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Current explorations of nutrition and the gut microbiome:
a comprehensive evaluation of the review literature

Leigh A. Frame , Elise Costa, and Scott A. Jackson

Context: The ability to measure the gut microbiome led to a surge in understand-
ing and knowledge of its role in health and disease. The diet is a source of fuel for
and influencer of composition of the microbiome. Objective: To assess the under-
standing of the interactions between nutrition and the gut microbiome in healthy
adults. Data Sources: PubMed and Google Scholar searches were conducted in
March and August 2018 and were limited to the following: English, 2010–2018,
healthy adults, and reviews. Data Extraction: A total of 86 articles were indepen-
dently screened for duplicates and relevance, based on preidentified inclusion crite-
ria. Data Analysis: Research has focused on dietary fiber – microbiota fuel. The
benefits of fiber center on short-chain fatty acids, which are required by colono-
cytes, improve absorption, and reduce intestinal transit time. Contrastingly, protein
promotes microbial protein metabolism and potentially harmful by-products that
can stagnate in the gut. The microbiota utilize and produce micronutrients; the bi-
directional relationship between micronutrition and the gut microbiome is emerg-
ing. Conclusions: Nutrition has profound effects on microbial composition, in turn
affecting wide-ranging metabolic, hormonal, and neurological processes. There is
no consensus on what defines a “healthy” gut microbiome. Future research must
consider individual responses to diet.

INTRODUCTION

In 1683, while using a microscope to observe the plaque
that had been scraped from his own teeth, Antonie van

Leeuwenhoek reported that “there were many very little
living animalcules, very prettily a-moving.”1 Not only

was Leeuwenhoek first to observe and describe micro-
organisms scientifically, he also established that humans

are hosts to large numbers of diverse microorganisms.
Nearly 200 years later, in 1857, Louis Pasteur reported

that “the chemical act of fermentation is essentially a
phenomenon correlative with a vital act” after discover-

ing that microorganisms were responsible for the basic
mechanism of fermentation.2 Towards the end of the

19th century, Pasteur and Robert Koch demonstrated
conclusively that microorganisms were agents of dis-

ease, and in doing so, forged the acceptance of the
“germ theory” for infectious disease. These events stig-
matized the public’s perception of microorganisms,

and, throughout much of the 20th century, microorgan-
isms were largely seen as adversarial due to their associ-

ation with disease and food spoilage. It would take
another century before technology ushered in the next

transformation in our understanding of the important
roles that microorganisms play in our daily life.

In the last decade, advances in DNA sequencing
technologies have allowed this technology to become

ubiquitous in research laboratories around the world. It
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was through the use of next-generation sequencing

(NGS) technologies that scientists, for the first time,
were able to measure and describe the vast microbial

ecosystems that live in and on our bodies (dubbed the
human microbiome). NGS-based measurements have

revealed the presence of 1000’s of diverse species of pro-
karyotes, archaea, eukaryotes, and viruses that collec-
tively make-up our human microbiome. Further, a

typical human being is made-up of more microbial cells
than human cells.3 The human microbiome is phyloge-

netically diverse, and this diversity gives rise to an im-
mense metabolic potential; perhaps best described by

the number of microbial genes contained within the hu-
man microbiome. While a human genome contains on

the order of 20,000 genes, a human microbiome collec-
tively contains on the order of 3 million (non-redun-

dant) genes.4

A complex metabolic, hormonal, neurological and

immunological relationship exists between the micro-
biome and the host. This molecular cross-talk is critical

in regulating many physiological processes. Changes in
the composition or function of the gut microbiome can

have profound consequences, both negative and posi-
tive, on the host. Cohort studies that compare the gut

microbiome profiles from healthy and diseased patients
have revealed a correlation between many disease states

and a person’s gut microbiome profile. An altered
microbiome that is associated with a disease is often re-

ferred to as dysbiosis. Whether dysbiosis is the cause of
a disease or the effect of the disease, is poorly under-

stood in most cases and requires further studies (eg,
longitudinal and intervention strategies) to determine

cause-effect. Another important finding is that no two
individuals share the same microbiome, including iden-

tical twins. In fact, healthy individuals that are of similar
age and demographic have vastly different gut micro-

biome profiles. This has thwarted our attempts thus far
to try and define what a “healthy” microbiome looks

like. In general, however, it is thought that higher levels
of taxonomic diversity (richness) is an indicator of a
“healthy” gut along with the absence of pathogenic

species.
Infants become inoculated with their initial micro-

biome during delivery. Studies have demonstrated that
different delivery methods (eg, vaginal vs. caesarian)

lead to different microbiome profiles in the infant.5 It
had been thought that, in utero, infants were sterile;

however, in 2013 a study found bacteria in nearly 1/3 of
placental samples6 bringing this into question. Diet also

plays an important role in the development of the infant
gut microbiome. For example, human breast milk con-

tains oligosaccharides that are unrecognizable to the in-
fant but are ably metabolized by certain species of gut

bacteria.7,8 Therefore, human breast milk has evolved to

nourish the infant and the infant’s gut microbiome.

Early development of the infant gut microbiome plays a
critical role in the development and function of the im-

mune system, both innate and adaptive. It is estimated
that approximately 75% of the body’s immune cells re-

side in the gut,9 and there is mounting evidence sug-
gesting that autoimmune disorders, like inflammatory
bowel diseases, originate in and are modulated by the

gut microbiome. Industrialized countries have experi-
enced a dramatic rise in the prevalence of allergic and

autoimmune diseases over the last four decades. The
“hygiene hypothesis” or “microbial exposure hypoth-

esis” postulate that this rise is attributed to the increas-
ingly sanitary lifestyle of developed countries.10,11 The

connection between the human microbiome and its in-
fluence on immune system development and function

has been described in great detail in two recent books
titled “Missing Microbes” and “Dirt is Good” that were

published by leaders within the scientific
community.12,13

Until recently, the human microbiome remained
an underappreciated and understudied target for novel

strategies to diagnose and treat disease. The prevalence
of diseases that may be rooted in the perturbation of the

gut microbiome (eg, irritable bowel syndrome,14–17

chronic idiopathic constipation,18,19 colorectal can-

cer,20,21 and obesity17,20,22–26) are increasing with insuf-
ficient alternative explanations.27,28 Obesity is a

complex disease with multi-factorial origin, a portion of
which may be due to the composition of the gut micro-

biome.20,28–37 Some of the most impressive work on the
gut microbiome has come from the field of obesity re-

search, including the fecal transplant from subjects
(twins) with or without obesity into mice. These mice

were then challenged with a high fat diet; the mice re-
ceiving the lean microbiome remained lean while the

mice receiving the obese microbiome developed obe-
sity.38 What is clear from this experiment is that the gut

microbiome is a powerful determinant of the phenotype
of its host.

