
Design Space Exploration for Wireless-Integrated
Factory Automation Systems

Honglei Li∗, Jing Geng∗, Yongkang Liu†,
Mohamed Kashef†, Richard Candell†, Shuvra S. Bhattacharyya∗

∗ University of Maryland, College Park, USA
† Intelligent Systems Division, National Institute of Standards and Technology, USA

Email: {honglei, jgeng}@umd.edu, {yongkang.liu, mohamed.hany, richard.candell}@nist.gov, ssb@umd.edu

Abstract—Recent years have brought significantly increased
interest in integrating wireless communication capability within
factory automation systems. Such integration motivates the study
of interactions among the physical layout of factory workcells,
wireless communication among workcells, and improving the
overall factory system performance. In this paper, we develop
methods for modeling and simulating these interactions, and
implement these methods into the experimental study of complex
design spaces for factory automation systems. The proposed
methodology for modeling, simulation, and design space explo-
ration can be used to gain insight into approaches for improving
the configuration (e.g., physical layout or wireless protocol
settings) of existing factory systems, and for understanding trade-
offs in the design of new systems.

I. INTRODUCTION

Modern factory automation systems are equipped with

advanced wireless communications capability. Integration of

such capability provides important potential advantages, such

as lower cost to deploy and maintain networking capabilities

within factories, and the ability to install sensors and monitor-

ing functionality in parts of factories that are not possible to

be efficiently instrumented using wired communications (e.g.,

see [1]).

Along with these potential advantages, integration of wire-

less communications introduces new challenges and novel

constraints in the analysis and design of factory automation

systems. A major source of these new challenges and con-

straints is the complex interaction among the factory layout

and configuration. This interaction includes the placement of

factory subsystems and their partitioning into nodes of the

wireless network (network nodes); the performance of the

wireless network that connects network nodes; and overall

factory system performance. These factors lead to complex

design spaces, which are composed of factory layouts, wireless

communication networks, and interactions between them in

system configuration and operations. We refer to these design

spaces as wireless-integrated factory system (WIFS) design

spaces.

In this paper, we develop new models and evaluation

tools for understanding and experimenting with WIFS design

spaces. Since evaluating these design spaces by physically

constructing the different layout/networking combinations is

978-1-7281-1268-8/19/$31.00 ©2019 IEEE

in general infeasible, we present a new simulation-based

design space exploration tool called WISE (Wireless-Integrated

factory System Evaluator). WISE is designed for model-

based simulation of factory automation subsystems that are

equipped with wireless communications capability, and rapid

simulation-based evaluation of alternative networked factory

system designs.

Here, by model-based, we mean that the modeling tech-

niques that underlie the tool are based on formal models of

computation rather than on ad-hoc, tool-specific techniques

that are difficult to precisely understand or to adapt to other

modeling and simulation environments. Model-based design

is a useful concept for many areas of cyber-physical systems

and signal and information processing (e.g., see [2], [3]). The

specific forms of model-based design emphasized in WISE are

dataflow modeling for factory process-flows, and systematic

interfacing of dataflow models with arbitrary network simula-

tors that are based on discrete-event modeling.

The emphasis on dataflow is useful due to the utility

of dataflow modeling across the areas of signal processing,

control, and machine learning [3], which are all relevant to

design and implementation of factory automation systems.

This allows not only the high-level process-flow behavior of

process networks to be modeled naturally and formally with

WISE, but also lower level subsystems of the process-flows.

Such a unified, model-based approach across levels of design

hierarchy is useful for enhancing design modularity, analysis,

and optimization.

Important features of WISE include capabilities for au-

tomatically generating (autogenerating) complex lower-level

simulation models from compact representations at higher lev-

els of abstraction. WISE also applies a new concept of cyber-

physical flow graphs (CPFGs) as a graph-theoretic model for

factory process-flows and other flow-oriented types of cyber-

physical systems. We demonstrate WISE through extensive

experiments that highlight its utility for exploring complex

WIFS design spaces.

II. BACKGROUND AND RELATED WORK

A significant body of the existing literature is relevant

to modeling and simulation of factory automation systems

that are equipped with wireless communication capabilities.

Some of these works are based on novel applications of

existing simulation frameworks. For example, Liu et al. apply

the OMNET++ simulation library to develop an integrated

framework for factory process control simulation and wireless

network simulation [4]. Marghescu et al. study the simulation

of Zigbee-based wireless sensor networks using OPNET to

evaluate and optimize the various network parameters [5].

