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ABSTRACT
Recent efforts in Smart Manufacturing (SM) have proven

quite effective at elucidating system behavior using sensing sys-
tems, communications and computational platforms, along with
statistical methods to collect and analyze real-time performance
data. However, how do you effectively select where and when
to implement these technology solutions within manufacturing
operations? Furthermore, how do you account for the human-
driven activities in manufacturing when inserting new technolo-
gies? Due to a reliance on human problem solving skills, to-
day’s maintenance operations are largely manual processes with-
out wide-spread automation. The current state-of-the-art mainte-
nance management systems and out-of-the-box solutions do not
directly provide necessary synergy between human and technol-
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ogy, and many paradigms ultimately keep the human and digital
knowledge systems separate. Decision makers are using one or
the other on a case-by-case basis, causing both human and ma-
chine to cannibalize each other’s function, leaving both disad-
vantaged despite ultimately having common goals.

A new paradigm can be achieved through a hybridized sys-
tems approach — where human intelligence is effectively aug-
mented with sensing technology and decision support tools, in-
cluding analytics, diagnostics, or prognostic tools. While these
tools promise more efficient, cost-effective maintenance deci-
sions, and improved system productivity, their use is hindered
when it is unclear what core organizational or cultural problems
they are being implemented to solve. To explicitly frame our
discussion about implementation of new technologies in mainte-
nance management around these problems, we adopt well estab-
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lished error mitigation frameworks from human factors experts
— who have promoted human-systems integration for decades
— to maintenance in manufacturing. Our resulting tiered miti-
gation strategy guides where and how to insert SM technologies
into a human-dominated maintenance management process.

1 INTRODUCTION
The era of big data and Internet of Things (IoT) in manu-

facturing – with low cost sensors and cloud-based solutions –
has left many manufacturers with a plethora of data in many
different forms. With the recent buzz around more accessible,
easy to use Artificial Intelligence (AI) solutions, some manufac-
turers are asking themselves “can we just throw our data in an
AI?” Other manufacturers might ask “how can we get smart with
new technologies?” However, AI and other Smart Manufactur-
ing (SM) technologies are not one-size-fits-all solutions for all
data types or problems, especially when there are many human-
centered aspects in the workflow. Most AI and digital solutions
do not work out-of-the-box and cannot directly replace personnel
in many situations. Within manufacturing, maintenance is inher-
ently one of the most human-centric processes, but is uniquely
suited for an approach designed to intertwine human and dig-
ital capabilities. A new paradigm is needed that involves the
human, AI and other advanced technologies working collabora-
tively and efficiently within the maintenance workflow. Achiev-
ing this paradigm requires an understanding of how and why this
fails to happen in current maintenance practice. This paper dis-
sects the maintenance workflow into the tasks that are performed
by personnel, so that commonly occurring errors can be analyzed
in a unifying error framework. Using this framework enables a
tiered approach to technology implementation, guidance which
is useful when manufacturers do not necessarily know where to
start.

The rest of the paper is structured as follows: the remainder
of Section 1 discusses maintenance in manufacturing, including
the maintenance management workflow, maintenance strategies,
and issues that occur in practice; Section 2 presents well estab-
lished human factors research and how it will be applied to main-
tenance in manufacturing; in the subsequent sections, the main-
tenance workflow is broken down into three high level tasks: 1.
Preparing for Maintenance (Section 3), 2. Performing Mainte-
nance (Section 4), and 3. Discovering Maintenance Needs (Sec-
tion 5). Within each of these sections, the applicable research
and technologies are discussed, with high level tasks being fur-
ther decomposed into sub-tasks to determine the types of errors
that can occur. At the end of each subsection, the mitigations for
these different example errors are discussed. Section 6 summa-
rizes the steps from Sections 3-5 to generalize the error mitiga-
tion so manufacturers can follow similar steps. Lastly, Section 7
presents conclusions and future work opportunities.

1.1 Maintenance in Manufacturing
Maintenance is a collection of “actions intended to retain an

item in, or restore it to, a state in which it can perform a required
function” [1]. It is estimated that in 2016, US manufacturers
spent $ 50 billion on maintenance and repair, which is between
15 % and 70 % of the cost of goods produced [2]. This estimate
includes outsourcing of maintenance and repair, but does not in-
clude expenditures on labor and materials or the value of lost pro-
ductivity due to unscheduled downtime. Estimates suggest that
employing smart technologies can reduce maintenance cost from
15 % to 98 % with a high return on investment (ROI) [2]. Within
the aerospace industry, examples of specific savings include an
estimated return on investment of 3.5:1 for moving from reactive
to predictive maintenance on electronic display systems [3] and a
56 % savings in costs from switching from reactive to predictive
maintenance for train car wheels [4, 5].

The practice and delivery of maintenance has evolved over
the last fifty years. During the late 1960’s Nolan and Heap’s [6]
investigation of failures in the airline industry led to the devel-
opment of reliability-centred maintenance (RCM), a process still
widely used today. Building on RCM, a well defined theoretical
and practical structure for maintenance management now exists.
This is documented in standards [7], textbooks [8, 9, 10] and by
professional societies [11, 12].

In the 1970s Japanese manufacturers introduced the concept
of Total Productive Maintenance (TPM) [13]. The elements of
TPM are 1) a focus on maximizing equipment effectiveness, 2)
establishing a system of preventive maintenance for the equip-
ment’s entire life, and 3) the participation of all employees in
maintenance through a team effort with the operator being re-
sponsible for the ultimate care of his/her equipment [14]. TPM is
widely adopted in mature manufacturing organizations with well
documented benefits [15]. While RCM and TPM are not compet-
ing frameworks, they have different goals: RCM determines an
appropriate maintenance strategy while TPM is concerned with
managing how maintenance is executed.

In the late 1990s Lean maintenance became popular, which
built on the concepts of TPM and RCM and promised a trans-
formation in manufacturing management through standardized
workflows, value stream mapping, just-in-time (JIT) and Kanban
”Pull” systems, Jidoka (Automation with a human touch), Poka
Yoke (Mistake proofing), and the use of the plan-do-check-act
process [16]. Despite the promised benefits of lean maintenance
mentioned earlier, a literature review by Mostafa et al. found
that research on applying lean principles into maintenance had
not provided convincing evidence of success [17].

1.2 Maintenance Strategies
Two artifacts of the maintenance management system are

particularly noteworthy. First is the maintenance work order
(MWO). This concept refers to the archival record of the main-
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tenance event from its inception to its completion and is shared
along the way throughout the workflow. All maintenance work
should be associated with a work order. The second concept is
the Computerized Maintenance Management System (CMMS).
This system supports maintenance management with a record of
the maintenance work orders and through access to documenta-
tion of the assets, resources, and other relevant information. In
the workflow we present here, the CMMS is a hypothetical sys-
tem and any actual implementation will vary. A MWO is gener-
ated, tracked, and eventually archived in the CMMS. The CMMS
generates reports documenting the tasks that are due. The main-
tenance strategies are dependent on when MWOs are acted on
and how they are planned through the CMMS.

Preventive maintenance is defined as the “actions performed
on a time- or machine-run-based schedule (sometimes referred to
as interval based) that detect, preclude, or mitigate degradation
of a component or system with the aim of sustaining or extend-
ing its useful life through controlling degradation to an accept-
able level” [12]. Preventive tasks and intervals are often found
in manuals from original equipment manufacturers and are usu-
ally a requirement as part of warranty. Over time many asset
management organizations develop their own preventive main-
tenance tasks and intervals as they gain knowledge about their
assets and systems.

Condition-based maintenance is defined by Society of Main-
tenance and Reliability Professionals (SMRP) [12] as “an equip-
ment maintenance strategy based on measuring the condition of
equipment against known standards in order to assess whether
it will fail during some future period and taking appropriate ac-
tion to avoid the consequences of that failure. The condition of
the equipment can be measured using condition monitoring, sta-
tistical process control, equipment performance or through the
use of human senses.” Maintenance personnel have been using
inspections, process variables, vibration analysis, thermography,
oil analysis, ultrasonic analysis, and other techniques for over 30
years. Predictive maintenance is defined in this paper as involv-
ing physical, statistical, or machine learning models that com-
bine historical reliability and/or performance data with current
condition assessment to generate a probability of failure and/or
failure event prediction interval. These machine learning models
are used to support condition-based maintenance programs and
to inform interval selection for preventive maintenance tasks.

Despite best efforts at proactive maintenance, the stochastic
nature of asset degradation means that failures do occur and reac-
tive maintenance is necessary. These failures result in corrective
work, which as will be seen in detail below disrupts the mainte-
nance management process. Depending on the consequence of
the failure, corrective work may need to be executed immedi-
ately (unstructured work). Otherwise, work can be passed into
the planning process (structured work). In the manufacturing do-
main, corrective work is often referred to as unstructured reactive
work [2].

1.3 Maintenance Management Workflow
A major factor for the efficiency of maintenance manage-

ment is whether the work is structured or unstructured. To de-
scribe the preferred maintenance structure, reliability engineers
have broken down the maintenance workflow into six major
steps: 1) Analyze, 2) Select & Prioritize, 3) Plan, 4) Schedule, 5)
Execute, and 6) Complete.

Analyze The Analyze activity relies on the data documented in
the work order. Planners, maintenance and reliability engineers
use this data to inform their respective tasks. These include re-
viewing inspection and as-found condition reports to determine
whether asset deterioration meets expectation and when the as-
set has deteriorated past that expected threshold reviewing exist-
ing strategy or interval settings for inspection and maintenance,
updating data for reliability and risk calculations, and updating
optimization models. Analysis is involved in many of the main-
tenance management processes.

Select & Prioritize Maintenance work can be identified by
many agents, such as operators, maintainers, engineers, and data
analysts, by events (e.g., safety incidents), as well as from strate-
gies stored in the CMMS, and in asset management plans, which
include recommended routine maintenance schedules. There is
always more work to do than can be done in any one planning
and scheduling period, and hence work needs to be prioritized.
Ideally there should be a risk-based process to prioritize work
for each planning cycle. New work notifications arrive each cy-
cle and are reviewed alongside work orders already on the back-
log and scheduled preventive maintenance work orders due in
the next maintenance work cycle. From these work orders a list
of tasks is prioritized and high priority tasks are moved to the
planning stage.