The diet is a source of microbiota and a source of

fuel for the microbiota in the gut microbiome.
Alteration of the diet has been estimated to govern the

composition of the gut microbiota almost five-times
more than genetics and is a modifiable risk factor.29,39–

41 While short term changes in the diet may produce
transient alterations to the gut microbiome, a long term

dietary pattern change may lead to significant alteration
in composition.29,42–47 It has been difficult to under-

stand or control the diet in humans well enough to de-
finitively determine the effect of their regular diet,

which is why much work has been conducted in animal
models, small feeding studies, or supplementation

studies.
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The diversity of the diet as well as food quality48

are primary indicators of the composition of the gut
microbiome with more diverse and higher quality diets

leading to more diverse and purportedly healthier gut
microbiota.36,47 This is particularly true of plant-based

foods, which contain various types of dietary fibers; the
more diverse the fibers, the more diverse the micro-
biota.47,49,50 In seniors, loss of diet diversity and quality

after transitioning to residential care has been linked to
frailty, inflammation, and poor clinical outcomes.36,51,52

Further, the diversity and composition of the micro-
biome varies greatly along the length of the digestive

tract, which may be due to differing exposure to dietary
constituents. For example, only 15% of carbohydrates

(mostly fiber), 5–34% of protein, and very little fat
make it from the mouth to the distal colon. This means

that gut microbiome samples from the small intestine
could vary greatly from that of stool, which is the sam-

ple in which most research on the gut microbiome has
been conducted and the focus of this review.

In this systematic evaluation of the review litera-
ture, we aim to assess the current understanding of the

interactions between nutrition and the gut microbiome
in healthy adults. A solid understanding of the interac-

tions between nutrition and the gut microbiome in
healthy adults will form the foundation for understand-

ing the role of nutrition and the gut microbiome in dis-
ease prevention and treatment.

METHODS

In conjunction with librarians at our institution,

PubMed and Google Scholar database searched were
conducted in March 2018 and August 2018, searching

for all medical literature articles relating to nutrition
and the gut microbiome. The search strategy was

adapted for each database and incorporated both sub-
ject terms and free text terms, as applicable. Key

PubMed search terms were microbiome, gastrointesti-
nal microbiome, microbiota, microbial, gut, nutrition,
nutrient, food, and nutritive value—for example

(((((nutrition*) OR nutrient*) OR “Food”[Mesh]) OR
“Nutritive Value”[Mesh])) and (((((((microbiota) OR

microbial) OR microbiome)) and gut)) OR
“Gastrointestinal Microbiome”[Mesh]). Google Scholar

search terms included “gut microbiome” nutrition re-
view and “gut microbiome” nutrient review. The

PubMed search resulted in 58 articles, with an addi-
tional 28 records identified on Google Scholar (Figure

1). Additionally, the Cochrane Library search returned
no results. E.C. and L.A.F. independently screened titles

and abstracts based on pre-identified inclusion criteria:
Review articles, in the English language, published be-

tween 2010 and 2018, with healthy human subjects at

least 18 years of age. A total of 86 articles were indepen-

dently screened for duplicates and relevance, based on
these pre-identified inclusion criteria (Table 1). There

were 6 duplicates and 34 articles were excluded during
the screening. An additional 8 articles were excluded

during independent full-text eligibility assessment.
Discrepancies were resolved by an additional indepen-
dent review by S.A.J. The qualitative synthesis for this

systematic evaluation of the review literature included
38 articles in total.

RESULTS

Calories

Dietary macronutrient composition is a determinant of

the makeup of the microbiome, allowing some species
to grow, reducing the growth of others, and even pre-

venting colonization of some species.40 Increasing calo-
ric intake while keeping macronutrient composition

similar (holding the ratio of carbohydrates-protein-fat
relatively constant while increasing overall intake),

increases Firmicutes and decreases Bacteroidetes32,44

and reduces overall gut microbiome diversity.45,54 In

turn, dietary restriction (reduced calorie intake)
increases diversity;45,54 however, insufficient calories as

in malnutrition decreases diversity.55 Therefore, calorie
intake alone is not necessarily predictive of the compo-

sition of the gut microbiome. With long-term increased
caloric intake, the composition of the gut microbiome

may undergo a long-term shift.32,40 In lean individuals,
this may be a result of increased energy harvest in a

dose-dependent fashion.29,32

It is generally difficult to isolate the effect of calo-

ries from that of macronutrients in clinical research.
This is the case in undernourished children, who fre-

quently have a developmentally delayed microbiota that
typically persists despite treatment or after treatment is

discontinued.29,56 Thus, inadequate nutrition may serve
as a persisting determinant of the composition of the

gut microbiome rather than simply insufficient calories.
Despite this potentially important relationship, there

has been little research on undernutrition and the gut
microbiome in part due to the many potential

confounders.

Carbohydrates

A polysaccharide (polymeric carbohydrates) rich diet

may facilitate more complete energy harvesting from
dietary fiber, decrease inflammation, and prevent non-

communicable and infectious intestinal disease.29,40,57,58

When these polysaccharides come mostly from plants,

they are largely fuel for the microbiota—resistant starch,
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oligosaccharides, and non-starch polysaccharides,

which may determine the composition of the micro-
biome.17,29,40,47,59,60 Resistant starch, oligosaccharides,

and non-starch polysaccharides are types of dietary fi-
ber and are not digested in the small intestine like other

carbohydrates. Thus, they are available for the micro-
biota of the large intestine. In keeping with this, a high

fiber diet correlates with a microbiome consisting of
polysaccharide-utilizing microbiota with lower protein

fermentation products and fewer bacteroides and
clostridia.18

The form and type of carbohydrate may alter the re-
sponse of the microbiome. For instance, whole oat flakes
(0.53–0.63 mm) have been shown to increase