Harding et al. develop a simulator that incorporates mathemat-

ical modeling and feedback control by developing an interface

between MATLAB and OPNET [6].

Other works emphasize new models or simulation methods.

For example, Vogel-Heuser et al. present approaches for

modeling real-time requirements and properties of networked

automation systems [7]. Schlick discusses advances, such as

component-based automation and self-organizing production

systems, in cyber-physical systems for factory automation [8].

Kurte et al. introduce a simulator for wireless sensor and

actuator networks that allows simulation of heterogeneous

systems through a novel interface abstraction for the operation

of physical radio hardware [9]. Chaves et al. present a design

environment for simulation and testing that is based on a

service-oriented software architecture [10].

The novelty of the contribution in this paper centers on

the development and application of WISE to explore complex

WIFS design spaces. Compared to related work such as the

works summarized above, distinguishing characteristics of

WISE include its model-based architecture, which systemat-

ically integrates dataflow-based modeling of factory process-

flows with discrete event modeling of wireless communication

networks. WISE also provides autogeneration of low-level

simulation code from high-level models, and cyber-physical

flowgraph modeling, which further enhance the utility of the

tool for WIFS design space exploration.

III. DESIGN FLOW

Fig. 1 illustrates the design flow associated with applying

WISE for WIFS design space exploration.

Fig. 1. An illustration of the new design flow involved in applying WISE for
WIFS design space exploration.

As illustrated in Fig. 1, WISE builds upon a recently-

introduced co-simulation tool called Tau Lide Factory Sim

(TLFS) [11]. TLFS provides dataflow-based modeling of fac-

tory process-flows and systematic integration of the resulting

process-flow models with arbitrary discrete event tools for

network simulation. As illustrated in Fig. 1, WISE introduces

and integrates with TLFS two new software tools, called

the Network Model Generator and the CPFG Generator, and

one new intermediate representation (graphical modeling data

structure), called the CPFG Model. Additionally, the imple-

mentation of TLFS is extended in this work to support details

of the CPFG Model. In Fig. 1, designer input, intermediate

representations, and software tools are represented with thin-

solid, dashed, and thick-solid borders, respectively.

A. Model-Based Architecture

The model-based architectures of WISE and TLFS em-

phasize dataflow-based modeling of factory process-flows

and systematic interfacing between the process-flow models

and arbitrary discrete-event simulators for communication

architectures. Due to the abstract, model-based architectures

of WISE and TLFS, the co-simulation and design space

exploration techniques can be adapted readily to different

dataflow-based design tools (for the process-flow modeling),

and different communication network simulators.

A specific configuration of WISE involves two “plug-in”

components for dataflow and communication network simula-

tion. We refer to the two plug-ins as the dataflow simulation

plug-in and network simulation plug-in, respectively. WISE

systematically integrates the given pair of plug-ins into a

model-based environment for exploring WIFS design spaces.

In our experiments, which we report on in Section V, we

utilize two specific dataflow and network simulation tools

as plug-ins. These tools are, respectively, (1) the lightweight

dataflow environment (LIDE) [12], and (2) the NS3 network

simulation tool [13]. However, as described above, the model-

based design of the WISE architecture enables retargeting the

design space exploration techniques to other tools for dataflow

and network simulation. This retargetability is useful because

both of these areas for tool development — dataflow and

network simulation tool development — are active areas for

research and innovation.

B. Designer Input

The blocks in Fig. 1 labeled Factory Dataflow Graph, Net-

work Mapping, and Network Configuration refer to simulation

model input that is provided by the designer to represent the

WIFS that is currently being studied.

The Factory Dataflow Graph models the factory process-

flow between factory subsystems as a dataflow graph. The

Factory Dataflow Graph is specified in a manner that is

independent of the wireless network that is used for communi-

cation across distributed subsystems of the factory. Instead, the

partitioning of Factory Dataflow Graph components into nodes

of a wireless communication network, and the configuration

of the network are specified separately. These specifications,

represented by the blocks in Fig. 1 labeled Network Mapping

and Network Configuration, are elaborated on in Section III-D.

More details about Factory Dataflow Graph models are dis-

cussed in Section III-C.

The separation of concerns among the Factory Dataflow

Graph, Network Mapping, and Network Configuration repre-

sentations improves the efficiency and automation with which

the system designer can explore different ways of integrating

wireless communication functionality into a given factory

process-flow. In particular, the designer does not have to

modify the Factory Dataflow Graph when the communication

architecture changes; instead, only the relevant parts of the

Network Mapping and Network Configuration specifications

need to be changed. Then the detailed factory/communication

co-simulation model is generated automatically. This separa-

tion of concerns and associated autogeneration capability is a

major advance of WISE beyond TLFS.