Plan Planning is done by a maintenance planner. For each task,
the planner needs estimates for the following types of questions:
How long will the job take? How much and what types of labor
will be required? What parts and materials will be required, and
are they on hand? What are the costs? What tools, equipment, or
other resources, including external contractors, will be required?
What permits will be required? What are the job hazards, and
how will they be managed? Many tasks, such as inspections,
periodic condition monitoring, and tasks with a safe work proce-
dure and bill of materials, need limited planner input, but others,
such as major asset shutdowns, need considerable input from the
planning team. Ideally planning happens some weeks before the
time period in which work is due to be executed as part of a well-
regulated planning cycle. Once all the information is gathered a
work order is planned and it can be scheduled.
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Schedule Scheduling is the temporal organization of tasks for
execution. It is a complex optimization problem with constraints
such as the number of maintenance technicians available, limited
ancillary equipment such as cranes, operational requirements
limiting access to equipment, and system connectivity meaning
that some work cannot occur at the same time as others. In ad-
dition, priority work must be balanced with preventive work so
that preventive work does not fall behind over time.

Execute Considerable investment is incurred prior to execution
due to the resources involved in planning and scheduling. Value
from this prior work is added when the proposed maintenance
work is executed by maintenance technicians through repair and
replacement tasks to restore the required functionality of the as-
sets. Good quality maintenance work restores the asset func-
tion to some required level or function, either as-good-as-new or
some level between that and the current state. Poor quality main-
tenance work or work that is unnecessary can destroy value by
introducing defects and cost money for little gain.

Complete When the technician has completed an assigned
task, an important but often overlooked step is to capture data
about the maintenance work with the as-found and as-left condi-
tion of the asset. This is documented on the work order, reviewed
by the maintenance planner who is responsible for closing the
work order, and stored in the CMMS.

Consequently, structured work refers to work that follows this
entire maintenance management workflow. Structured work is
planned and scheduled in longer time scales (normally planning
sessions happen once a week and provide a time in the future to
execute the maintenance). Unstructured work is often referred
to as “reactive work”, as these jobs result from failures that are
identified by asset operators and executed immediately. These
unstructured jobs are still completed and analyzed but do not pass
through the formal planning and scheduling stages. Because un-
structured work is executed immediately, it often results in other
structured jobs associated with preventive and condition-based
strategies to be rescheduled.

While these activities are the focus of maintenance reliabil-
ity experts, this structure makes it difficult to discuss the human
role in maintenance. The human actors within this workflow per-
form different tasks dependent on the situation (i.e., unstructured
vs structured work). These roles and the responsibilities are de-
scribed in Table 1.1 However, while the person performing the
task may change (e.g., a planner calculates time estimates for a
job in structured work, whereas a technician might calculate time

1Different domains often use different terminologies for those roles. At
smaller organizations, certain roles might be combined, such as a planner and
scheduler or an operator and technician; however, for the purposes of this paper,
we describe the roles as different people.

estimates on the fly for unstructured work), the tasks themselves
largely remain the same. Regardless of context or situation, a
human must 1. Prepare for the Maintenance Job, 2. Perform
the Maintenance Job, and lastly 3. Discover Maintenance Needs.
This distinction highlights how personnel actually perform each
task and the types of errors that might occur in doing so, with a
subsequent mapping from the task performed to the correspond-
ing activity in the maintenance workflow for both structured and
unstructured work. This task-based analysis is necessary due to
the issues that still exist in manufacturing maintenance practice.

1.4 Issues in Practice
The SMRP Best Practices Committee suggests a distribution

of maintenance work types as follows: for all executed main-
tenance work hours, 10 % to 15 % should be on improvement
and modification work, 30 % on structured work - split between
15 % on predictive/condition-based work and 15 % on preven-
tive work. Corrective maintenance hours derived from structured
work should be 50 %, 15 % from preventive maintenance inspec-
tions and 35 % from predictive maintenance inspections. Only 5
% should be associated with corrective maintenance from un-
structured work with a buffer of 5 to 10 % for other work. [12]
In practice many manufacturing operations do not achieve these
levels.

Small-to-medium sized enterprises (SMEs) still mainly em-
ploy a mixture of unstructured and structured maintenance strate-
gies [18]. Once again, it is important to note that manufacturers
often refer to corrective work as only unstructured, when in fact
not all corrective work is unstructured work. Larger companies
are employing preventive maintenance strategies, but unplanned
maintenance jobs are still frequent [18]. Alsyouf [19] found that
in Swedish manufacturing firms, 50 % of maintenance time was
spent on planned tasks, 37 % on unplanned tasks, and 13 % for
planning the maintenance tasks. Even though preventive main-
tenance strategies are more prevalent in larger companies, these
maintenance jobs are not always performed correctly. It is esti-
mated that one-third of maintenance jobs are improperly done or
unnecessary [20]. Another study mentions that preventive main-
tenance is estimated to be applied too frequently in 50 % of all
cases in manufacturing [21].

So why are so many SMEs employing mainly reactive un-
structured maintenance strategies? Why are larger manufacturers
still dealing with unstructured maintenance and often incorrectly
performing preventive maintenance procedures? In a survey to
manufacturers, the main barriers to adopting advanced mainte-
nance strategies were cost (92 % of respondents), technology
support (69 %), and human resources (62 %) [18]. This illus-
trates the need to help manufacturers find the most cost-effective
path toward balancing technology solutions with human-driven
tasks to improve maintenance procedure and reduce unplanned
work. To effectively achieve such a paradigm, it is necessary to
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TABLE 1. Personnel in Maintenance

Job Title Description of Responsibilities

Operator Operates machines or monitors automated machines – can be responsible for one machine or multiple
machines depending on the size of the organization and level of automation.

Technician Used here to refer to the person performing minor maintenance jobs, for example routine inspections.
These jobs can be done by both operators and maintainers.

Planner Estimates time, cost, resources and documents for maintenance jobs, purchases parts and contracts.
Scheduler Coordinate all planned jobs for a specific period into a realizable schedule.
Analyst Analyzes and models data about equipment, operational and maintenance management performance.
Maintainer A trade-qualified technician competent to perform tasks in their area of expertise.
Engineer A degree-qualified individual who provides technical support for front-line staff such as operators and

maintainers.

examine tasks within the maintenance management process to
identify how to implement new technologies effectively by ac-
counting for human knowledge and expertise.

NOMENCLATURE
AI Artificial Intelligence
AR Augmented Reality
CMMS Computerized Maintenance Management System
DES Discrete Event Simulation
ERP Enterprise Resource Planning
ET L Extract, Transform, Load
FMEA Failure Modes and Effects Analysis
HMI Human Machine Interface
IDEF Integrated Computer Aided Manufacturing (ICAM)

Definition for Function Modeling
IoT Internet of Things
KB Knowledge-Based
MES Manufacturing Execution System
ML Machine Learning
MT BF Mean Time Between Failures
MT T R Mean Time To Repair
MWO Maintenance Work Order
NLP Natural Language Processing
OEM Original Equipment Manufacturer
RB Rule-Based
RCM Reliability Centered Maintenance
ROI Return on Investment
SB Skill-Based
SM Smart Manufacturing
SME Small-to-Medium Enterprise
SMRP Society of Maintenance and Reliability Professionals
SOP Standard Operating Procedure
SRK Skill-, Rule-, Knowledge-Based
SWP Safe Work Procedure

T PM Total Productive Maintenance
V R Virtual Reality

2 HUMAN FACTORS AND THE MAINTENANCE
WORKFLOW
Incorporating a focus on human interaction with complex

systems by applying human factors principles is not a new idea,
and is rapidly gaining traction in sectors where implementation
of new systems carries significant overhead, whether finiancially
or culturally. In a 2011 report, the U.S. Department of Defense
published a Human Systems Integration (HSI) Plan, [22] begin-
ning with the following overview:

The human and ever increasingly complex defense sys-
tems are inextricably linked. [...] High levels of hu-
man effectiveness are typically required for a system
to achieve its desired effectiveness. The synergistic in-
teraction between the human and the system is key to
attaining improvements total system performance and
minimizing total ownership costs. Therefore, to realize
the full and intended potential that complex systems of-
fer, the Department must apply continuous and rigorous
approaches to HSI to ensure that the human capabilities
are addressed throughout every aspect of system acqui-
sition [...] In summary, this means that the human in
acquisition programs is given equal treatment to hard-
ware and software.

To accomplish this, human factors engineers will review
functions and tasks within a system, which at their most basic
assign responsibility of some activity to personnel, automated
systems, or some combination thereof [23]. The primary goal of
defining these tasks is to better understand not only the specific
roles of personnel, but also how these will shift under implemen-
tation of proposed changes to the system.

Defining the role of human actors within a maintenance
workflow has already been a core, if controversial, topic of in-
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terest under the existing theoretical frameworks. Maintenance
practices in the manufacturing sector center on the importance
of individual authority versus the needs for centralized planning
and scheduling of maintenance tasks. For example, the ideas
of TPM focus on high levels of individual ownership of the as-
set by the operator with responsibility to adjust and maintain the
unit. This will be largely an undocumented process with some
work being done at the discretion of the operator to optimize
their asset’s performance. In this approach, the operator is em-
powered to take responsibility over the domain. This contrasts
with the maintenance management view in which maintenance
is centralized and the aim is to minimize costs across all equip-
ment and resources and only to touch equipment if the work has
been prioritized, documented, planned, and scheduled. With the
introduction of more automation requiring individuals to assume
responsibility for larger segments of the operation and with many
highly-knowledgeable operators aging out of the workforce, the
more centralized approach is gaining traction. However, the need
for the human knowledge and expertise is greater than ever be-
fore and needs to be factored into the management process so as
to optimize their contributions.