Bacteroides–Prevotella group bacteria while larger flakes

(0.85–1.00 mm) increased bifidobacteria in vitro despite

the fiber being of the same type (b-glucan).60,61 Prevotella
is generally more abundant in those with a plant-based

diet.36,45,51,62 Further, which microbiota reside in the gut
may be dependent upon the makeup of the gut mucus

glycan in a diet-dependent fashion (mouse model), fur-
ther complicating this relationship.36,63 In a reciprocal

fashion, microbiota mediated colonic mucus deteriora-
tion can occur when the gut microbiota are deprived of

dietary fiber or Bifidobacteria.64,65

Fiber and short chain fatty acids. There is significant
heterogeneity within bacterial species in their ability to

ferment (digest) different types of fiber. Short chain
fructooligosaccharides (FOS) can be fermented by

many of the gut microbiota.47,66,67 In vitro, some,
Bifidobacterium, Bacteroides, Faecalibacterium,

Lactobacillus, and Roseburia, can digest oligofruc-
tose.47,66,67 Only very few are able to digest long chain

fructans.47,66,67 Additionally, bacteria may feed off the
by-products of other bacteria, a process known as

cross-feeding.
When the microbiota ferment fiber, they produce

Short Chain Fatty Acids (SCFAs), most copiously

Figure 1 PRISMA flow diagram for systematic review of nutrition and the gut microbiome.186

Table 1 PICOS criteria for inclusion of studies
Parameter Inclusion criteria

Patients Healthy adults
Intervention Diet, supplement, none
Comparator N/A
Outcomes Alteration of the gut

microbiome or host
Study design Reviews only
Abbreviations: N/A, not applicable.
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butyrate, acetate, and propionate. Less abundant SCFAs

include formate, valerate, and caproate. SCFAs are pro-
duced in the large intestine, primarily in the proximal

colon with concentrations decreasing in the distal co-
lon.47,60 These SCFAs account for as much as 10% of

our energy requirements with butyrate being absorbed
by the cells of the epithelium of the colon.29,40,41,60,68,69

This process of energy harvesting from otherwise indi-

gestible carbohydrates increases the efficiency of extrac-
tion of calories from the diet. Locally, SCFAs like

butyrate serve as crucial nourishment; the cells of the
epithelium of the colon undergo autophagy, ordered

disassembly, without butyrate.29,40,41,47,55,70–72 The ma-
jority of butyrate formation comes from species such as

F. prausnitzii and Roseburia.41,73 Butyrate may also pre-
vent carcinogenesis74 and inflammation75 in these

cells.40,44,47,52 Systemically, acetate enters the citric acid
cycle and propionate is a component of gluconeogene-

sis.29,40,41,47,55,60,76 While both propionate and acetate
are found in circulation, only acetate has been shown to

cross the blood-brain barrier.47 Though, propionate has
recently been shown to interact with the blood-brain

barrier, potentially protecting it.77 SCFAs have also
been shown to improve absorption of dietary minerals

such as calcium,40,44,55,78,79 aid in water absorption,44

and alter intestinal permeability,44,47 which may affect

nutrient absorption and the barrier function of the gut.
Another product of fermentation is carbon dioxide,

over-production of which can lead to symptoms of gas,
bloating, and abdominal discomfort; thus, there may be

a sweet spot for gut microbiome fermentation, which
balances SCFAs and gas production.

Generally, fiber has been shown to increase diver-
sity in the gut microbiota, which is seen to be a marker

of a “healthy” gut microbiome.28,29,47,80–84 The
Prevotella enterotype is common in those with a high fi-

ber diet with fewer Bacteroidetes and Actinobacteria and
more Firmicutes and Proteobacteri.44,62 Increased resis-

tant starch intake has been shown to increase the abun-
dance of Ruminococcus bromii (Clostridia class)17,42,85,86

and Eubacterium rectale.86

High fiber diets have been shown to accelerate in-
testinal transit time due to the bulk-forming capacity of

fiber.17,40,47,87 Intestinal transit time in turn affects the
gut microbiome: Transit time is directly correlated to

the prevalence of slow growing species eg, methano-
gens40,88 and the total bacterial count.17,87 As slow

growing species decline in prevalence with accelerated
intestinal transit time, sulphate reducing bacteria seem

to fill this niche.40,88 Additionally, the production of
SCFAs is stimulated, reducing the pH.17,40,44,87,89

SCFAs then accelerate intestinal transit time by stimu-
lating gut motility,40,44,71,89 creating a positive feedback

loop.

The reduced pH from SCFA production may play a

role in reducing the growth of bacteria that may cause
disease, eg, Enterobacteriaceae like E. coli and

Salmonella. Reduced pH may also reduce commensal
bacteria that tend to occur in lower proportions in a

healthy microbiome such as Bacteroides spp.,
Bifidobacterium spp., Firmicutes, and Proteobacteria
and increase beneficial (butyrate-producing) microbiota

such as Eubacterium rectale and Faecalibacterium
prausnitzii.17,40,60,90–93

SCFAs have been shown to improve insulin sensi-
tivity and increase energy expenditure in a mouse

model of obesity.40,94 In humans, SCFAs have been
linked to hormonal appetite regulation via receptors in

the gut and glucagon-like peptide 1 (GLP-1), potentially
indicating that the decreased fiber intake in the modern

Western diet may have a causal role in the obesity epi-
demic.29,36,37,40,41,44,47,55,95 Decreased appetite is associ-

ated with a high Firmicutes to Bacteroidetes ratio, likely
by stimulating appetite suppressing hormones, eg, lep-

tin and peptide YY.29,36,37,44,55 SCFAs have also been
shown to alter gene expression by inhibiting histone

deacetylase (epigenetic alteration).37 Further research is
needed to determine the exact mechanisms behind

these potential benefits of SCFAs.
Seniors tend to have a microbiome less able to pro-

duce SCFAs.40,51,52,79,96,97 This is two-pronged. First,
the senior microbiome contains fewer butyrate-pro-

ducing microbiota such as Clostridium cluster XIVa
and cluster IV, Faecalibacterium prausnitzii,

Eubacterium rectale, and Roseburia group40,41,52,96,97

with a reduced ability to produce butyrate, acetate, and

propionate.40,51 Second, senior diets are frequently
lower in fiber,36,79,98 leading to bacterial protein metab-

olism and the harmful by-products of branched chain
fatty acids, ammonia (from increased pH44), and phe-

nols.21,41,79 With a low fiber diet, this reduction in bu-
tyrate production coupled with harmful by-products

has also been observed in a wider age range (21–
74 years, mean 56 years).43,99 In contrast, cohorts in
France and Sweden have been observed to have no sig-

nificant differences by age.100,101 This is in keeping
with recent work highlighting health status, medica-

tions, and lifestyle, which are associated with age, as
major drivers of microbiome composition rather than

age itself.102 Therefore, the observed correlations of gut
microbiome composition with aging may not be causa-

tive, which will require the removal of age-associated
confounders to determine.