C. Factory Dataflow Graphs

Formally, a Factory Dataflow Graph is a directed graph

G = (V,E), where the vertices (elements of V) represent

factory subsystems such as machines, rails, parts generators,

and machine/rail controllers. Directed edges (elements of E)

in G represent the flow of information or physical entities

(such as manufacturing parts) between factory subsystems. In

the general terminology of dataflow graphs, the graph vertices

are referred to as actors. Thus, actors in the Factory Dataflow

Graph correspond to factory subsystems.

A dataflow graph executes by repeatedly executing actors

that are ready (enabled) for execution, where the dataflow

model provides a precise formulation for this form of readi-

ness. As actors execute, they exchange packets of information

(tokens) across the edges in the graph. These packets can

have arbitrary data types associated with them, ranging from

primitive types such as integers or floating point values to com-

posite data types that correspond to user-defined objects (in

an object-oriented programming sense). In Factory Dataflow

Graphs, tokens may, for example, encapsulate information

associated with the flow of physical parts, control messages,

or instrumentation data.

Execution of a dataflow actor is decomposed into well-

defined quanta of execution, called firings. Each firing is

associated with characterizations of the amount of input data

(number of tokens on the input edges) that is consumed by

the firing, and the number of output tokens that is produced

by the firing. These amounts of input and output data are

referred to, respectively, as the consumption and production

rates associated with the firing. An actor is said to be enabled

for execution when there is a sufficient quantity of tokens

buffered on its input edges, and a sufficient amount of empty

buffer space available on its output edges to support the firing,

as determined by the buffer sizes associated with the edges and

the consumption and production rates of the firing.

For more background on the use of dataflow methods to

model factory process-flows, we refer the reader to the detailed

presentation of TLFS [11]. A notable difference, however,

between the Factory Dataflow Graph of WISE and the dataflow

graphs employed in TLFS is that Factory Dataflow Graphs do

not incorporate any information about the communication ar-

chitecture. These graphs are therefore simpler for the designer

to work with. Furthermore, in conjunction with the separation

of concerns described in Section III-B and the new automated

model generation capabilities in WISE, Factory Dataflow

Graphs are part of a more efficient approach for WIFS design

space exploration. We elaborate on the automation capabilities

further in Section IV, along with their utility in supporting

design space exploration.

D. Network Mapping and Configuration

As shown in Fig. 1, the Network Mapping and Network

Configuration are the two designer-provided inputs to specify

the communication architecture that is to be integrated with

the Factory Dataflow Graph for a given WIFS co-simulation

(factory/network co-simulation). The Network Configuration

input includes aspects related to factory layout.
Intuitively, the Network Mapping specifies how the given

factory process-flow (as represented by the Factory Dataflow

Graph) is distributed across different network nodes that com-

municate through wireless communication. The Network Map-

ping M for a Factory Dataflow Graph G = (V,E) can there-

fore be represented as as a partitioning M = N1, N2, . . . , Nm

(m ≥ 1) of V — that is, the Nis are mutually disjoint subsets

(Ni ∩Nj = ∅ for all i 6= j), and N1 ∪ N2 ∪ . . . ∪ Nm = V .

To represent a fully centralized process-flow (with no wireless

communication involved), one can simply set m = 1 so that

the Network Mapping consists of just a single set N1 = V .

This type of mapping can be useful, for example, as a baseline

to assess basic trade-offs associated with introducing wireless

communication into the factory system.
The Network Configuration is another component of

designer-provided input to WISE, as illustrated in Fig. 1.

This input includes wireless communication parameter set-

tings, such as the type of protocol and the propagation

loss model. The desired Network Configuration settings

are provided by the designer in a simple text file called

net_parameters.txt. These parameter values are then

converted to corresponding settings associated with the net-

work simulation plug-in. To run a family of simulations with

varying network parameters, the designer can easily edit the

net_parameters.txt file or auto-generate a collection of

files that can be iterated through for a set of simulation runs.
The parameters that can be specified in the

net_parameters.txt file include the wireless

communication protocol, propagation loss model, antenna

transmitter gain, antenna receiver gain, noise figure for the

noise signal, and others.
A Network Configuration specification for WISE also in-

cludes factory layout settings, which pertain to the spatial lay-

out of factory subsystems, and can have significant impact on

communication system performance. Factory layout settings

in WISE network configurations are discussed in more detail

in Section V.