In systems engineering the incorporation of a human in any
automated system is often designed as a fail-safe mechanism.
Designing for all possibilities and failure modes is an impossi-
bility, so designers and maintainers exploit one of humanity’s
greatest strengths: our ability to problem solve in unfamiliar sit-
uations and environments. However, this ability to reason from
first principles has a high cognitive load, so humans try (where
possible) to use rules and heuristics — mental shortcuts — to
relax decision making and reduce the process of forming justi-
fications into more habitual, routine tasks. Certainly, heuristics
can be informed by prior observations of performance patterns
and the success of previous solutions or approaches, but heuris-
tics do not always work well to anticipate or mitigate failure:
the human performing a task is left without enough context to
recover from where the heuristic left off, or to estimate risks un-
der unknown system behaviors or personal biases. Ironically,
these situations tend to arise more often as systems become more
automated—failure contexts become more complex and obser-
vations of particular situations become increasingly rare. The
implementation of technologies, while intended to support tech-
nicians, will also require them to learn new ways of working. It
will take time to build new sets of heuristics for each scenario.
Digitization of equipment, for example, can decrease physical
accessibility to manufacturing systems, along with altering the
skill-set required to perform technical troubleshooting. The ten-
sion between a drive for automation to compensate for human
error, and the necessity for humans to compensate for increas-
ingly complex automated-system failures, should be dealt with
up front by explicitly accounting for human failure modes that
are causing the errors, in the original implementation plan. Ori-
enting the function of emerging technologies in manufacturing

maintenance around the causes of errors opens a path toward ef-
ficient and holistic implementation of those technologies.

This paper is not intended to serve as a sweeping guideline
for implementing human factors, or for performing HSI, within
maintenance in general—this would be far outside the scope for
a single paper. Rather, we focus on specific pain points en-
countered in existing maintenance workflows, specifically in the
context of human error before and after implementing some of
the recently developing technologies in the space. We hope to
provide initial guidance on augmenting specific functions/tasks
within the maintenance workflow through certain types of tech-
nologies, based on how their strengths and weaknesses mesh
with the strengths and weaknesses of critical personnel.

2.1 Human Factors Background
To analyze the maintenance management workflow, the role

of the human in the maintenance paradigm must be understood.
This paper uses the research by Jens Rasmussen and James Rea-
son to provide a framework for estimating prime insertion points
of new technology into the maintenance workflow. [24, 25] This
framework provides guidance towards a hybridized maintenance
workflow with both the human and technological systems work-
ing harmoniously. The framework centers around Skill-, Rule-
, and Knowledge-Based error occurrences in the maintenance
workflow.

Rasmussen introduced the Skill-, Rule-, Knowledge-Based
Human Performance model in 1983. At the time when com-
puters were becoming more mainstream, Rasmussen understood
that the introduction of new digital technologies required “con-
sistent models of human performance in routine task environ-
ments and during unfamiliar task conditions.” This need for a
human performance model ultimately led to the Skills-, Rules-,
Knowledge-Based model of human behavior. Rasmussen pro-
posed that human activity was a complex sequence of activities
that depend on whether the activity was in a familiar or unfa-
miliar environment. He argued that, in a familiar environment, a
human strives towards some high level goal through unconscious
thinking based on similar situations. If the goal is not met, they
use a set of “rules”, which have perhaps been previously suc-
cessful. In an unfamiliar environment, when proven rules are not
available, a human makes different attempts – often in their head
– towards a successful sequence to reach a goal.

Skill-Based Behavior A skill-based (SB) behavior takes place
without conscious attention or control (e.g., tracking tasks in real
time). A majority of the time, human activity can be considered
a sequence of strictly SB actions or activities. SB behavior is
an unconscious action implying difficulty or redundancy for a
person to explain what information is required to complete the
action.
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Rule-Based Behavior When a sequence of actions is con-
trolled by a rule or procedure derived from previous occasions,
this is a rule-based (RB) behavior. The boundary between SB and
RB behavior depends on the level of training and the attention
of the person completing the task. Higher-level RB behavior is
based on the human’s explicit understanding of the problem and
the rules used in accomplishing the task, while The “rules” in RB
behavior can be derived empirically from previous attempts at
solving a problem, communicated from another person’s know-
how, or may be prepared on occasion by conscious problem solv-
ing and planning. These rules are dependent on the knowledge
of the environment.

Knowledge-Based Behavior When faced with an unfamiliar
situation a human may need to rely on building new reference
knowledge: this is knowledge-based (KB) behavior. A KB be-
havior involves explicitly formulating a goal based on an analy-
sis of the environment and the aim(s) of the task. An individual
develops different plans and tests them against the goal – either
by trial and error or conceptually through understanding the en-
vironment and predicting the effects of the various plans – to
determine the best course of action. This understanding requires
mental models of the task and environment to predict the impact
a specific plan might have on achieving the goal.

Error Classification While these different categories of hu-
man behavior are very useful in human reliability research, de-
termining the appropriate category for individual tasks in a work-
flow is difficult in general. Thus, Reason [24] takes an error
modeling approach toward the use of Rassmussen’s skill, rule,
and knowledge in his Generic Error Modeling System (GEMS).
Rather than assigning a classification to each task, it is often more
efficient to classify the error modes (which can occur while per-
forming each task) into skill-, rule-, or knowledge-based errors.
In the interest of using technology to cost-effectively address er-
rors currently existing within a maintenance workflow, we focus
implementation strategies around these errors explicitly. Figure
1 displays how this workflow is implemented in GEMS through
the different levels of human performance, as well as providing
some examples of various errors that can occur in the mainte-
nance management workflow. The GEMS mapping of skill-,
rule-, knowledge-based behavior onto errors enables an exam-
ination of activities within maintenance tasks by focusing on
events when the system is not performing as desired — quite
similar to system investigation through Failure Modes and Ef-
fects Analysis (FMEA). This discussion can help to determine
the context-appropriate technologies that can be inserted into the
maintenance workflow in a way that augments a maintenance
practitioner’s ability to successfully complete a task both effi-
ciently and effectively.

1. Does the practitioner know that something is amiss while it

is happening (has an attentional check occurred)?

No The errors involved will be SB level. Mitigations for these
would help him/her perform the attentional check (notice
the error), or make noticing at this part of the workflow
unnecessary through anticipation.

Yes Problem is being investigated at a RB or KB level

2. Does the practitioner believe they have a way to solve the
(noticed) problem?

Yes Errors will be RB level. The selected “rule” may not actu-
ally be appropriate, and mitigations should provide more
(or better) sources of data and pattern discovery, e.g., sen-
sor outfitting, machine learning models.

No They are actively searching for a new rule, making the rel-
evant errors KB level. Context and causally sensitive mod-
els would be helpful to teach or suggest new solutions, like
simulation, schedule optimization, or expert systems.

Using this model, the same failure in an activity may have
distinct causes — understanding at which level the failure occurs
can help to address it. An SB error stems from the inherent vari-
ability of human action with familiar tasks. Commonly referred
to as slips and lapses, they generally occur without immediate
recognition that something is wrong. It is only after an “atten-
tional check” that one might notice something has gone awry,
and begin applying some known rule or pattern that addresses
this problem.

RB errors typically are the misclassification of situations,
leading to the use of an inappropriate rule or incorrect recall of
procedure. However, once the problem-solver realizes that none
of their existing rules apply, he/she begins modeling the prob-
lem space (e.g., by analogy) and searching for context clues that
relate the problem to past successful rules. KB errors arise from
the incomplete or incorrect knowledge of the problem-solver and
stem from situations that represent the highest cognitive demand.
Reason indicates that this state will quickly revert to SB once a
satisfactory solution is found, and that this is a primary cause of
sub-optimal solutions. GEMS postulates humans behave in such
a way as to minimize their cognitive load and that many errors
are a result of this tendency. Once an error is recognized, the per-
son will move to the next higher level of cognition to resolve the
error; once resolved, they will quickly retreat to lower cognitive
effort.

2.2 Error Mitigation Framework for Efficient Technol-
ogy Adoption

This process of discovering a problem and the validity of the
current solution strategies is the same process that will be applied
at a management level when implementing new technologies into
the maintenance workflow. Unless it can be demonstrated that 1)
there might be a problem with the current situation (SB) and 2)
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the solutions currently in place are sub-optimal (RB), practition-
ers in the existing maintenance workflow will be unlikely to use
solutions that attempt to improve performance through sugges-
tion of new modes of operation or behavior (KB). Knowing how
to frame technology implementation in terms of these steps is
key. Cultural momentum and the power of the status quo is con-
sistently overlooked, and failing to understand or adapt to it is
nearly always the primary cause for technology implementation
failures [26]. While this may sound extreme, in the context of
system maintainers, it makes sense: if trusted personnel in the
human-centric maintenance workflow do not believe that there is
a problem, or do not think their solution is insufficient, the possi-
ble performance of new technology will not come to fruition—no
matter the expenditure that went into implementation.

This paper does not exhaustively enumerate all potential er-
rors, their probabilities, or the factors that affect them. Starting
on that path would require a more sophisticated Human Reliabil-
ity Analysis (HRA). 2 We leave this worthwhile task for future
work. Instead, we illustrate some common errors that can oc-
cur in the maintenance workflow and how GEMS can be used to
highlight common opportunities and pitfalls when implementing
technologies meant to assist the maintenance management pro-
cess. Sequentially progressing through SB, RB, then KB errors
and deciding the risk and mitigation possibilities of each through
available resources provides valuable guidance, especially when
choosing a starting point can be difficult in the face of capital or
personnel costs. Importantly, we

(a) classify example errors that commonly occur during main-
tenance tasks, and

(b) discuss how the features of each task tend toward more or
less errors of a given type.

Going through a similar exercise prior to selecting or implement-
ing new hardware or software systems will assist in matching
use-cases, as well as mitigating consequential errors effectively,
since different technologies are designed to address widely dif-
ferent error types.

A tiered error-mitigation strategy, based on patterns ob-
served in literature and industrial application, structures our dis-
cussion of inserting advanced technologies into a maintenance
workflow. Improvement opportunities are aligned to the conse-
quences of the problems they address, balanced with feasibility
of implementation in terms of cost, logistics, and organizational
maturity. In this strategy, errors are addressed based on their cog-
nitive load.