FODMAPs: Fermentable oligosaccharides, disaccharides,

monosaccharides, and polyols. FODMAPs are as subset
of carbohydrates including fructose, lactose, fructans

(inulin), galactans, and polyols (eg, sorbitol and xylitol),
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which can be precipitously fermented by the gut micro-

biota. In susceptible patients, FODMAPs can lead to di-
arrhea, constipation, gas, bloating, and cramping. A low

FODMAP diet has been shown to decrease irritable
bowel syndrome (IBS) and functional bloating associ-

ated symptoms.40,103 Low FODMAP diets work to re-
duce or eliminate high FODMAP foods, including
garlic, onions, wheat, and many fruits and vegetables.

Breath hydrogen testing, the same test used to diagnose
small intestinal bacterial overgrowth (SIBO), may be

used to determine fructose and lactose malabsorption
and tailor the low FODMAP diet.40,104 This is particu-

larly notable, as elimination of SIBO, invasion of large
intestinal microbiota into the small intestine, has been

shown to ameliorate symptoms of IBS.40,105

While SCFAs have been associated with various

markers of gut health (or lack of disease), high concen-
trations of SCFAs may be too much of a good thing in

IBS. The microbiota in IBS is enriched with bacteria
that produce SCFAs. This may lead to high concentra-

tions of SCFAs such as butyrate, which has been associ-
ated with noninflammatory colonic hypersensitivity in

a rodent model106 and may overstimulate motility in
the small intestine leading to abdominal pain and

cramping107 in humans.40 The symptoms of IBS are in
line with that of high concentrations of SCFAs; perhaps,

the low FODMAP diet acts to reduce SCFAs by reduc-
ing the substrate.

Prebiotic supplements. Prebiotics are a specific type of fi-

ber that has been shown to increase the growth or me-
tabolism of members of the microbiota. These include

mannooligosaccharides (MOS), pectic-oligosaccharides
(POS), xylooligosaccharides (XOS), and galactooligo-

saccharides (GOS). The majority of research has been
on inulin and FOS,29,41,47,72 which have been shown to

increase the prevalence of Bifidobacteria,18,47,100,108 F.
prausnitzii,66 and lactobacilli;60,109,110 accelerate intesti-

nal transit time;41 reduce inflammation;58,111–113 and in-
crease fecal butyrate concentrations.100,109 Inulin and
FOS naturally occur in many fruits and vegetables, eg,

wheat, alliums (onions, garlic, leeks), chicory, arti-
chokes, and bananas.47,60,72 Research on inulin and FOS

has been predominantly in animal models with a few
small clinical trials in humans.72 Reaffirming that differ-

ent types of carbohydrates produce different reactions
in the microbiome, prebiotics may be beneficial in

IBS72,114 with FOS showing potential for strengthening
the intestinal barrier function.60,115 Prebiotics show no

benefit or the potential to exacerbate symptoms of gas
and bloating in chronic idiopathic constipation while

psyllium, non-prebiotic fiber, have been shown to im-
prove transit time and stool consistency.18 GOS has

been shown to increase Bifidobacteria, and butyrate,

and reduce markers of inflammation in vitro and in

vivo.18,47,109,113,116

With the wide variety of gut microbiome composi-

tions, there is likely significant variation in the response
of individuals to supplementation with prebiotics. In

fact, some research subjects have been non-responders
to prebiotics.41,47,66,117,118 In one feeding study, the ab-
sence of Ruminococcus bromii reduced microbial diges-

tion of a resistant starch supplement to 20–30% versus
100% in those with Ruminococcus bromii in their gut

microbiomes.42,47 Furthermore, the response of domi-
nant bacterial species, which may be more omnivorous,

seem less affected by the diet than those species in lesser
abundance or of a more specialist nature,41,119 which

may also result in a delayed response to dietary
changes.17 Such interindividual variation has led to

mixed results between studies of many elements of the
diet, leaving us with more questions than answers in

many cases, especially outside of the realm of fiber.29

Fat, protein. Not surprisingly, a high fat, high protein,
low fiber “Western” diet does not seem to be good for

humans or the microbiome. Western diet correlates
with the Bacteroides enterotype with more protein and

fat utilizing bacteria, fewer enterococci and E. coli, and
less microbial diversity.27,29,44,45,60,120 A high fat diet

may increase bile acids and fat in the large intestine.60

Individuals on a high fat diet tend to exhibit more

Bacteroidetes, Actinobacteria, and Alistipes; few
Firmicutes, Proteobacteri, and Bifidobacter; less butyrate

and total SCFAs; and decreased intestinal transit
time.36,44,60,62 However, the effect of a high fat diet on

an individual appears to be largely determined by the
composition of their gut microbiome, at least in rodent

models,39,40,44,121–123 which is likely mediated by high
fat diet-induced chronic inflammation, endotoxemia,

and plasma lipopolysaccharide (LPS) originating from
the gut microbiota via compromised intestinal barrier

function.36,124–128 Confirmation of these findings and
further studies in humans are necessary before conclu-
sions can be made about the potential causal link be-

tween the diet and the gut microbiome.
Additionally, different types of fat may have differ-

ing effects on the gut microbiota, but little research has
been done on this topic.44 Mice fed a high fat diet using

palm oil showed significant detrimental effects on the
microbiome compared to olive or safflower oil:

Increased Firmicutes to Bacteroidetes ratio, more
Clostridium (cluster Xi, XVII, XVIII), and reduced di-

versity.44,129 Children with a high monounsaturated
fatty acid (MUFA), eg, macadamia nut or olive oil, in-

take tend to have fewer bifidobacterial and more
Bacteroides spp,60,130 a healthier composition.

