the signal length. For demonstration

purpose we use D = 6 and τ = 1 (or practical purposes Bandt and Pompe

[35] recommended 3 ≤ D ≤ 7 and τ = 1). We use linear SVM model with

5 cross validation. The results of the SVM for fan-end bearing are given in

supporting information Table ST3 and the results of the SVM for drive-end

bearing are given in supporting information Table ST4. Figures S24 and S25

(supporting information) plot the ROC, AUC and ACC values. Similar to

MFPT experiment, we observe that for almost all operating conditions the

SVM classifier performance improves with increase in signal length.

4.3. Gear Dataset from the PHM Society

We consider a dataset provided by the PHM society that contains la-

beled data on different types of gear degradation [65]. The experiments were

conducted using spur gears and helical gears. For CECP application we con-
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sider experiments with helical gears. Figure 7 shows the experimental setup.

The setup is common for both spur gears and helical gears. Figure 7 shows

the details of number of gear teeth for both spur and helical gear. For our

analysis we will consider only the helical gear case.

Figure 7: Experimental setup for gear fault detection [65]

The setup has an input shaft, an idler shaft and an output shaft on which

the gears are mounted. The input side is on the left and the output side is

on the right. Two accelerometers are mounted, one on the input side and

the other on the output side. The helical gear on the input shaft towards left

has 16 teeth and the helical gear on the idler shaft towards left has 48 teeth.
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The helical gear on idler shaft on the right has 24 teeth and the helical gear

on the output shaft on the right has 40 teeth. Experiments with helical gears

were performed six times. All in all, there are two fault categories (chipped

tooth and broken tooth) and one baseline category (no known faults).

From the dataset we consider the case titled helical 1 (has no known

gear defects were found) as the baseline case. We consider helical 2 (has a

chipped tooth in helical gear with 24 teeth) as a chipped tooth gear category

and helical 5 (has a broken tooth in helical gear with 24 teeth) as a broken

tooth gear category. In all the three cases, we use the vibration signals

recorded from accelerometer 2 (placed on the output side). The signals were

recorded under two different load conditions (labeled as Low and High) and

five different rotational speeds (i.e., 30 rps (1800 rpm), 35 rps (2100 rpm),

40 rps (2400 rpm), 45 rps (2700 rpm), and 50 rps (3000 rpm) ). For each of

these settings, two signals were recorded for four seconds each. Thus for one

fault signal, 533,312 data points were generated for eight-second recording at

a sampling rate of 66,666.67 samples per second . Figure 8(a), 8(b), and 8(c)

show the sample signals of length 4096 data points representing the baseline

condition and the fault condition. We performed Augmented Dickey-Fuller

(ADF) test to verify the stationarity of the signals. For all the three cases of
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baseline, chipped tooth and broken tooth we obtain a p value of 0.01 < 0.05

confirming the stationary characteristics of the signals.

Figure 8: Sample signal representing (a) baseline condition, (b) chipped tooth condi-

tion, and (c) broken tooth condition. The sample signals shown here are taken from

experimental condition of High load and 50 rps (3000 rpm) rotational speed

We perform sensitivity analysis for all the load conditions by varying N ,

D, and τ . The results of the sensitivity analysis for selected operating con-

ditions are given in the supporting information Figures S26 to S41. We set

the parameter values as follows, N=2048, 4096, 8192, 16384, and 32768, D=

3, 4, 5, and 6, and τ= 1, 2, 3, 4, and 5. We did not increase the length of the

signal beyond 16384 because it results in fewer training records. We observe

that D=4, 5 and τ =1, 5 are suitable for obtaining class separability. To

overcome the visual limitations of observing the separability, we use support

vector machine (SVM) to see how the classification accuracy improves with

respect to the increase in the signal length. For demonstration purpose we

use D = 6 and τ = 1 (or practical purposes Bandt and Pompe [35] recom-
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mended 3 ≤ D ≤ 7 and τ = 1). We use linear SVM model with 5 cross

validation. The results of the SVM for low and high load conditions are

given in supporting information Table ST5. Figures S42 to S45 (supporting

information) plot the ROC, AUC and ACC values. Similar to MFPT ex-

periment and CWRU experiment, we observe that for almost all operating

conditions the SVM classifier performance improves with increase in signal

length. The same observation is confirmed using the Dunn Index values that

increase with increase in signal length across all operating conditions (see

Figure 9).
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Figure 9: Variation of Dunn Index values with respect to varying signal length. N takes

values 2048, 4096, 8192, 16384, and 32768. The plots give Dunn Index values for two Low

and High load conditions and different rotational speeds (1800, 2100, 2400, 2700, and 3000

rpm)

5. Conclusion

PHM enables effective preventative maintenance (PM), reliability cen-

tered maintenance (RCM), and condition based maintenance (CBM) of me-

chanical systems. Advancement in sensor technology, machine learning al-

gorithms, and computing technology have contributed to the advancement

of PHM. In a PHM framework, both diagnostics and prognostics use data-

driven models for fault detection of machine components. In this approach
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sensor signals need a good representation that enables accurate detection

of faults and health condition of machine components. The results confirm

that CECP representation enables accurate classification of different faults

in bearings and gears. It is observed that CECP approach is able to handle

signal lengths larger than those demonstrated in existing studies. In case

of CECP representation, as the signal length increases, so does the Dunn

index and SVM accuracy, which quantifies the quality clusters represent-

ing different component health conditions in the CECP plane. We observe

that the optimum parameter values for CECP depends on the application.

For bearing applications we find that embedding dimension D = 4, 5, 6, and

embedding delay τ = 1, 2, 3 are suitable for fault classification. For gear ap-

plications we find that embedding dimension D = 4, 5, and embedding delay

τ = 1, 5 are suitable for fault classification. For signal length of 16,384 data

points, the fault classification accuracy varies from 90% to 100% for bearing

applications, and from 85% to 100% for gear applications. Given that CECP

representation has only two parameters, not only can it be used for predic-

tive analytics but also for visualization of sensor signals in a 2-dimensional

plane. While predictive models can used for optimizing maintenance deci-

sions, visualization can be used for creating dashboards for monitoring health
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condition of machine components. From class separability perspective, the

CECP method is able to generate linearly separable classes for the classi-

fication of different fault states. Beyond separability characteristics, there

are several statistical tests that can be performed for permutation entropy

and complexity [66, 67]. Users can explore these statistical tests for their

applications as needed.

Real manufacturing PHM applications often involve unreliable connectiv-

ity in cloud computing, require high bandwidth and cost for transferring data

to the cloud, suffer from high latency which is not desirable for closedloop

interaction between machine state and actuation, and subject to compliance,

regulation, and cyber security constraints. These constraints create a need

for localized edge computing, which pushes the intelligence, processing power,

and communication capabilities of an edge gateway directly into devices like

PACs (programmable automation controllers). Intelligent PACs collect, ana-

lyze, and process data from the physical assets they are connected to, at the

same time they run the control system program. In such an edge computing

environment, a signal representation like CECP is highly desirable because

of its compactness, lean computation complexity, and good predictive per-

formance.
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