The discussion that follows centers around the different er-
rors in the maintenance workflow and the human actor who com-
mits them. It is important to note that these errors are committed
by a variety of roles, and not necessarily by just the technician

2A combination of human factors task analyses and systems engineering
FMEA. See HRA frameworks in Kirwan, Gertman, and Hollnagel [27, 28, 29]

(as is often thought by maintenance managers). The errors pre-
sented are often discussed on an individual basis (e.g., one tech-
nician does not notice an alarm); however, manufacturers must
view these errors at a systematic level to understand the true
“pain points” in their factory. A single technician not noticing
an alarm is not typically high risk, but having a majority of tech-
nicians systematically miss alarms is a larger, more important
issue to recognize. As such, while it is tempting to focus on indi-
vidual actors as problem sources, better guidance is needed that
assists manufacturers in tracking and estimating errors across the
entire factory.

In the following sections, applicable research and technolo-
gies are discussed that apply to the tasks in the maintenance
workflow. Examples of errors are described for each task: 1.
Prepare for Maintenance (Section 3), 2. Perform Maintenance
(Section 4), and 3. Determine Maintenance Needs (Section 5),
and errors are mapped to the sub-tasks in Tables 2, 3, 4. Each
table maps sub-tasks (Column 1), to example errors (Column 2)
and their corresponding GEMS classification (Column 3). The
errors and mitigations as presented are intended to be exemplary
of common errors practitioners will encounter in the maintenance
workflow.

3 PREPARE FOR MAINTENANCE
Prepare for Maintenance involves a number of actions to en-

able execution of maintenance work. The tasks performed by
the human actors in maintenance are largely the same, but are
performed in different stages of the maintenance management
workflow and are performed by different people depending on
structured versus unstructured work. For structured maintenance
events, the required tasks are prepared by a maintenance plan-
ner/scheduler over a period of days, weeks or months. During
unstructured maintenance events, the jobs and required actions
are identified, often by an operator or technician while in the
field, and usually under time constraints as the component may
have already failed. A number of research efforts center around
the prepare for maintenance task, as discussed in the following
subsection.

3.1 Applicable Research & Technologies
Maintenance preparation is a very human-centric operation

relying on tacit knowledge of how similar jobs have been planned
in the past, what has worked well, and what has not. Various ef-
forts have codified this knowledge using safe work procedures,
bills of materials, and post-work reviews [10, 9]. As the balance
of work to plan moves from corrective to preventive and predic-
tive work, the opportunity for semi-automation of the mainte-
nance planning process will increase.

Despite the considerable academic focus on maintenance
scheduling under the umbrella of maintenance optimization, the
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levels of transaction automation and the use of simulation models
in this process are small. Maintenance optimization uses mathe-
matical models to find either the optimum balance between costs
and benefits of maintenance or the most appropriate interval or
moment to execute maintenance. An overview of the mainte-
nance modeling approaches and examples of their applications
are available in Dekker (1996 and 1998), Marquez, and Jardine
[30, 31, 32, 33]. Both engineers and mathematicians have con-
tributed to the area. Due to the complexity of these models they
have not been easy to apply to real world manufacturing systems
in practice [30].

Maintenance simulation models are classified in a number
of ways. First, are they for planning or scheduling? The vast ma-
jority of optimization models in the literature address schedul-
ing. Secondly, at what level is the maintenance decision being
taken: organizational, plant, system, unit, or component? A con-
sequence of the level consideration is that decisions at higher
levels need to take all lower levels into account. Many differ-
ent types of dependencies must be considered and these can only
be accounted for in a simplified and often inaccurate way [31].
Finally the model needs to consider time scale. Is the model to
support a decision with impact in the near or long term? Are we
thinking about the next schedule period or something that could
have long-term, but deferred impact, on the life of the asset?

Discrete event simulation is widely used to model mainte-
nance systems and the uptake of new optimization methods, such
as genetic algorithms, has been rapid. However, a review by Al-
ragbhi [34] found only a few real life case studies were published
and the academic cases that dominate the literature, such as a sin-
gle machine producing a single product, are oversimplified and
do not reflect the complexity and interactions of real systems.

Scheduling practice differs greatly depending on the type
of system. Scheduling practices in manufacturing differ de-
pending on whether the operation is a batch process or contin-
uous process and on the availability of buffers. The presence
of buffers in the system allows for a more flexible approach for
minor maintenance and for opportunistic maintenance to occur
[35, 36, 37, 38]. Examples of work on maintenance in a manufac-
turing context mainly have focused on management of preven-
tative maintenance activities [39, 40] or maintenance resources
[41] to optimize manufacturing system performance.

Practical and applicable models are needed that derive a set
of optimized maintenance schedules offering a range of trade-
offs across the objectives from which managers can select for
their immediate needs. The modeling system needs to be able
to adjust schedules on a real-time basis as circumstances and/or
priorities change. Maintenance optimization is a complex prob-
lem, with multiple possible objectives such as system reliability,
cost, availability and various combinations of these (many plants
easily involve over 100,000 periodic activities). The complex-
ity of the optimization has often precluded the use of decision
guidance systems in real-time under current practices. Emerging

technological advances are enabling better support in these sys-
tems, however new solvers are required to develop and solve the
proposed models. Too often in the past engineers have focused
on optimizing a particular asset or subsystem, where the com-
plexity is more manageable, rather than considering the entire
maintenance management system.

Digital twins are an emergent focus for many in manufactur-
ing and are an integral part of Smart Manufacturing [42, 43, 44].
A digital twin is a digital model of the asset system. It is con-
structed using digital information of the physical asset and its
environment and can be continuously updated from sensor data.
This should enable better planning, prediction and simulation of
future outcomes.

Despite the widespread use of discrete event simulation
models, commercial and research interest in the potential of
agent-based simulation approaches is increasing, particularly
when organizational and human factors need to be incorporated
[45, 46].

As discussed earlier, it is not simple to incorporate these
technologies seamlessly into the maintenance management
workflow. By decomposing the perform maintenance task into
sub-tasks, we can better analyze the types of errors that occur
and the potential mitigations. These sub-tasks include: 1) Identi-
fication – considering steps necessary in the maintenance execu-
tion process, 2) Planning – determining the required resources to
perform the jobs, and 3) Scheduling – determining the schedule,
when the job will be performed, and in what sequence with other
jobs. The typical errors for this stage are described in Table 2.

3.2 Identification Task Errors
The identification of work occurs through the structured pro-

cesses and also during reactive work as described in Section 2. In
the latter case the maintainer must identify the work to be done
when he/she gets to the failed asset. Similar human processes are
involved in both examples of ‘identification’. Some examples of
errors that occur during the identification task are below.

SB A CBM technician fails to notice the vibration sensor is not
adhered properly so the data collected is wrong. (Assess
Sub-task)

RB A CBM technician identifies a high peak in vibration when
collecting data on Pump 1 but the source is actually the
adjacent pump. (Assess Sub-task)

KB CBM monitoring technician generates a work order that
machine X1’s “lead-screw’s vibration is high”. This failure
mode has not previously been seen and there are no visible
symptoms. The proposed work is subsequently overridden
by planner who believes the analysis is inaccurate. (Assess
Sub-task)

Traditionally the approach to dealing with SB errors on the
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TABLE 2. Prepare for Maintenance Tasks: Errors and Mitigations

Sub-task Example-Error Description Error Type

Identification Tasks

React Failure not noticed SB
Failure ignored RB

Anticipate Incorrect interval for replacement RB
Assess Incorrect condition for replacement RB

Operator misses condition SB
Misunderstand condition calculation KB

Planning Tasks

Estimate Error in calculation SB
Match task to wrong SWP RB
Estimate from wrong sources of data or experience RB

Procure Misevaluate available resources (when to purchase parts/use in-house) RB
Mismatch contractors or pick the wrong parts RB

Prepare/Document Miss/overlook a necessary document SB
Include or require wrong documents RB
Proposed procedure is non-optimal KB
Ignore previous feedback from execution team KB

Scheduling Tasks

Prioritize Poorly track resource availability SB
Misevaluate interrelationships between different maintenance tasks KB

Assign Poor match of skills of technicians to the job RB
Lack of communication between executing team and scheduler KB

plant floor is through increased surveillance with the use of sen-
sors, process control and alarms. These techniques give more
than one person the opportunity to identify the fault. Another
common approach has been the development of checklists. How-
ever, these checklists can promote mindless completion of forms
– even if the form is incorrect or incomplete – for the sake of just
completing the form because they are told to complete it, instead
of mindfully completing the forms to properly and accurately
document the activity. A proliferation of unqualified check-
lists can also create issues and, where they are useful, should
be replaced by centrally developed and version controlled main-
tenance procedures. Currently, few technical solutions address
when the planner is dealing with paperwork when many distrac-
tions and other calls on his/her time exist. Improved supervi-
sion, workload management and team support are often key to
improving concentration and mindful execution of routine work

[47, 48].

RB and KB errors (See Table 2) in identification of work of-
ten result from different mental models of the failure or its con-
sequence between parties involved. As in the illustration above,
the technician assumes the vibration data is from Pump 1, ac-
cording to his/her previous experiences, and so assumes the data
is correct even though it is incorrect.

These errors can be mitigated through investment in digiti-
zation of the prioritization and approval processes for the planner
or through improved training (for the maintainers). Ensuring that
the initial SB errors are mitigated first where possible, enables
the higher-level RB and KB errors to be addressed through these
more advanced approaches.
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3.3 Planning Task Errors
Planning involves estimation of necessary resources, time,

cost for each job based on historical organizational data, rules
and practices and the experience of the human planner. Parts
must be procured and maintainers and tools selected, and docu-
ments are prepared to assist in execution. The tasks within Plan-
ning are similar for both structured and unstructured work. How-
ever, for structured work the tasks are performed on a longer time
scale and by a dedicated planner. This contrasts with the shorter
time scale (often right when a failure occurs) associated with the
unstructured work done by an operator or technician. A sum-
mary of common errors and their classifications are located in
Table 2 and some examples are discussed below.