E. Lower Level Models and Auto-generation

The input provided by the designer (user of WISE) is

at a high-level of abstraction. This facilitates design space

exploration because the models are easier to manipulate and

reason about. However, to perform complete system simula-

tion, the high level models must be translated into a lower-

level form, which includes the simulation input to the network

simulation plug-in, and details of interfacing between the

dataflow simulation plug-in and the network simulation plug-

in. Such details are autogenerated in WISE by the blocks in

Fig. 1 that are labeled Network Model Generator and CPFG

Generator, respectively.

The output models that are generated by these two autogen-

eration subsystems are called the Network Model and CPFG

Model, respectively. These two autogenerated models can be

simulated together using WISE to achieve WIFS cosimulation

between the given factory process-flow model and wireless

networking capability that is integrated with the process-flow

based on the given Network Mapping.

The structure and format of the generated network model

are determined by the network simulation plug-in. As dis-

cussed previously, we presently employ NS3 as the network

simulation plug-in. Thus, the Network Model Generator frees

the designer from having to write NS3 code. The NS3 model

is generated automatically from the designer’s dataflow-based

specification of the factory process-flow together with the

Network Mapping and Network Configuration information.

The CPFG model includes special components, called com-

munication interface actors, that model sending and commu-

nication of data between subsystems in a process-flow model.

Communication interface actors model the exchange of data

across a wireless communication network, and provide an

abstract, modular interface between the dataflow simulation

plug-in and the network simulation plug-in [11].

In Section IV, we discuss CPFG modeling concepts further,

and provide an example of the CPFG model and parameter-

ized network model that are generated from a given Factory

Dataflow Graph and Network Mapping.

IV. MODELING AND AUTOGENERATION

In this section, we introduce details of the CPFG model, and

its use as an intermediate representation in WISE. Second, we

discuss communication link modeling for wireless channels in

WISE. We also present a WIFS modeling example to illustrate

the autogeneration of CPFG models and NS3 network models

from the higher-level models provided as input to WISE.

A. Cyber Physical Flow Graph

The CPFG model is a specialized form of dataflow model

that is useful for modeling and simulating WIFSs. In addition

to its suitability for WIFSs, as we demonstrate in this paper,

the CPFG model is applicable to a broad variety of modeling

scenarios in cyber-physical systems. The CPFG model formu-

lated here generalizes and formalizes an integrated, dataflow-

based modeling approach for networked factory process-flows

that was presented in preliminary form in [11].

Additionally, in this paper we introduce capabilities in

WISE for autogenerating CPFG models from higher level

representations. This is an important feature in streamlining

the design process so that complex WIFS design spaces can

be explored more efficiently, and more accurately.

A CPFG Gcp = (Vcp, Ecp) is a dataflow graph whose

actors can be partitioned into three subsets Vp, Vc, Vi, which

are called the physical, computational, and communication

interface actors of Gcp, respectively. The computational ac-

tors correspond to actors in the usual sense of actors in

signal processing oriented dataflow graphs (dataflow process

networks) [14]. Such actors represent computational modules

that represent discrete units of computation, called firings, as

described in Section III-C.

Whereas an actor in a conventional signal processing ori-

ented dataflow graph represents a computational module, a

physical actor in a CPFG represents a physical subsystem

or device, such as a factory machine or rail. A physical

actor may encapsulate computational processing within it (e.g.,

processing that determines when to input a new part into a

machine).

What distinguishes physical actors in the CPFG modeling

approach is that any given physical actor must consume

or produce physical tokens on at least one actor input or

output, respectively. A physical token in turn models a discrete

physical form of output (such as a generated or partially-

processed part in a factory) rather than a packet of data, which

is what a conventional dataflow token models. If a CPFG edge

carries physical tokens, it is is referred to as a physical edge,

otherwise, we call it a cyber edge.

As described in Section III-E, a communication interface

actor (i.e., an element of Vi) models the sending or receiving

of data across a communication network. In the CPFGs that

we are concerned with in this work, the communication inter-

face actors model wireless communication across distributed

subsystems within a WIFS.

In WISE, communication interface actors provide a mod-

ular, model-based interface between the dataflow simulation

plug-in and network simulation plug-in. For example, to

retarget a CPFG to a different network simulator, one only has

to change the implementations of the communication interface

actor types. In WISE, we use only two types of communication

actors, called send interface actors (SIAs) and receive interface

actors (RIAs). Thus, only these two software components need

to be retargeted to adapt a CPFG in WISE to work with a

different network simulator.