Polyunsaturated fatty acids (PUFA), such as X-3
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(seafood) and X-6 (linoleic acid), intake is also associ-

ated with a healthier microbiome composition (fewer
bifidobacteria).60,130 Further, conjugated linoleic acids

(CLA), X-6, appears to ameliorate the detrimental
effects of a high fat diet in mice.44,131 Therefore,

MUFAs, PUFAs, and CLA may be key to microbiome
composition while other fats may be detrimental.

A high protein diet has been linked to increased

Bacteroides spp. and clostridia and decrease B. adoles-
centis and Roseburia/E. rectale group.43,60,132 While

only 10% of dietary protein reaches the large intestine,
some of the microbiota utilize protein as a nitrogen

source, including Streptococcus, Bacillus,
Propionibacterium, Staphylococcus, Bacteroide, and

some Clostridium.44 In this process, which predomi-
nantly takes place in the distal colon,60 SCFAs are pro-

duced along with branched chain fatty acids, phenol
compounds, amines, sulphides, and ammonia—a mi-

lieu of beneficial and harmful compounds.44,55,60 Of
note, protein metabolism produces L-carnitine, the

substrate of bacterial fermentation to produce trime-
thylamine N-oxide (TMAO).44,45,133 TMAO has been

linked to atherosclerosis and colorectal cancer.133–135

In 2011, the World Cancer Research Fund conducted

a meta-analysis that concluded that red meat con-
sumption is associated with increased risk of colorectal

cancer, while dietary fiber is protective.60,136 There
appears to be a relationship between nutrient imbal-

ance and detriment from a high protein diet.44,137,138

Specifically, a high fiber, high protein diet may lead to

reduced transit time (from the fiber), limiting expo-
sure time to any harmful by-products from protein

metabolism, and, thus, reduce the risk of colorectal
cancer.44

Micronutrients

Digestion and absorption of nutrients in humans occurs

predominantly in the small intestine and stomach: 85%
of carbohydrates, 66–95% of protein, and all
fats.29,139,140 Therefore, the colon and the bulk of the

gut microbiome is exposed to food after much of the
nutrition (that the host can digest) has been removed.

In this symbiotic relationship, the microbiota feed off
the remaining nutrients, including fiber that is not di-

gestible by the host. The microbiome in turn plays a
role in absorption and production of energy and micro-

nutrients including essential vitamins, which are re-
quired for vital bodily functions and cannot be

produced by the host. Body stores and pools of some
micronutrients are significantly higher than the compo-

sition of the diet would suggest due to absorption of
these micronutrients in the colon, which are produced

by the microbiota. This is the case for vitamin K141,142

and many of the water soluble B vitamins: Thiamine

(vitamin B1),143 riboflavin (vitamin B2),144 niacin (vita-
min B3),145 pyridoxine (vitamin B6),145,146 biotin (vita-

min B7),147 and folate (vitamin B9).28,36,55,72,145,148,149

B vitamins.

Thiamine (Vitamin B1)

Thiamine is utilized in digestion and carbohydrate me-
tabolism as well as in the electrolyte flow in nerve and

muscle cells. Risk factors for deficiency include alcohol-
ism, vomiting, SIBO, acid reducers such as proton

pump inhibitors (PPIs), and malabsorption, which may
be caused by ingesting caffeine and/or tannins with

food.
The gut microbiota synthesize thiamine in signifi-

cant amounts and may contribute to the nutritional sta-
tus of the host.150

Riboflavin (Vitamin B2)

Riboflavin is important for energy production and me-
tabolism including in the metabolism of other B vita-

mins and iron as well as antioxidant activity. Risk
factors for deficiency include alcoholism, malnutrition

such as anorexia, lactose intolerance, hypothyroidism,
and high levels of physical activity.

The riboflavin found in dairy is due to fermenta-

tion by microbes and the human gut microbiota can
produce riboflavin, the significance of which has yet to

be determined.150

Vitamin B6 (Pyridoxine)

Vitamin B6 is an essential cofactor in protein metabo-
lism with key effects on the function of the nervous sys-
tem, hemoglobin, tryptophan, steroid hormones, and

nucleic acids. Deficiency in vitamin B6 is seen mostly in
alcoholism.

While the microbiota depend on vitamin B6 for
some enzymatic activities, especially Eubacterium rec-

tale and Porphyromonas gingivalis, the relationship be-
tween dietary vitamin B6 and the gut microbiota is

largely unexplored.150,151 There may be a positive asso-
ciation between virulence and motility in the pathogen

responsible for stomach ulcers, Helicobacter pylori, and
their ability to produce vitamin B6; however, the impor-

tance of this association has yet to be determined.150,152

Folate (Vitamin B9)

Folate is required for DNA synthesis and repair, cell di-

vision and growth, and red blood cell formation. Risk
factors for folate deficiency include alcoholism; use of

anticonvulsants, oral contraceptives, and some cancer
treatments; SIBO; and malabsorptive disease or surgery,

eg, short-bowel syndrome or bariatric surgery.
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Folate production is possible for many of the gut

microbiota and may be produced in sufficient amounts
to significantly affect the intake of this vitamin.40,150,153

The production of folate occurs with the processing of
resistant starch, especially by Bifidobacterium bifidum

and longum subsp. Infantis.40,150,154,155 In rats, micro-
biota-produced folate has been shown to be absorbed
and utilized, but this may not translate to humans.150 In

humans, microbial folate production positively corre-
lates with fecal concentrations of folate, meaning the fo-

late produced by the microbiota may not significantly
contribute to folate status due to poor absorption.150,156

Vitamin B12 (Cobalamin)

Vitamin B12 is required for DNA synthesis, neurologic
function, and red blood cell maturation. Deficiency risk

factors include SIBO; digestive diseases or surgeries lim-
iting the small intestine such as Crohn’s and Celiac dis-

ease; use of metformin, angiotensin-converting enzyme
(ACE) inhibitors, acid reducers, colchicine (gout); and

following a strict vegetarian or vegan diet, as plants do
not produce vitamin B12.