SB When planning a rebuild on Machine X the maintenance
planner miscalculates the time estimate for job 1. (Estimate
Sub-task)

RB The planner orders all the same parts as used in the last
Machine X rebuild rather than considering the work specif-
ically identified for this rebuild. (Estimate Sub-task)

RB The new maintenance planner contracts Company A for
Machine X rebuild, because of a past relationship, but
Company B should also have been considered. (Procure
Sub-task)

KB The planner miscalculates the downtime required for Ma-
chine X rebuild by failing to take account of resource con-
straints. (Prepare/Document Sub-task)

SB errors during this task, such as forgetting a necessary
document or making a slip during an estimate calculation can
be aided by centrally managed and controlled procedures that
are easy to use. Many of the errors during this task are RB er-
rors that involve matching an aspect of the work order to some
necessary document or resource. These type of errors could be
well suited for machine learning solutions because these algo-
rithms can learn the important features of the maintenance task
and match to the correct previous solutions to provide estimates
of resources, time, cost, etc.; however, these solutions can be dif-
ficult to implement because of the way in which data about the
tasks is stored (natural language) and because of the variety of
different contexts in which the same task can be executed. If
these SB errors are dominant, investment in the search-based so-
lutions enabling planners to locate information on previous sim-
ilar tasks can assist.

3.4 Scheduling Task Errors
Once the tasks are planned, they must be scheduled for a

specific time. For structured work, this task is completed by a
scheduler. However, it can be done in the field by a technician
or operator when a failure occurs and an unstructured job is ini-
tiated. Coordinating the scheduling of many machines, people,
parts, contractors and production equipment requires considera-

tion of many permutations for optimal solutions. This complex-
ity can potentially lead to a number of higher level errors such as
those seen in Table 2 and discussed below:

SB Maintenance scheduler forgets that Team A has a safety
Day and schedules work when they are not available. (Pri-
oritize Sub-task)

RB Technician 1 is chosen for an A-type job, as always; Tech-
nician 2 has recently been A-certified, and is not being as-
signed A-type jobs. (Assign Sub-task)

KB The scheduler reuses a schedule for rebuild of Machine A
event though analysis of the the last time this was done re-
sulted in a 50% time overrun. (Assign Sub-task)

Given the complex nature of scheduling, a high incident of
KB errors are likely to occur. These types of KB errors can ben-
efit from investment in project planning software and schedul-
ing and optimization models. SB errors, when a scheduler has a
lapse determining availability of a technician or asset can be mit-
igated through scripts to assist in availability calculations from
calendars. RB errors that occur in matching a work order to an
appropriate technician can benefit from the analysis and model-
ing solutions discussed in the above section on Planning tasks.
Scheduling is one of the more difficult tasks to provide easy-to-
implement solutions; however, it can benefit from planning tools
that enable a variety of schedules to be tested and various con-
straints to be incorporated.

4 PERFORM MAINTENANCE
The Perform Maintenance stage consists of executing the

maintenance actions, and recording the necessary information
about the job. The majority of tasks are similar whether the work
is structured or unstructured. The research efforts in this space
are described in the following subsection.

4.1 Applicable Research & Technologies
The perform maintenance task includes the maintainer doc-

umenting the as-found and as-left conditions of the equipment as
well as the work that was done. The steps in executing mainte-
nance work have changed very little in the last 40 years. Many
of the same tools and processes are used. There have been ad-
vances in support tools, for example laser alignment to replace
dial indicators, auto-lubers, and greater use of digital interfaces
to support troubleshooting for electrical/electronic equipment but
the nature of the way work is executed today would be familiar
to many retired technicians.

Each time a maintainer or technician interacts with equip-
ment, he or she expands their own expertise of the asset and cap-
tures a textual description of observations of the asset and records
what was done, when, and how. The lack of correct and com-
plete data in work order records to support analysis is widely ac-
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knowledged. Recent work to better understand factors that affect
data quality of maintenance work orders include [49, 48]. Work
orders typically contain unstructured text with jargon, abbrevi-
ations, and incomplete data. Primary interests for analysis are
information to establish the as-found condition, the causality of
failure including the failure mechanism, and a description of the
maintenance work executed and parts used. This data is often in
the work order texts, but it is not extracted in a machine-readable
way. As a result maintenance staff rely heavily on personal ex-
pertise, word-of-mouth, and ad-hoc data exchange, consulting
the records when these other methods fail.

Research from several different academic perspectives has
been conducted on the execution of maintenance work; however,
these types of studies have seldom translated into meaningful
change on the maintenance shop floor. Human factors special-
ists have looked at how maintainers interact with assets [50]. The
impact of human error on maintenance outcomes has been of sig-
nificant interest [51] and spurred attention from other organiza-
tional psychologists in exploring how culture affects motivation
and the execution of quality work and consistency in following
procedures [52, 47]. Considerable interest exists now in the po-
tential for mobile technologies such as assisted reality and GPS
tracking to better understand and support maintainers in the field
both in the execution of their work and in how data about the
work is collected [53]. The latter is of vital interest to engineers
as a maintainer’s observations on the as-found condition of an as-
set can be vital input to validating condition-based work orders.

The explosion of current technology dealing with multi-
modal data sources is particularly relevant to maintenance man-
agement. The information about asset condition, failure cause,
and maintenance work extends beyond what is captured using
language in written work order records. While work orders are
central to maintenance processes, maintainers communicate with
each other and others using a wide variety of media, includ-
ing photos, videos, emails, text messages and phones, in addi-
tion to other resources such as sensor data. Support systems are
emerging to provide access to critical information about main-
tenance issues from disparate sources. Given the emergence of
alternate ways of collecting data from maintainers with mobile
devices containing cameras and audio to sensor data from ma-
chines, methods to efficiently process and synthesize these dif-
ferent modes of data capture to provide asset health status assess-
ment are needed. Assisted and augmented reality (AR) head-set
systems are emerging into the market that provide maintainers
with access to audio and visual support in the field and the abil-
ity to look at drawings and other relevant information in a head
set visor [54, 55, 56].

Technical developments are needed to enable maintainers
to efficiently capture, retrieve, absorb, process and exchange
knowledge about equipment and maintenance work. One of the
most exciting recent developments is in natural language pro-
cessing to enable work order texts to be read and analyzed more

efficiently by computers. Examples of recent work in this area
include [57, 58, 59, 60]. This work is complemented by devel-
opments in semantic knowledge representation technologies to
capture data and contextual relationships between data. This will
support the development of inference engines capable of per-
forming basic reasoning over maintenance operations enabling
better decision support and improved quality control.

Another notable development is the emergence of ontolo-
gies for maintenance that are aimed at addressing different needs
such as data integration, semantic interoperability, and decision
support in maintenance. For example, several ontological ap-
proaches have been proposed to overcome the problems of het-
erogeneity and inconsistency in maintenance records through se-
mantic data annotation and integration [61, 62]. When formal
ontologies are used for annotating vast bodies of data, this data
can be more easily retrieved, integrated and summarized. Also,
the annotated data can easily be exploited for purposes of seman-
tic reasoning. In a recent initiative, referred to as the Industrial
Ontologies Foundry (IOF), an international network of ontology
developers are working towards developing a set of modular,
public, and reusable ontologies in multiple industrial domains
[63, 64]. Their work includes a reference ontology for mainte-
nance.

To discuss how the technologies within this stage can be
implemented in the maintenance workflow, the perform main-
tenance task is decomposed into the following sub-tasks: 1) As-
sessing and Diagnosing, 2) Executing the Maintenance Action,
and 3) Completing and Recording the Action. The set of typical
errors for this stage is in Table 3.

4.2 Assessment and Diagnostic Task Errors
The Assessment and Diagnostic Tasks depend on the type of

work required, such as assessing the equipment condition to see
if condition of the asset is as expected from the work order and if
the task described in the work order is appropriate. These tasks
rely heavily on the tacit knowledge of the maintainer, whether
heuristics or rules-of-thumb, that can be applied in uncertain or
developing circumstances. One way to think of this is if an as-
sessment does not match the assigned work, similar diagnostic
and assessment tasks are required as in the reactive identification
tasks, discussed above. This means that many of the SB and RB
errors mentioned previously (specifically for unstructured work)
apply to this task as well.

In supporting these tasks maintenance technicians may face
specific challenges. If they are in the field (this may be remote
from the maintenance shop such as on the factory floor), they can
be isolated from reference material or knowledge bases and their
team and supervisors. In addition often ergonomic constraints
exist — e.g., using a touchscreen is difficult with gloves on that
makes ready access to digital support tools challenging. In ad-
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TABLE 3. Perform Maintenance Tasks: Errors and Mitigations

Sub-task Example-Error Description Error Type

Assessment and Diagnostic Tasks

Assess Overlook symptoms that indicate poor equipment health SB
Incorrect condition features used in assessment RB

Compare Incorrectly assume validity of assigned work RB
Diagnose Unfamiliar symptoms lead to incorrect fault diagnosis KB

Incorrect diagnostic conclusion due to lack of experience KB

Execute Maintenance Action Tasks

Perform Forget necessary tools needed to complete job SB
Lapse in execution quality due to focus constraints SB

Triage Mistake nature of work for similar type having distinct solutions RB
Attempt execution without requisite experience, tools or supervision KB

Completion and Recording Tasks

Recall Technician does not remember significant symptoms SB
Recalled features are not relevant to analysis RB

Record Work performed is entered incorrectly, or schema structure is incomplete RB
Technician gives up searching prior to finding appropriate problem-code RB
Technician misunderstands or is unaware use-case and functionality of the
data structure (e.g. controlled-vocabulary)

KB

dition, digital support tools need to be rugged to survive dust,
water and unsecured work places that can be present in main-
tenance situations. This isolation from easy-to-access reference
material differentiates this step as having a high concentration of
possible KB errors, for example:

SB There is a noise in a pump-motor unit, the technician no-
tices the noise as assesses it as a potential failure but gets
side-tracked and fails to report it. (Assess Sub-task)

RB The engineer investigates the noise in the pump-motor unit
in the field but decides it is ’normal’ when it is not. (Assess
Sub-task)

KB The vibration analyst diagnoses the pump has a bearing
failure due to lack of lubrication but the cause was a seal
failure. (Diagnose Sub-task)

The sources for error during Assessment and Diagnostic
tasks that have significant impact are less often slips or lapses
in memory (SB errors), but rather stem from the complexity in
diagnosis of the cause of machine failures or sub-optimal per-
formance. Machines of the same make and model can be at
different life stages, have experienced different operating pro-

files and maintenance events. This means that all machines are
subtly different and hence diagnostic rules that should work on
one machine, do not always work on another. This situation re-
sults in RB and KB errors during execution. The need to ad-
dress unfamiliar situations in the field, often in a remote location
and without immediate access to knowledge bases, compounds
the need for more sophisticated approaches toward technological
enhancement of agents executing maintenance. Rapid advances
have been made in assisted reality glasses and headsets for diag-
nosis. These tools need to be supported by trained people and
new business processes.