As their names suggest, SIAs and RIAs model the sending

and receiving of data, respectively, between dataflow actors

across a communication network. For more background on

SIAs and RIAs, we refer the reader to [11].

An example of CPFG modeling and associated use of SIAs

and RIAs is presented in Section IV-C.

In summary, the CPFG model is distinguished by the parti-

tioning of actors into physical, computational, and communi-

cation interface actors, and a dichotomy of edges as physical

or cyber edges. A CPFG can apply general dataflow process

networks [14] as the underlying dataflow model of compu-

tation or any specialized form of signal processing oriented

dataflow that is compatible with the modeling requirements of

communication interface actors. In this paper, we employ core

functional dataflow (CFDF) [15] as the underlying dataflow

model of computation. Background on CFDF and its utility in

modeling factory process-flows is discussed in [11].

B. Communication Link Modeling

Fig. 2 illustrates different components of communication

link modeling in WISE. Parameters associated with these

components are configured by the designer as part of the

Network Configuration block in Fig. 1, as described in Sec-

tion III-D. Different antenna models are available for reception

and transmission; the antenna is modeled as isotropic by

default.

Communication Channel

Rx

Antenna

Model

Noise Model

Tx

Antenna

Model

Packet

Error

Model

Packet

Loss

Model

Fig. 2. Communication link modeling in WISE.

For the experiments reported on in this paper (Section V),

signal noise is characterized as additive white Gaussian noise

(AWGN). For the propagation loss model, a two-segment log

distance model is applied. For multipath fading, Ricean and

Raleigh models are used. For calculation of packet loss, the er-

ror rate is modeled based on a model presented by Miller [16],

and subsequently validated by Pei and Henderson [17].

C. Autogeneration Example

In this section, we illustrate the models and autogeneration

capabilities in WISE with a simple WIFS example.

Fig. 3 illustrates a Factory Dataflow Graph that is used to

model a small-scale, pipeline-structured factory process-flow.

The actor P represents a parts generator, which generates

parts that are processed by the factory pipeline. The actors

M1 and M2 model two machines that process parts, one by

one, to add specific features to the parts. Parts are sent to and

from each machine through rails, which are represented by the

actors R1 and R2. The last stage in the pipeline is represented

by the actor K . This actor, called the parts sink, represents a

subsystem that collects and stores the parts after they are fully

processed by the pipeline.

Fig. 3. An example of a Factory Dataflow Graph.

The actors D1 and D2 in Fig. 3 represent dual-rail, single

machine (DRSM) controllers. A DRSM controller is a factory

subsystem controller that is designed to interface with a single

machine, a rail connected to the input of this machine, and a

rail or parts sink that is connected to the machine output. Each

DRSM controller sends commands to coordinate the flow of

parts through the set of subsystems that it controls. For more

details on the operation and modeling of DRSM controllers,

we refer the reader to [11].

Fig. 4 illustrates the CPFG that is autogenerated by WISE

for the Factory Dataflow Graph of Fig. 3 together with an

example Network Mapping M . The mapping M involves

seven distinct network nodes N1, N2, . . . , N7, and assigns the

actors P , R1, M1, D1, R2, M2, D2, K , respectively to net-

work nodes N1, N1, N2, N6, N3, N4, N7, N5. The solid edges

in Fig. 4 carry physical tokens, while the dashed edges carry

conventional dataflow tokens. In WISE, the determination of

whether or not a given CPFG edge is a physical edge can be

made automatically from the type of data that is associated

with the Factory Dataflow Graph.

Fig. 4. Autogenerated CPFG.

The actors labeled SIA and RIA in Fig. 4 are communica-

tion interface actors that are automatically inserted by WISE

in the process of autogenerating the CPFG. For each cyber

edge whose source and sink actors are mapped to different

network nodes, the communication associated with the edge

is modeled with a separate (SIA, RIA) pair. For example, R2

sends data to D1, as shown by the edge (R2, D1) in Fig. 3,

and these actors are mapped by M to distinct network nodes,

N3 and N6, respectively. Accordingly an SIA S is connected

to R2 to model the sending of data to D1 through a wireless

channel, and a corresponding RIA is connected to D1 to model

the reception of data that is sent by S.

In WISE, all wireless communication is modeled in the

autogenerated CPFGs through SIA-RIA pairs. Thus, all cyber

edges in the CPFGs are associated with wired communication.