Vitamin B12 is required for microbial metabolism
including fatty acids, cholesterol, propionic acid, and

branched-chain amino acids; it has been shown to be
an essential cofactor in the majority of gut micro-

biota.150,157 Along with folate, vitamin B12 regulates mi-
crobial gene expression via methylation (epigenetics),

which may be involved in the interactions between the
genomes of the gut microbiota and the host.150,158 A

minority of the gut microbiota synthesize vitamin B12;
eg, Propionibacterium freudenreichii, Listeria innocua,

and Lactobacillus reuteri; indicating that most gut
microbiota compete with the host for dietary vitamin

B12 to some extent.150,158 It is not known if this is a sig-
nificant contributor to vitamin B12 deficiency in

humans. Furthermore, microbiota-produced vitamin
B12 may not be bioavailable to humans due to lack of

receptor-binding for its absorption in the large intes-
tine, the site of microbial production.55,150,158

Vitamin K. Unlike most of the B vitamins produced by

the gut microbiota, vitamin K is a group of fat soluble
micronutrients. Vitamins K are important for produc-

tion of prothrombin, a blood clotting factor, and thus
prevention of exsanguination. Vitamin K1 (phylloqui-

none), the most familiar of the K vitamins, is found in
plants such as green leafy vegetables. Vitamin K2

(menaquinone), the storage form of vitamin K, is a
group of compounds found in meats, cheeses, eggs, and

from bacterial production142,159–161 such as fermented
foods or the gut microbiota. Vitamin K2 forms vary in

size due to their number of isoprenoid units.150

Vitamin K2 status is negatively associated with heart

disease and osteoporosis; however, the contribution of
microbiota-produced vitamin K2 to host status or these

health outcomes has not been established.150,162 It is
known that the gut microbiota uses vitamin K2 as elec-

tron carriers, a critical function.
In humans, vitamin K deficiency is not thought to

be common. Deficiency is typically seen in newborns,

who are given an injection of vitamin K after birth, and
in malabsorptive disease/surgery, eg, cystic fibrosis,

Celiac disease, or ulcerative colitis. Additional risk fac-
tors for deficiency include use of anticonvulsants and

cholesterol-lowering medications, which limit the fat
absorption necessary to absorb vitamin K in the small

intestine. Some absorption of vitamins K may occur on
the large intestine as well.

Vitamin A. Vitamin A is a group of fat-soluble com-

pounds that include retinol, retinal, retinoic acid, and
provitamin carotenoids (eg, b-carotene). Vitamin A is a

key contributor to eye health and vision, especially
night vision, as well as cell growth and wound healing.

While vitamin A deficiency is uncommon in the United
States, it leads to a significant burden of disease in de-

veloping countries. Risk factors include pancreatic in-
sufficiency and malabsorptive surgery.

Emerging research has shown microbial produc-
tion of b-carotene; however, the important next step of

cleavage to form retinal has not been demon-
strated.150,163 There is some indication that the anti-in-

flammatory effect of B. infantis requires vitamin A in
the form of retinoic acid, which may be sourced from

the cells of the large intestine.150 In fact, vitamin A has
been shown to play a preventative role in cancer of the

large intestine along with vitamin D.150,164

Vitamin D. Vitamin D is a fat-soluble vitamin as well as
a steroid hormone, giving it wide-ranging effects.

Traditionally, bone health has been the key area for
vitamin D. In the last two decades, extraskeletal effects,
eg, immune function and regulation of gene expression

through the vitamin D receptor (VDR), have been eluci-
dated. Risk factors for vitamin D deficiency predomi-

nantly focus on insufficient sun exposure (latitude,
season, indoors, sunscreen/melanin, etc.), as the diet is

a poor source of vitamin D. In the gut, as in many cells
throughout the body, vitamin D, bound to the VDR,

heterodimerizes with the vitamin A-retinoid X receptor
(RXR) complex. Thus, vitamin D insufficiency may lead

to altered gut barrier function, potentially contributing
to the development of intestinal disease or cancer.150,165

The VDR does not occur in prokaryotic cells;
therefore, the microbiota are likely not directly influ-

enced by vitamin D. Indirect effects may include
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alteration of host immune function resulting in an in-

flammatory state and/or reduced tolerance to commen-
sal bacteria.150 Additionally, SCFAs from the gut

microbiota enhance the ability of vitamin D to stimulate
formation of the antimicrobial peptide cathelicidin,

which is important for the immune and barrier func-
tions of the gut, by increasing gene expression through
the VDR-RXR complex.150

Iron. Iron is the backbone of oxygen transport as the
central component of hemoglobin and myoglobin. Iron

is also crucial for many cellular functions including en-
ergy production and DNA synthesis. Iron status is

tightly regulated as iron is excreted in only small
amounts except in menstruating women and those with

significant blood loss. The other important risk factor
for deficiency is insufficient gastric acid from acid reduc-

ers or bariatric surgery, which limits iron absorption.
In individuals with iron-deficiency anemia, the gut

microbiome lacks Lactobacilli.28,55,166 The directionality
of this relationship has not been established; however,

Lactobacilli require a substantial amount of iron for
growth, a potential limitation for growth in those with

iron-deficiency anemia.55 Additionally, production of
SCFAs reduce the pH in the large intestine, promoting

iron absorption.55

Zinc. Zinc is crucial for many wide-reaching functions in
part due to its role in gene expression and replication

through zinc fingers and its interactions with the
nutrients copper, iron, calcium, folate, and vitamin A.

Mild zinc deficiency may occur due to malnutrition, se-
vere or persistent diarrhea, malabsorptive or inflamma-

tory bowel disease (Celiac and Crohn’s disease, ulcerative
colitis, short bowel syndrome/bariatric surgery), alcohol-

ism, chronic renal disease, sickle cell anemia, seniors,
strict vegetarians and vegans, and those using medica-

tions such as antibiotics, metal-chelating agents, anticon-
vulsants, and diuretics. Severe zinc deficiency is rare.