4.3 Maintenance Execution Task Errors
The Execute Maintenance task occurs when the mainte-

nance action is explicitly performed. Work can be a routine job
(performed regularly) or non-routine, involving new steps that
may not be familiar. The Execute task is also highly human-
dependent. Routine work includes many SB errors, while non-
routine work involves more RB and KB errors, as described be-
low.
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SB Technician 1 forgets to loosen the motor when installing
new v-belts. (Perform Sub-task)

RB Technician knowingly replaces only one of the v-belts
rather than the whole set as he/she had done this last time
and there has been no adverse repercussions. (Triage Sub-
task)

KB The technician knows that an adjustment in alignment
needs to be made for thermal growth but cannot remember
the rules and formula. (Triage Sub-task)

The errors out of Execute Maintenance are dependent on the
type of work. Issues like forgetting a set of tools before reach-
ing a job location, or accidentally forgetting to loosen the motor
while in a hurry, are not necessarily able to be mitigated through
direct automation. Rather, these tend to ease over time on an in-
dividual level with experience on the shop-floor and better plan-
ning. Obvious aides like digital assistants may be additions to
speed up this process, however, automation systems are not ca-
pable of replacing a human at the skills-level in this manual, tacit,
dexterity-intensive task. RB and KB errors in this task stem from
lack of appropriate experience of the technician. One approach
to mitigating these inexperience errors, especially where effec-
tive rules do exist in the expertise of senior staff, is a buddy
system [65]. Such a system is increasingly being digitally aug-
mented through the use of assisted reality as described in Section
4.2 or remote support systems which a technician to bring in an
expert virtually.

For the KB errors, training is always useful, though it is im-
possible to train for every occurrence. Knowledge-bases tend to
be of limited use here, since ergonomic constraints (like gloves,
ambient/background noise, etc) make interfacing with traditional
digital systems — or even documentation — rather difficult.
However, recent developments in assisted- and augmented- re-
ality displays (AR/VR) can bypass this ergonomic problem, es-
pecially in preparation for jobs on difficult or seldom accessed
equipment. It is important to remember that these displays do
not provide such functionality out-of-the-box, and several sup-
porting technologies, like interconnected data storage and digital
twin reference models, will need to be successfully adopted prior
to reaping benefits from the continually decreasing cost of this
exciting technology.

4.4 Completion and Recording Task Errors
When addressing the state of data recording in maintenance,

regardless of sensor-outfitting or other types of data-streams, one
goal of recording maintenance information is to capture the ac-
tivities of a person executing maintenance — their ability to di-
agnose and solve problems. Recording this information requires
the technician to recall features associated with the work order
that distinguish it from other work orders. Once these features
have been recalled, they must be recorded by translating into a

format acceptable for predefined data structure required by the
CMMS.

Recalling features poorly is typically a sign of unstructured
work. Slips and lapses are more likely to occur in this recall
phase, e.g.:

SB Emergency MWO’s 18 and 19 were executed yesterday, but
work pressures meant the information was not recorded un-
til today. Cannot recall which of MWO 18 or 19 was the
seal replacement on Machine A3 (Recall Sub-task)

Structured work tends to reduce the likelihood of this type
of failure mode: pre-documented assignments that have been
planned and scheduled a priori will have associated documen-
tation that assists or automates a significant amount of feature
recall, leaving only the most relevant human actions to be in-
put by hand. However, simply using a work order generated by
a CMMS does not by any means guarantee high quality data.
Translating data into a CMMS will necessitate higher-level cog-
nitive engagement, and associated errors quickly transcend the
skill-based level:

RB Technicians have been asked to classify failures with spe-
cific names and codes to help with analysis but Technician
A continues to use the names he/ she has used in the past
instead. (Record Sub-task)

KB There are 5 fault codes and the technician struggles to
find one that actually describes the fault, so selects the
“miscellaneous” code but provides no further information.
(Record Sub-task)

Addressing these types of errors is more difficult. Solutions to
the SB errors (e.g., standard MWO structure, pre-filled MWO
forms, designated time-slots for data entry after every work or-
der, etc.) could provide significant return on investment to im-
prove data quality, and should be in place prior to addressing
the higher-level RB and KB problems. Recommendation sys-
tems and user-interface design can be helpful in improving po-
tential value of the recorded data. Statistical summaries of com-
mon themes in existing “miscellaneous” work order records,
through the use of Natural Language Processing, is potentially
useful, though care to include expert judgments must be taken
when processing technical, domain-specific, short-hand-filled
language [58, 60].

Recommendation systems could be applied during the com-
pletion stage to augment a technician’s ability to rapidly sort
his/her knowledge into the required format. [66] If sufficient
effort has been made to create and maintain digital references
for an entire line, real-time suggestions for recording related
symptoms or components could provide a boost to both data-
quality and the speed of experience-gain for the maintenance
team. Given sufficient investment, these tools could provide ad-
ditional input and context that assists technicians in creating the
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rules and knowledge they need — combating the errors induced
from often-dense, difficult-to-navigate user interfaces for select-
ing from a complex web of controlled vocabularies that so often
occur in this space.

5 DISCOVER MAINTENANCE NEEDS
Discover Maintenance Needs tasks involve the use of soft-

ware tools to create value from existing data, and inform the
future workings of other tasks. These tasks are independent of
structured versus unstructured work, but the tasks performed in-
form future structured work. Technology and research in this
stage are described in the next subsection.

5.1 Applicable Research & Technologies
Discovering maintenance needs should be the product of

a maintenance strategy informed by on-going analysis of asset
condition, performance, and failures. Maintenance strategy is in-
formed by an understanding of the function of the component,
its failure behavior, and the consequence of loss of function as
determined by a FMEA [67]. A Risk Priority Number is pro-
duced based on the likelihood, consequence, and detectability of
each functional failure. Maintenance strategies are developed for
the most critical functional failures using a Reliability-Centered
Maintenance (RCM) or similar process [68, 69] and described in
a variety of standards [1, 70]. Common names for these strategies
are design out (or improvement), predictive and condition-based,
preventive, failure finding, and run-to-failure. Condition-based
strategies produce tasks to collect and analyze the performance
or condition data (but not to do the work arising from the analy-
sis). Run to failure strategies, employed when there is low con-
sequence of failure and the cost necessary to prevent it exceeds
the cost of the failure, result in corrective maintenance work. For
RCM, the interested reader is referred to Rausand [68] and exam-
ples from infrastructure applications, such as electric power dis-
tribution systems [71, 72], maritime operations [73], and wind
turbines [74]. Although RCM is widely used in defense, auto-
mobile, aerospace, and electronics for product design, there ap-
pears to be limited, well-cited literature, such as Tu and Jonsson
[75, 76], on the use of RCM for the equipment used in manufac-
turing processes. A potential roadblock to the implementation
of novel sensing and analytics opportunities is a manufacturing
plant’s lack of a well-framed and functioning maintenance strat-
egy process.

The subject of analysis in maintenance work is vast and en-
compasses topics such as reliability analysis, health condition di-
agnostics and prognostics, predictive maintenance models, strat-
egy selection models, maintenance performance, and spare parts
modeling. Despite the growing number of papers published on
these topics each year, the uptake of the various models by indus-
try is low [77]. Much work, particularly in prognostics has been

theoretical and restricted to a small number of models and fail-
ure modes. There are few published examples for manufacturing
systems and, more generally, on systems exposed to a normal
range of operating and business conditions [78]. Published mod-
els rarely examine their practical and theoretical limitations in
sufficient detail to understand when and where the model should
and should not be applied. Other issues include how to assess
model performance and uncertainty quantification [79].

Although asset manufacturers and operators have used sen-
sors and manual data collection for decades to collect health data
on assets, developments towards IoT offer a new opportunity
where data is transmitted from assets to the Cloud [80]. In this
architecture, data for health estimation (e.g., condition monitor-
ing, environmental condition data, previous maintenance work,
and operating data) is more readily available for health moni-
toring and prognostic assessment to assist in identifying mainte-
nance work. The cost and ease of sensor deployment also creates
opportunity for more relevant data collection. This sharing of
information across assets and platforms should enable the devel-
opment of a system view and the flexibility to assess and manage
existing and emerging risks [80].

The potential for these developments to impact manufac-
turing maintenance is widely evident. Asset-owning companies
are implementing software platforms to better understand their
maintenance needs especially for predictive maintenance appli-
cations. The market for software platforms to integrate data from
multiple sources and support the use of this data in analytics
and access to the results through web applications is dramati-
cally growing. Examples include, but are not limited to, Das-
sault Systems 3DExperience [81], General Electrics Predix [82],
PTC ThingWorx [83], Inductive Automation Ignition [84], and
Siemens Mindsphere platforms [85]. Beyond the commercial
market, free, and accessible open-source statistical and machine
learning algorithm packages, online training, software platforms
and visualization applications are making these capabilities ac-
cessible to manufacturers on a lower budget.

While these technologies expand the potential for better
maintenance practices, they are not without complication. The
growth in research in the application of the technologies is enor-
mous but the path to wide-spread application has not yet been
paved. Challenges exist with both identifying the opportunities
for better prediction and with creating the infrastructure needed
to get the right data at the right time.

There is no shortage of predictive maintenance models pro-
posed in the scholarly literature with over 25,000 ‘predictive
maintenance’ papers listed in Google Scholar in 2018 alone. As
a result of the growing choice of available diagnostic and prog-
nostic models, a number of papers have been written to provide
guidance on model selection, for example in Leep, Lee, Sikorska
[86, 87, 78].