In the current version of WISE, the latency of wired communi-

cation is assumed to be negligible compared to the latency of

wireless communication and the execution time of machines.

However, WIFS can readily be extended to incorporate latency

models for wired communication — for example, by adding

additional interfaces to the network simulation plug-in or by

adding actors in the CPFG that model wired communication

delays.

Fig. 5 illustrates the network model that is autogenerated

by WISE for the CPFG in Fig. 4. This graph shows the

structure of the NS3 simulation model that is generated for

co-simulation by TLFS with the generated CPFG. Each vertex

Ni in Fig. 5 corresponds to a network node and each edge

corresponds to a communication channel. The vertex Ap

represents a single access point that is associated with the

network nodes.

Fig. 5. The network model that is autogenerated by WISE for the example
associated with Fig. 3 and Fig. 4.

Even for this simple, small-scale example, we see that the

complexity of the CPFG together with the network model is

significantly higher than that of the Factory Dataflow Graph,

which is the designer’s primary interface for working with

WISE. This increase in complexity includes larger model

sizes (more vertices and edges in the graph), as well as

detailed software code that must be provided to correctly

specify the lower-level models and ensure their consistency.

The new models and autogeneration capabilities in WISE free

the designer from the burden of managing this lower level

design complexity.

V. EXPERIMENTS

In this section, we demonstrate the utility of WISE through

extensive experiments related to exploration of WIFS design

spaces. We apply WISE in experiments with representative

factory scenarios. Our experiments are performed using a

desktop computer equipped with a 3.10 GHz Intel i5-2400

CPU, 4GB RAM, and the Ubuntu 16.04 LTS operating system.

A. Factory Layout Parameters

Presently, WISE assumes that a factory layout is in the

form of one or more pipelines. Machines that belong to

the same pipeline are arranged “horizontally”, while different

pipelines are arranged “vertically”. Factory layout is therefore

specified in terms of two distance-related parameters dx and

dy , which respectively specify uniform (horizontal) spacing

between successive subsystems (e.g., machines and rails) of

a given pipeline, and uniform (vertical) spacing between suc-

cessive pipelines in the vertical arrangement. Two additional

layout-related parameters, Np and Nm, specify the number of

pipelines, and the number of factory machines within a given

pipeline, respectively.

In most experiments in this section, we assume that each

pipeline is assumed to have its own access point (AP), with a

dedicated wireless channel assigned to each AP. It is assumed

that if Np > 1, then all of the dataflow occurs within the

individual pipelines; that is, there is no communication across

the pipelines. In Section V-G, we experiment with a set of

scenarios in which all pipelines share a common access point.

The parameterized model of factory layouts supported in

WISE represents a large class of factory systems with which

capabilities of WISE can be demonstrated and experimented

with. Also, the parameterized structure of the supported class

of layouts is useful for demonstrating scalability-related fac-

tory performance trends. The extensible architecture of WISE

makes it readily generalizable to support larger classes of fac-

tory layouts, such as layouts in which different pipelines have

different numbers of machines, horizontal or vertical spacing

between adjacent subsystems is non-uniform, or the overall

layout structure does not necessarily involve horizontally-

arranged pipelines. Such generalization is a useful direction

for future work in WISE.

Fig. 6 shows an example of a factory layout of the form

currently supported in WISE. In this example, Np = 2, Nm =
3, and each pipeline has its own access point. Here, each Mi,j ,

Ri,j , and Di,j represents the jth machine, jth rail, and jth

DRSM controller, respectively, for the ith pipeline. Each Pi,

Ki, and Ai represents, respectively, the parts generator, parts

sink, and access point for the ith pipeline.

Fig. 6. Factory layout example.

B. Experiment Parameters

For each type of factory configuration simulated, we ran 50

WISE simulations independently and averaged the results. In

each experiment, the simulation involved the production of 100
parts by each parts generator in each of the Np pipelines, and

the complete processing by the machines in each pipeline of

the parts generated by the corresponding parts generator. The

working time of each machine (the time required to process

a given part) was determined randomly by the simulator

using a designer-specified mean working time parameter µ.

More specifically, the time for a given machine to process

a given part was determined from a uniform distribution on

[0.9µ, 1.1µ]. Each simulation terminated after the Np parts

sinks had each received 100 fully-processed parts.

The wireless communication protocol employed in all of

the experiments reported on in this section is IEEE 802.11b.

Since the protocol can be conveniently configured as part of

the Network Configuration input to WISE, the experiments

discussed here can be easily adapted to other protocols of

interest.