Supplementation with ZnO may increase
Firmicutes such as Lactobacillus, but research is limited

and mostly in animal models.28,167

Non-nutritive bioactive food components

Polyphenols. Polyphenols are a class of chemicals pro-
duced by plants including those consumed in the typical

diet, eg, flavonoids, phenolic acids, stilbenes, and
lignans. Polyphenols have been linked to beneficial

effects on health such as preventing cancer and heart
disease.28,168–170 Approximately 90% of ingested poly-

phenols arrive in the large intestine due to limited ab-
sorption, allowing for concentrated interaction with the

gut microbiome.28,170 The gut microbiome then may

process the polyphenols in a way that makes them more

bioavailable to the host and thus magnifying any poten-
tial effect and/or the polyphenols may serve an antimi-

crobial function against pathogenic bacteria.28,169,170

Polyphenols may mitigate the detrimental effects of

a high fat diet on the gut microbiome by increasing
Akkermansia muciniphila and decreasing the Firmicutes
to Bacteroidetes ratio according to a mouse model.44,171

It is possible that the effect of polyphenols on the gut
microbiome is greater than that of the macronutrient

composition of the diet, but further research is needed
to establish this.45,172

Flavonols such as quercetin and catechin, isofla-
vones such as puerarin, anthocyanins, ellagitannins, res-

veratrol, and pterostilbene are likely to have effects on
the gut microbiome as well, but there is insufficient re-

search to-date to determine this relationship.
A body of literature exists on this topic outside the

scope of this systematic evaluation of the review litera-
ture in healthy adults, which warrants further explora-

tion.173–179

Wine

The polyphenols found in wine include flavonols,
anthocyanins (predominant in red wine), hydroxyben-

zoic and hydroxycinnamic acids (predominant in white
wines), stilbenes, and phenolic alcohols, making wine a

good source of polyphenols in general.180 Of these, pro-
cyanidins, conjugated polyphenols, esters, and phase II

metabolites may be found in the colon,181 where they
may be transformed by the gut microbiota into highly

active metabolites.180 Daily red wine intake has been
linked to many health benefits including gut and heart

health, which may be related to the metabolism of poly-
phenols by the gut microbiota.180,181 The correlation be-

tween wine polyphenols and health benefits, as well as
the potential need for doses much larger than typically

consumed, has led to the introduction of numerous
supplements and functional foods for consumer use.
However, the research base in this area is still emerging.

Wine and the crushed grapes from the wine mak-
ing process have been shown to have antimicrobial ac-

tivity against pathogens such as Escherichia coli,
Staphylococcus aureus, and Salmonella spp. in vitro.180

Queipo-Ortuno et al worked to isolate the effect of red
wine polyphenols with and without alcohol on the gut

microbiome. 181 Gin led to an increase in Bacteroides
and Clostridium and loss of Prevotellaceae.60,181 Red

wine polyphenols (with or without alcohol) resulted in
more Bacteroidetes, while dealcoholized wine showed

increased Fusobacteria.181 A significant increase in the
Proteobacteria, Firmicutes, and Bacteroidetes phyla were

observed following red wine, but not with gin or de-
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alcoholized red wine, indicating a synergistic interac-
tion between red wine polyphenols and alcohol.181

The individual polyphenols of wine have been iso-
lated and studied individually; however, it is likely that

there is an effect of the food matrix on their actions, in-
cluding synergistic interactions among the polyphe-

nols.180 The potential effects of only a handful of the
many polyphenols in wine are highlighted in Table 2, il-

lustrating the complexity of studying foods with many
bioactive components.180,182–184

Berries

Berries may have beneficial effects on the gut microbiome.

Berries high in ellagitannins (100 g each of strawberry
pur�ee, frozen raspberries, and frozen cloudberries daily)

have been reported to alter the prevalence of
Ruminococcaceae and Lachnospiraceae, which are most of

the butyrate producing microbiota.60,185 Isolated berry-
polyphenols have been shown to weaken Salmonella by in-

creasing the permeability of their outer membrance.60,183

Tea

Teas contain polyphenols such as epicatechin, catechin,

gallic acid, and caffeic acid.60 An extract of tea retarded
growth of potentially harmful bacteria including

Clostridium perfringens, Clostridium difficile, and
Bacteroides spp. while largely sparing commensal bacte-

ria such as Clostridium spp., Bifidobacterium spp., and
Lactobacillus sp.60,182

Cocoa

A randomized controlled trial of cocoa-derived flava-

nols in healthy humans has shown increased
Bifidobacteria and Lactobacilli and decreased

Clostridia.60,186

Other minor components of food: Food additives

Food additives, contaminants, and other minor food
components have the potential to affect the gut micro-

biome and modify its composition; however, they have
largely been excluded in the reviews of nutrition and

the gut microbiome. While further research needs to be
completed in these areas before specific relationships

can be elucidated, work on the effects of non-caloric
sweeteners and emulsifiers show promise.28,187

DISCUSSION

With advances in DNA sequencing technologies came

the ability to measure and describe the human micro-
biome, leading to a surge in information about the gut

microbiome and its role in health and disease in the last
decade. As the diet is both a source of microbiota in the

gut microbiome and a fuel source for these microbiota,
some research in this burgeoning field has centered on

the role of nutrition and diet in the composition and
function of the gut microbiome. While transient

changes in diet are unlikely to lead to significant, dura-
ble changes in the microbiome, the typical diet or a
long-term dietary change can have robust effects.

The number of calories consumed in the diet does
not appear to have a simple linear relationship with the

composition or function of the gut microbiome. Rather,
too much or too few calories may be linked to dysbiosis,

in more of a U- or J- shaped relationship. The macro-
nutrient (carbohydrate, fat, protein) content of the diet

is difficult to separate from calories without controlled
feeding studies, which limit sample size and generaliz-

ability. It is likely that the role of micronutrient intake
has confounded that of macronutrient intake in many

gut microbiome studies.
Much of the research on the diet has focused on

carbohydrates, as plant-based polysaccharides in the

Table 2 Isolated wine polyphenols may alter the composition of the gut microbiome
Inhibit pathogenic bacteria Potential probiotic effects

Wine polyphenols
Flavan-3-ols Clostridium difficile Promote Clostridium cocccoides–Eubacterium rectale group,

Bifidobacterium spp.; inhibit Clostridium histolyticum group(þ)-Catechin
(�)-Epicatechin
Gallic acid Clostridium perfringens
3-O-methyl gallic acid
Microbial-derived phenolic acids
Caffeic acid Staphylococcus spp.,

Escherichia coli,
Salmonella spp.

Little effect on Lactobacillus spp. and Bifidobacterium spp.
3-(4-Hydroxyphenyl)-propionic acid
3-Phenylpropionic acid
4-Hydroxyphenylacetic acid
Dihydroxylated phenolic acids Salmonella spp.