Machine learning technology is proving useful in this con-
text. Machine learning models train on large amounts of data
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to provide output predictions given new input from many large
historical datasets (e.g., Neural Networks, Support Vector Ma-
chines, Bayesian Networks). Provided relevant and sufficiently-
sized datasets, these data-driven models can be good at detecting
and predicting poorly understood or poorly modeled system be-
havior without a strong dependency on the relevant physics or
other dynamics. However, the nature of failure datasets creates
particular challenges. Failures, particularly of critical equipment,
are rare. Most equipment is replaced in whole or in part be-
fore the end of life. As a result, failure datasets are unbalanced
and sparse. In addition, for reliable analytics the datasets need
to be assigned meaning, or labeled, which can be an onerous
task. Without this labeling, the ground truth for validation often
does not exist. Furthermore, condition monitoring data, when
available, is often collected on assets using different methods at
different time intervals which complicates the analysis process.
Poor quality data results in greater complexity of the analytic
models that at best muddies inference and at worst misleads in-
ference and produces persistent prediction bias. These contex-
tual issues, if not dealt with rigorously in model selection and
validation practice, lead to poor performance and a loss of trust
by decision makers.

Another challenge in deploying analytics is that each data-
driven model is developed for a specific application, resulting in
the need for a plethora of models depending on the scale and
complexity of the manufacturing system. At a minimum a prog-
nostic or diagnostic model needs model selection justification,
validation, application limitations, and uncertainty quantification
[77]. Developing a model for each dominant failure mode in-
volves significant time and cost, which is increased by mainte-
nance and validation of the model as the asset ages or operating
conditions change. Considerable opportunities exist to develop
new processes, platforms, and standards –an ecosystem– to sup-
port these models enabling them to be more widely adopted.

To aid in technology insertion, the determine maintenance
needs task is broken into sub-tasks: 1) Data Extraction, Trans-
formation, Loading (ETL) for organizing data and 2) Modeling
and Analysis. The tasks are mainly performed by engineers and
data scientists, requiring system architecture knowledge, expert
elicitation, and mathematical or physical modeling assumptions.
The common errors for this stage are described in Table 4.

5.2 Data Extraction, Transformation, and Loading
Task Errors

Data does not exist in a vacuum, and cannot provide value
without intermediary steps. Collecting, storing, processing, and
serving data to analysis tools are all core parts of data engineer-
ing and are relevant to MWO data. The tasks required of data
analysts are typically organized as ETL. Extraction refers to get-
ting data from relevant data sources, such as machines on the

shop floor. Transformation is the act of preparing the data, such
as cleaning, data type selection, or feature engineering. Loading
is the process of sending the data to the another system for mod-
eling and analysis. Because the goal of a properly implemented
ETL system is the automation of data transfer and organization,
sources for KB errors are typically few, occurring around misuse
of software or functionality. Rather, key errors possible in these
tasks are largely SB and RB:

SB Data tables do not record units for the sensor readings.
(Transform Sub-task)

SB Data engineer merges two tables using the wrong join pro-
cess. (Transform Sub-task)

RB The data analyst uses an Excel spreadsheet from a col-
league without checking if cells are updating properly.
(Load Sub-task)

KB Reliability engineer when loading data puts zeros into
empty NA cells which skews all the subsequent analysis.
(Load Sub-task)

Lapses in design specification, like forgetting to use proper
and consistent units throughout a pipeline, are often found when
communication between ETL architects and the end-users (such
as engineers and data analysts) is weak. Using standard formats
for things like time-stamps (e.g., ISO 8601 [88]) is a common
way to build interoperable data stores, but care must be taken to
account for both present and future data storage needs of the en-
terprise when deciding to adopt formats or processes. One way
to account for these data storage and transformation needs can
be the use of standard data exchange protocols [89] and man-
ufacturing information standards [90]. Protocols should be de-
signed through strong relationships between management, plan-
ners, and data architects, along with the providers of any digital
tools being used. Because experimentation with digital pipelines
can be low-risk in the early stages (i.e. does not immediately
impact production), it may be worthwhile to allow acceptable er-
rors during technology adoption phases while exploring possible
ETL architectures. This ensures that the final implemented de-
sign will correctly fit organizational needs, while exploiting the
most recent techniques in ETL’s rapidly shifting landscape.

Because planning for future storage and processing need is
so critical, cloud computing through services like Amazon Web
Services (AWS) [91] or Microsoft’s Azure platform [92] present
opportunities for flexible expansion of capabilities, that can scale
with the needs of a system as it grows. Likewise, understanding
exactly what functionality does and does not exist in adopted or
purchased software stacks is key to planning ahead. If an en-
gineer creates custom software to facilitate specific needs of an
organization, good documentation practices are necessary for fu-
ture understanding of the software. However, the engineer may
never create this documentation due to time constraints, thus
leading to the innate knowledge of that software retiring when
they leave the company. By encouraging knowledge transfer
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TABLE 4. Discover Maintenance Needs Tasks: Errors and Mitigations

Sub-task Example-Error Description Error Type

Data Extraction, Transformation, and Loading (ETL) Tasks

Extract Inappropriate data quantity or type SB
Not planning for volume SB
Collect wrong data for desired analysis RB

Transform Dimensions/units/feature compatibilty error SB
Discard potentially useful data RB

Load Choosing wrong hardware RB
Misunderstanding software tools KB

Modeling and Analytics Tasks

Detect Trends Not noticing trends SB
Detecting false trends (overfitting) SB
Insufficient communication of trends SB

Define Patterns Inappropriate model or modeling assumptions RB
Misinterpret correlation as causation RB

Identify Causality Unknown relationships driving unknown failure modes KB
Lack framework for synthesizing model output into actionable strategies KB

(e.g., to recent hires) and guideline creation, risk of relying on
customized software and code for critical tasks can be reduced.

5.3 Modeling and Analytics Task Errors
Once data is loaded for analysis, it is analyzed through use

of statistical summaries, model training, and data visualization.
While there is no universal procedure for data analytics, there are
practices to follow when modeling and analyzing data: 1) detec-
tion of trends in data, 2) defining of patterns between data types,
and 3) identification of causal relationships and application po-
tential. These practices map well with the GEMS, since the goals
of each stage are similar to the goals of a problem solver — notic-
ing a problem, noticing patterns that fix the problem, then under-
standing the mechanisms that cause the problem.

SB Bearing sensor data from the past 5 months can be accessed
via disparate spreadsheets, which indicate nominal system
health over time, despite a 2-week period of increasing vi-
bration (Detect Trends Sub-task)

RB Analyst estimates tool wear overhead with a physics-based
model that calculates a mean time to failure metric for a
CNC part; this model is not calibrated for one of the re-
quired depth-of-cut + diameter combinations (Define Pat-
terns Sub-task)

KB A neural network trained with infrared maps of steel heat
predicts a quality drop is imminent. The analyst is unable

to determine a probable cause of the failure mode from the
model, despite previously good model accuracy. (Identify
Causality Sub-task)

The first example is an oversight and can be addressed by
making the data easier to see and accessible to more people. Nu-
merous no cost, open source tools exist to perform initial statis-
tical summary of data for reporting the key indicators of a need
for work, and to visualize the data in ways that make trend de-
tection at multiple time- and length-scales much more obvious.
Starting to standardize or automate data pipelines that explicitly
result in basic plots for machine performance summaries can be
beneficial in building trust in an automated system [93, 94]. Ad-
dressing these errors is intertwined with proper ETL solutions, as
discussed above: having a controlled data repository that struc-
tures and cross-links information makes designing and deploy-
ing such visualizations much easier. When well designed ETL is
combined with dashboards (typically centralized displays of real-
time streaming information), these types of well designed visu-
alizations can take steps into mitigating RB and KB errors, by
gathering disparate data sources into a single, easy-to-reference
location which is accessible to multiple people. This makes the
error of missed trends much less likely, and informs the creation
of new rules for standard work.

A second major mitigation strategy, especially for the RB
analysis errors, is the use of data-driven or hybrid data + physics
models, for the detection and exploitation of patterns in observed
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equipment or system behavior for predicting health or perfor-
mance. These are typically considered as part of Prognostics and
Health Monitoring (PHM), a rapidly advancing sub-field of relia-
bility engineering as described in Section 3.1. A key trade-off for
using such models is that while high-accuracy predictions can be
made when high quality and high quantity data is available, the
models are not always interpretable, can be over-fitted, and may
not be indicating causal (but rather coincidental) links between
inputs and outputs. It is obviously better to be alerted to a pre-
diction of failure than not, but if actionable strategies based on
causal relationships are required, significantly more effort may
be needed. False positive alarms reduce trust in the analysts and
their predictions [95, 96]. Some forms of semantic and causal
reasoning is possible, perhaps through design of custom ontolo-
gies or high-fidelity physics simulations, but implementing these
tailor-made solutions presents a barrier, in infrastructure, labor,
and research costs. Fortunately, expert knowledge can some-
times be applied to identify causation.

Based on this, investment only in the analysis stage starts out
with high potential returns, but reaches a horizon as the needed
technology to infer context and causality reaches the edge of the
state-of-the-art. Readily-available technologies can assist ana-
lysts in addressing SB and RB errors is an efficient way to en-
courage them to use their own domain expertise in determining
causality and potential strategies. This lays the groundwork to
enable higher impact improvements in KB-intensive tasks, like
execution and scheduling.

6 DISCUSSION
The previous sections provide a high level task and error

analysis of the maintenance management workflow. Some com-
mon errors are classified according to Reason’s GEMS frame-
work (skill-, rule-, and knowledge-based errors). Careful consid-
eration is made to distinguish between structured versus unstruc-
tured job tasks and errors. While the tasks and errors had much
overlap, often they were performed by different roles within the
organization and at different time scales. The errors are largely
the same, but they occur more often with unstructured work. Un-
structured jobs require decisions made in near real time by roles
in the organization that are not meant to be making these deci-
sions (e.g., a maintainer estimating severity of a failure on the
fly) and in high stress situations (e.g., during a machine failure
that can lead to production impacts). Shifting towards a more
structured maintenance paradigm is important for an organiza-
tion’s success with new technology insertion. The steps pro-
vided in this paper are a beginning in this direction, however,
as discussed, technological solutions are not the only mitigation
strategy; cultural shifts are necessary as well [97].