WISE measures the communication delay associated with a

packet P as tr(P)− ts(P), where ts(P) is the time when P

is sent by the corresponding SIA (see Section IV-A), and tr is

the time when P is received by the corresponding RIA. The

average communication delay for a given simulation experi-

ment is computed by averaging the difference tr(P)− ts(P)
over all communication packets.

C. Variation of Communication Delay with Np

Fig. 7(a) shows how the average communication delay

varies with the number of pipelines Np. In this experiment,

the Wi-Fi manager is configured to be the CARA (Collision-

Aware Rate Adaptation) algorithm; dx = 10 meters (m);
dy = 10 m; and Nm = 3.

Fig. 7. (a) Variation in average communication delay with Np. (b) Variation
in average communication delay with Np = Nm = K .

As shown in Fig. 7(a), the results for each Np value are

summarized in the form of a box plot. The endpoints of the

vertical line segment for each plot extend from the minimum

observed value to the maximum observed value. The three

horizontal lines in each large box represent, from top to

bottom, the 75th percentile, median, and 25th percentile of the

corresponding set of 50 measurements. The small box inside

each large box represents the mean value.

As shown in Fig. 7(a), the number of pipelines Np has little

influence on average communication delay for the class of

factory systems considered in this experiment. This is because

we allocate an independent access point for each pipeline and

there is no communication between different pipelines.

D. Variation of Communication Delay with Both Nm and Np

Fig. 7(b) shows results from an experiment where we have

varied both the number of machines Nm and number of

pipelines Np. The variation is performed such that Nm = Np.

This allows us to visualize the effects of layout-complexity

scaling in terms of a single parameter K , which is defined

as the common value of Np and Nm. The Wi-Fi manager

algorithm is configured to be CARA as in Section V-C, and all

other experiment parameters are as specified in Section V-B.

The distance parameters are again configured as dx = 10 m
and dy = 10 m.

As shown in Fig. 7(b), the average communication delay

increases with larger K . This trend is largely due to two

factors. First, the length of each pipeline increases with K , and

correspondingly, the average distance from communication

transceivers to the access point in each pipeline increases with

K . Second, longer pipelines with more subsystems introduce

more contention in the access points. The simulation results

in this experiment provide specific insights on how commu-

nication delays vary and corresponding real-time performance

issues are affected as a function of K , while other factory

layout parameters are fixed.

E. Varying the Distance Parameters dx and dy

Fig. 8 presents a histogram of average communication delay,

as determined by WISE simulation, with varying values of the

distance parameters dx and dy . Each bar of the histogram is

determined by averaging across 50 simulation runs. In this

experiment, Np = 1 and Nm = 3. The Wi-Fi manager

algorithm is again configured to be CARA, and all other

experiment parameters are as summarized in Section V-B.

Fig. 8. Histogram of average communication delay with varying dx, dy .

This experiment shows a gradual trend toward increasing

communication delay for dx, dy ∈ {10 m, 20 m, 30 m}, while

for values of dx, dy ∈ {40 m, 50 m}, we see steeper rates of

increase. We expect that this accelerated increase arises due to

nonlinear effects such as the way in which the Wi-Fi manager

downgrades the data rate when a significant frequency of

communication failures is encountered.

F. Varying the Wi-Fi Manager Algorithm

Fig. 9 shows changes in the average communication delay

with changes in the Wi-Fi manager algorithm and number of

machines Nm. For these experiments, Np = 1, and dx = dy =
10 m. All other parameters are set as summarized in Sec-

tion V-B. The Wi-Fi manager algorithms investigated in this

experiment are: Collision-Aware Rate Adaptation (CARA),

Adaptive Auto Rate Fallback (AARF), collision detection for

adaptive auto rate fallback (AARFCD), and Adaptive Multi

Rate Retry (AMRR) [18].

G. Shared Access Point across Pipelines

In this section, we revisit the experimental setup of Sec-

tion V-C with one change: we use a single, shared access

point across all pipelines instead of a separate access point

for each pipeline. Thus, the total number of access points in

a given factory layout is reduced from Np to 1.

Fig. 9. Variation in average communication delay with the Wi-Fi manager
algorithm and number of machines Nm.

As in Section V-C, the Wi-Fi manager algorithm is config-

ured to be CARA; dx = dy = 10 m; and Nm = 3. All other

experiment settings are as described in Section V-B.