Sources: Requena et al. (2010), Lee et al. (2006), Alakomi et al. (2007), and Tzounis et al. (2008).
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diet serve as fuel for the gut microbiota. In fact, many

polysaccharides are fiber (resistant starch, oligosacchar-
ides) and are not digestible by humans alone. Instead,

the microbiota metabolizes the fiber, leading to in-
creased energy harvest and other potentially beneficial

by-products for the host. The type, amount, and size of
these carbohydrates may determine the composition of
the gut microbiome with the fiber content of the diet

positively correlating with polysaccharide-utilizing
microbiota and diversity of the gut microbiome, gener-

ally considered to be a marker of health.
The beneficial effects of fiber via the microbiome

have been centered on SCFAs, which are required by
colonocytes and for intestinal barrier function, improve

absorption of dietary minerals like calcium, assist in wa-
ter absorption, and accelerate intestinal transit. Fiber is

a bulk-forming component of stool, which leads to re-
duced intestinal transit time (independent of the micro-

biome). Combining this with the ability of fiber to
increase SCFA production, leads to a positive feedback

loop supporting a speedy intestinal transit time, which
is commonly thought to support gastrointestinal and

systemic health. SCFAs also may have systemic effects,
as they pass into the circulatory system and may cross

the blood-brain barrier (at least acetate does).
Systemically, SCFAs may have a role in insulin sensitiv-

ity, energy expenditure, appetite regulation, and gene
expression (histone deacetylase inhibition). The sys-

temic effects of SCFAs are promising; however, most of
this work has been done in animal models, which have

yet to be translated to humans, or is correlation from
observational studies. As with most aspects of nutrition,

too much of a good thing (SCFAs) can lead to negative
health consequences. This is evidenced by a significant

reduction in symptoms in IBS patients on a low
FODMAP diet, which may reduce production of

SCFAs.
Prebiotic supplements can simplify the study of fi-

ber in humans, as specific doses can be reliably admin-
istered. The majority of research in prebiotics has been
focused on inulin and FOS and in animal models with

several small clinical trials in humans. The role of prebi-
otics in health and disease is still emerging and looks to

be complex with some ailments (IBS) potentially
benefiting from prebiotic supplementation and others

(idiopathic constipation) showing no benefit or exacer-
bation of symptoms. The wide range of response to pre-

biotic supplementation is indicative of the vast
interindividual differences in the composition and

function of the gut microbiome.
Protein metabolism by the microbiota may lead to

potentially dangerous by-products such as TMAO.
These relationships may be dictated by the composition

and function of the gut microbiome and gut health. For

instance, an omnivore on a high fat, high protein, low

fiber diet may have significant production of TMAO in
their colon coupled with a slow intestinal transit time,

resulting in colorectal cancer. In contrast, an omnivore
on a high fat, high protein, high fiber diet may have

production of TMAO (at similar or lower levels) cou-
pled with a quick intestinal transit time and avoid colo-
rectal cancer due in large part to the decreased contact

time from the faster intestinal transit time.
The bidirectional relationship between micronutri-

tion and the gut microbiome is beginning to emerge.
The microbiota both utilize and produce micronu-

trients with intake of some micronutrients being suffi-
ciently lower than nutritional status would suggest due

to the contribution of the microbiome, primarily the B
and K vitamins. The study of non-nutritive food com-

ponents and the gut microbiome is in its infancy; how-
ever, research to date is promising, especially as it

relates to polyphenols. The role of other components of
food such as food additives and contaminants warrant

exploration and are a significant research gap to-date.
Emerging evidence suggests that bacterial biofilms

form around food particles in the gut and that these
represent unique microbial communities.45,172 These

food-associated bacteria are distinct from the free
microbiota, producing different signals.45,172 The role of

such food-associated bacteria is a promising new area
of research on the gut microbiome and nutrition.

As mentioned in the introduction, there is no con-
sensus within the scientific community on what defines

a healthy gut microbiome. The reason for this might
have become apparent from this review; in some cases,

a particular phylum is associated with a positive out-
come while in other cases the same phylum is associated

with a poor outcome. The ratio of different phyla (rela-
tive abundance) has also been implied to be a marker of

“good” vs. “bad,” but these trends are usually debunked
by additional studies looking at different cohorts.

Biomarkers of gut health are elusive due to measure-
ment challenges. As the cost of DNA sequencing tech-
nologies continue to plummet, researchers will

increasingly adopt more granular measurements that
identify microbial content at the species, or even strain,

level. These (whole genome shotgun) measurements
also identify the genes present within the microbial con-

sortia. Gene-level reports allow for the prediction of
metabolic and biochemical potential of a microbial

consortium.
Metabolomics is a burgeoning ‘omic technology

that has the potential to transform our understanding
of microbiome function.188 DNA-based measurements

identify the taxonomic assets of a microbiome and, to a
much lesser extent, the metabolic potential of a micro-

biome. Metabolomic measurements are able to identify

Nutrition ReviewsVR Vol. 0(0):1–15 11

D
ow

nloaded from
 https://academ

ic.oup.com
/nutritionreview

s/advance-article-abstract/doi/10.1093/nutrit/nuz106/5811361 by The N
IST Virtual Library (N

VL) user on 31 M
arch 2020



1000’s of small-molecule metabolites from a micro-

biome, including SCFAs, TMAO, and other metabolic
byproducts of the gut microbiome. Metabolic profiles

can be compared across cohorts to identify functional/
metabolic differences. Previous metabolomic studies of

the human gut microbiome have suggested that taxo-
nomically diverse microbiomes have similar metabolic
activities. That is, metabolic function is conserved, not

taxonomy, and similar metabolic profiles can be
achieved by vastly different taxonomic profiles. Thus,

homeostasis is achieved at the metabolic level, not the
taxonomic level. Metabolomic profiling might be the

critical element that is needed to identify biomarkers
that are diagnostic indicators of gut health.

CONCLUSION

Diet and nutrition, notably fiber, affect the composition

of the gut microbiome. This, in turn, affects a wide ar-
ray of metabolic, hormonal, and neurological processes

that influence our health and disease. Currently there is
no consensus in the scientific community on what

defines a “healthy” gut microbiome. Future research
must consider individual responses to diet and how the

gut microbiome responds to dietary interventions as
well as emphasize function (metabolomics) over com-

position (genomics).
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