Mitigation strategies are discussed for commonly occurring
errors, independent of structured or unstructured jobs. These
mitigation strategies range from necessary cultural changes to

advanced AI solutions, however, these errors and mitigations do
not represent every possible situation at different manufacturing
facilities. How does a manufacturer repeat this same process and
how should they implement their own technological solutions?

If one approaches modernizing a factory with new digital
technological solutions as a problem solving situation, in a simi-
lar process to GEMS and the above discussion, the first step be-
gins when stakeholders in the organization begin to perform an
attentional check [25]. This step must happen before any prob-
lem can be solved because, by definition, this check identifies
SB errors that are occurring without conscious recognition that
something is wrong by the human actor.

For example, an operator not noticing an alarm that indi-
cates failure is a potential SB error identified in Table 2. One
solution to this problem, could be to install a sensor visualization
dashboard to display the performance of the system for many to
view. This solution could potentially solve the problem, but re-
quires new sensors, logic for failure identification, visualization
packages, etc. Does this solution always mitigate the error of not
noticing a failure? By needing to capture new data and create a
new visualization solution, how can one be sure the visualization
is optimal to clearly indicate failure so the error does not occur?
If the operator can miss an alarm, he/she can very easily not no-
tice an icon in a visualization dashboard. It might not come to
light that this solution is poor until a high investment in both
time and cost is sunk into the project. A low technology solution
might be a better answer to initially solve this error. For exam-
ple, implementing a prototype visualization using existing data
sources to ensure the operator can adapt to the new technology,
or instilling a cultural enabler that could include a buddy sys-
tem, so the operator can learn from more experienced colleagues
could alleviate this error.

One of the most common causes for technology implemen-
tation failures, such as new CMMS, is an inability to make the
necessary cultural changes [26]. Too often proponents of new
software systems believe that the software implementation is the
change, rather than putting effort in appropriate organizational
change management processes to support the installation. For ex-
ample, if operators and technicians are making many SB errors,
such as not remembering significant symptoms from a mainte-
nance job, a CMMS system will not immediately solve this prob-
lem. These types of errors often occur because the technician
has no incentive to enter correct, long-form data about the main-
tenance job. In fact, the poor organizational culture encourages
bad data entry, as these technicians are judged on how well and
how quickly they solve the problem, not on the quality of the
data [49]. If a CMMS system was installed, without addressing
the SB errors, the technicians would still follow bad data entry
practices, albeit on a much more expensive system. However,
by discovering and attempting to mitigate SB errors, we enable
a more efficient investigation into more emerging, sophisticated
technologies that hold greater promise to automate systems and
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more directly assist human decision making.
As SB errors are mitigated, a trust for new technologies

builds. By alleviating the SB errors, the differences between
the RB and KB errors will also emerge. It is typically the most
knowledge intensive tasks for which humans are required, mak-
ing these errors some of the most difficult to completely mitigate
with new technologies. The next step after discovering and mit-
igating SB errors is investigating the emerging technologies for
RB errors.

RB errors, by their nature, involve patterns and rules that
are misapplied or an inappropriate rule. The avenues to iden-
tify the occurrence of rule-based errors include the use of digital
pattern recognition and recall processes. For example, routine
tasks can be aided through machine learning technologies that
can learn the important features of the work. This technology
augments the planner, scheduler, engineer and technician, who
can use the knowledge to make appropriate decisions and focus
on other tasks in their job.

Once the SB and RB errors are mitigated, manufacturers can
attempt to address KB errors. As stated above, KB errors are dif-
ficult to mitigate with automation and are better suited for aug-
mentation technologies that aid the human in the task. For ex-
ample, imagine a technician attempts to solve a problem that he
or she has never encountered before. To completely replace the
human actor, in this scenario, with a robot is not realistic with the
current technology solutions. It may be cost and time-effective
to investigate AR solutions that can link with more experienced
technicians and Computer Aided Design (CAD) drawings of the
asset to visualize and talk through the current problem. How-
ever, while the solutions themselves might be low cost, creating
an environment that connects CAD drawings, technicians, and
visualization tools with assisted reality headsets, is often diffi-
cult for manufacturers to tackle if this is the first SM technology
they employ.

While this procedure of error identification and technology
mapping can help manufacturers, how can researchers push for-
ward and create solutions that are used by manufacturers? Re-
searchers are needed to reduce the cost of entry to these solu-
tions, both in time, monetary cost, and required expertise. The
exercise of identifying tasks and errors can leads to a better un-
derstanding of a manufacturer’s trouble areas and provide more
concrete use cases for researchers; however, scenarios are often
not enough for some data-driven techniques. Realistic datasets,
that are analogous to the data that occurs during maintenance,
are necessary to train and prepare the data-driven models [98].
These types of datasets would support the development of open
source data analysis and visualization tools that can greatly ben-
efit manufacturers.

As the technologies are further developed and current tech-
nologies are deployed, guidelines for when and how to use var-
ious technologies are necessary. This paper ultimately provides
guidance on what types of errors are dominant throughout the

maintenance procedure, but stops short of discussing at length
the pros and cons of each technology solution. Researchers can
create and contribute to standard guidelines on what tools work
and why for specific types of manufacturing datasets and prob-
lems. Guidance is also required to determine how to turn the
outputs of the data analysis tools into actionable intelligence in a
consistent manner. Lastly, manufacturers need to share their suc-
cess stories in implementing these technologies for maintenance
management. As shown in [2], the ROI of Smart Manufacturing
technology implementation in maintenance ranges from 15 % to
98 %. As many manufacturers are nervous of the cost of these
technologies, more rigorous studies of ROI are necessary to pave
the way for other manufacturers. This paper can provide a first
step in a Smart Manufacturing journey in maintenance.

7 CONCLUSIONS AND FUTURE WORK
This paper analyzes each step of the maintenance workflow:

both reviewing current industrial implementations of research for
each maintenance activity and providing a framework for de-
termining the most cost effective points of entry for emerging
technologies in Smart Manufacturing. The maintenance activi-
ties are broken down by tasks and potential errors are identified
using Reason’s taxonomy. The errors are classified according to
Rasmussen’s skill-, rule-, knowledge- performance model. This
classification provides a framework to discuss the most effective
areas to introduce emerging Smart Manufacturing technologies.
Low- technology solutions, particularly cultural changes, can
sometimes be employed to rectify skill-based errors; AI-driven
solutions may solve rule-based errors; and knowledge-based er-
rors will need high effort, high cost, and high fidelity system
models to pull together many disparate data sources that form
the human expertise.

Several potential areas for future exploration follow from
this work:

More complete task analyses of the maintenance process —
Further human reliability research should provide a more sophis-
ticated breakdown of tasks, sub-tasks, and the associated poten-
tial errors. This type of analysis is necessary to fully recognize
the relationship between the human actors in maintenance and
the technology solutions applicable to a manufacturing facility.
Using a more complete task analysis on the maintenance work-
flow, will allow researchers to better understand the interrela-
tionships of the human and technology within the maintenance
workflow.

Systematic error identification and tracking — Solutions
are needed to provide manufacturers with guidance on how to
perform this analysis across the entire manufacturing facility. A
key aspect of recognizing error severity is the determination of
key performance shaping factors: environmental or other con-
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textual influences that modify error likelihood (also called com-
mon performance conditions, see [29]). Having a repository of
manufacturing maintenance errors, perhaps taking a cue from the
U.S. Nuclear Regulatory Commission Human Event Repository
and Analysis (HERA) database [99], could prove useful for more
efficient error modeling, going forward.

Human models and assistance through machine learning
— In areas like maintenance that require human engagement,
and tend to generate smaller data compared to other domains,
up-and-coming advances in machine learning that can handle a
lack of large training datasets will have an understated impact
on our ability to model and assist relevant aspects of human be-
havior. These types of models, whether focused on reliability
prediction, ergonomic optimization, or performance measures,
are becoming possible through hybridized learning techniques,
which exploit existing basic knowledge about some model while
still adapting to new circumstances in reasonable ways. This pro-
vides a mechanism for ML to assist less experienced practition-
ers in learning their domain: “intelligence augmentation” over
“artificial intelligence” [100]. Techniques like restricting predic-
tions to a learned space of useful results [101, 102], discovering
computational models for difficult-to-quantify user preference in
decision making [103, 104], and many more, can be directly ap-
plied to better model and assist maintenance practitioner’s diag-
nostic and execution behavior.

Guidelines on tools that are available in Smart Manufactur-
ing and the potential benefits and drawbacks of each method
or tool — This paper provided examples of tools that are avail-
able in industry, but did not enumerate every potential Smart
Manufacturing technology. More work is necessary to discuss
how and when to use specific techniques for the appropriate
problem in manufacturing, including not only potential benefits
but also drawbacks.

Reference datasets from manufacturers for analysis com-
parison — Within manufacturing, publicly available datasets
mimicking real world scenarios are lacking. Without these
datasets, it is difficult for analysis to provide solutions that works
in real manufacturing environments.

Standard guidelines on how to perform this analysis consis-
tently within manufacturing — While this paper provides
the first steps in this process, this work can be forwarded through
standard organizations to provide simple-to-follow guidance
allowing manufacturers to perform this analysis on their own in
a structured way.

As the factories of the future become more and more auto-
mated, the skills required to support manufacturing operations
will shift from operations to maintenance. In this environment,

manufacturers need to understand the best place to start with im-
plementing these emerging technologies. The optimal path for-
ward with technology for maintenance is not to replace a human
in the workflow. A solution that augments the human’s abilities
will take advantage of the human’s cognitive capability while re-
moving the reducing errors. In fact, in the future, Intelligence
Augmentation (IA) might become a more practical approach,
compared to AI, since it supplements human’s cognitive process
at different levels of Bloom’s Taxonomy while keeping the hu-
man at the center of the decision-making process [105]. This pa-
per allows manufacturers to stop asking how to get “smart”, but
instead allows manufacturers to ask how can we “smartly” im-
plement new technologies in maintenance with the highest prob-
ability for success by accounting for the errors the technology
will alleviate.

DISCLAIMER
The use of any products described in this paper does not

imply recommendation or endorsement by the National Institute
of Standards and Technology, nor does it imply that products are
necessarily the best available for the purpose.
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