Fig. 10 shows how the average communication delay varies

with variation in the number of pipelines Np under a single,

shared access point configuration. We see in Fig. 10 a clear

trend toward increasing average communication delay with

increasing Np. We anticipate that this is because with a single

access point across all pipelines, increasing Np results in more

contention in the access point. Moreover, since dx and dy
are fixed in this experiment, the average distance between

communication transceivers and the access point increases

with increasing Np (see Fig. 6).

Fig. 10. Variation in average communication delay with Np when a single,
shared access point is used across all pipelines.

VI. CONCLUSIONS

In this paper, we have developed new models and computer-

aided design tools that help in understanding and exper-

imenting with complex, wireless-integrated factory system

(WIFS) design spaces. Through extensive experiments, we

have demonstrated the utility of our proposed new tools

in exposing insights and performance trends involving mul-

tidimensional interactions among factory layout and com-

munication system parameters. Useful directions for future

work include developing optimization strategies, such as those

based on randomized search (e.g., evolutionary algorithms or

particle swarm optimization), for strategically iterating through

families of simulations using our new WIFS-oriented models

and tools.

DISCLAIMER

Certain commercial equipment, instruments, materials, soft-

ware or systems are identified in this paper in order to specify

the experimental procedure adequately. Such identification is

not intended to imply recommendation or endorsement by

the National Institute of Standards and Technology, nor is it

intended to imply that the materials or equipment identified

are necessarily the best available for the purpose.

REFERENCES

[1] A. A. Kumar S., K. Ovsthus, and L. M. Kristensen, “An industrial
perspective on wireless sensor networks — a survey of requirements,
protocols, and challenges,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 3, pp. 1391–1412, 2014.

[2] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems, A Cyber-

Physical Systems Approach, 2011, http://LeeSeshia.org, ISBN
978-0-557-70857-4.

[3] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, Eds.,
Handbook of Signal Processing Systems, 3rd ed. Springer, 2019.

[4] Y. Liu, R. Candell, K. Lee, and N. Moayeri, “A simulation framework for
industrial wireless networks and process control systems,” in Proceed-

ings of the IEEE World Conference on Factory Communication Systems,
2016, pp. 1–11.

[5] C. Marghescu, M. Pantazica, A. Brodeala, and P. Svasta, “Simulation
of a wireless sensor network using OPNET,” in Proceedings of the

IEEE International Symposium for Design and Technology in Electronic

Packaging, 2011, pp. 249–252.
[6] C. Harding, A. Griffiths, and H. Yu, “An interface between MATLAB

and OPNET to allow simulation of WNCS with MANETs,” in Pro-

ceedings of the International Conference on Networking, Sensing and

Control, 2007, pp. 711–716.
[7] B. Vogel-Heuser et al., “Modeling of networked automation systems for

simulation and model checking of time behavior,” in Proceedings of the

International Multi-Conference on Systems, Signals & Devices, 2012,
pp. 1–5.

[8] J. Schlick, “Cyber-physical systems in factory automation — towards the
4th industrial revolution,” in Proceedings of the IEEE World Conference

on Factory Communication Systems, 2012.
[9] R. Kurte, Z. Salcic, and K. Wang, “A system level simulator for hetero-

geneous wireless sensor and actuator networks,” in IEEE International

Conference on Emerging Technologies and Factory Automation, 2018,
pp. 776–783.

[10] A. Chaves et al., “KhronoSim: A platform for complex systems sim-
ulation and testing,” in IEEE International Conference on Emerging

Technologies and Factory Automation, 2018, pp. 131–138.
[11] J. Geng et al., “Model-based cosimulation for industrial wireless net-

works,” in Proceedings of the IEEE International Workshop on Factory

Communication Systems, 2018, pp. 1–10.
[12] S. Lin et al., “The DSPCAD framework for modeling and synthesis

of signal processing systems,” in Handbook of Hardware/Software

Codesign, S. Ha and J. Teich, Eds. Springer, 2017, pp. 1–35.
[13] ns–3 Tutorial, Release ns–3.25, ns–3 Project, 2016.
[14] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceedings

of the IEEE, pp. 773–799, May 1995.
[15] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya,

“Functional DIF for rapid prototyping,” in Proceedings of the Interna-

tional Symposium on Rapid System Prototyping, 2008, pp. 17–23.
[16] L. E. Miller, “Validation of 802.11a/UWB coexistence simulation,” Tech.

Rep., 2003.
[17] G. Pei and T. Henderson, “Validation of ns-3 802.11b PHY model,” The

Boeing Company, Tech. Rep., May 2009.
[18] The ns–3 Wi-Fi Module Documentation, ns–3 Project, 2016.

