
  Copyright © 2019 by ASME 

 
Proceedings of the ASME 2019 

Pressure Vessels & Piping Conference 
PVP2019 

July 14-19, 2019, San Antonio, TX, USA 
 
 

PVP2019-93502 

DESIGN OF AN INTELLIGENT PYTHON CODE FOR VALIDATING CRACK GROWTH 
EXPONENT BY MONITORING A CRACK OF ZIG-ZAG SHAPE IN A CRACKED PIPE*  

 

 

Jeffrey T. Fong1 
National Institute of Standards & Technology 

Gaithersburg, MD 20899, U.S.A. 
 

Robert Rainsberger3 
XYZ Scientific Applications, Inc. 
Pleasant Hill, CA 94523, U.S.A. 

 

Pedro V. Marcal2 
MPACT, Corp. 

Oak Park, CA 91377, U.S.A. 
 

N. Alan Heckert4, James J. Filliben5 
National Institute of Standards & Technology 

Gaithersburg, MD 20899, U.S.A. 
 

 

ABSTRACT 
When a small crack is detected in a pressure vessel or 

piping, we can estimate the fatigue life of the vessel or piping by 

applying the classical law of fracture mechanics for crack 

growth if we are certain that the crack growth exponent is correct 

and the crack geometry is a simple plane.  Unfortunately, for an 

ageing vessel or piping, the degradation will, in practice, change 

not only the crack growth exponent but the crack shape from a 

simple plane to a zig-zag pattern.  To validate the crack growth 

exponent for an ageing vessel or piping, we present the design of  

an Intelligent PYTHON (IP) code to convert the information of 

the growing crack geometry measured by monitoring a small 

crack that was initially detected and subsequently continuously 

monitored over a period of time such that the IP-based analysis 

code will use the realistic zig-zag crack geometry as a series of 

re-meshed finite-element meshes for finding the correct crack 

growth exponent.  Using a numerical example, we show that such 

an IP-assisted continuous monitoring program, using PYTHON 

as the management tool, TRUEGRID as the topological crack 

meshing tool, and two finite-element analysis codes for verifiable 

stress analysis, is feasible for predicting more accurately the 

fatigue life of a cracked vessel or piping because the material 

model has a field-validated crack growth exponent.  Significance 

and limitations of this IP-assisted approach are discussed. 
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DISCLAIMER 
Certain commercial equipment, instruments, materials, or 

computer software is identified in this paper in order to specify 

the experimental or computational procedure adequately. Such 

identification is not intended to imply recommendation or 

endorsement by the U.S. National Institute of Standards and 

Technology, nor is it intended to imply that the materials, 

equipment, or software identified are necessarily the best 

available for the purpose. 

 

INTRODUCTION 
 To ensure the safe operation of an engineering structure 

or system, be it a chemical processing plant, a nuclear power 

plant, a jet airliner, or a steel bridge, engineers need to first 

design, manufacture, assemble and install, test in laboratories 

and in the field, operate with continuous monitoring and 

scheduled maintenance for all necessary components and 

connections that are required to make a system work as a whole 

without failure.  

The next task is to estimate the reliability of all such 

components and connections, construct a fault tree to evaluate 

the system reliability of the whole structure or system.   

Two basic categories of problems of uncertainty come up 

that require independent study: 

 (I) Uncertainty in Loads, and  

(II) Uncertainty in Resistance.   
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In this paper, we restrict ourselves to the study of Category 

(II), Uncertainty in Resistance, and more specifically, by 

assuming deterministic loads, we address three types of 

uncertainty that are essential for predicting the reliability of an 

ageing component as it operates with a reasonable plan and 

schedule of inspection and maintenance including the occasional 

detection and repair of small defects.   

The three types of uncertainty are: (1) Material Property 

Sampling Uncertainty (Global).  (2) Laboratory-to-Full-Size 

Scaling Uncertainty (Global).  (3) Component-specific Life 

Prediction Uncertainty (Local) based on Continuous Monitoring 

and Damage-Physics Assessment of a Detected Small Defect.   

In Section 1, we briefly describe, using a numerical 

example, a deterministic formulation of a crack management 

plan based on classical theory of fracture and fatigue mechanics 

(see, e.g., Tada, et al. [1], and Dowling [2]), and the emergence 

of a practical approach to monitor cracks, either continuously or 

intermittently, to prevent premature failures (see, e.g., Chang [3], 

Giurgiutiu [4], and Fong, Ranson III, Vachon, and Marcal [5]). 

In Section 2, we present two uncertainty studies to show that 

the deterministic crack management plan is flawed because it 

fails to account for the uncertainty in two measurable quantities, 

namely, (a) the crack growth exponent (see Fong, et al. [6], von 

Euw, et al. [7], and Kanninen and Popelar [8]), and (b) the lower 

limit of the length of a crack that is detectable and measurable 

(see Fong, Heckert, Filliben, and Doctor [9]).  Since the problem 

of predicting the life of a specific component requires an 

assessment of the local damage physics, whereas the two 

uncertainty studies were "global" in nature, a better approach to 

bridge the gap from global physics to local must be found to 

assure the safe operation of individual components and the 

system as a whole. 

In Section 3, we present two arguments to show why the 

problem is best solved by using a combination of sensor 

technology and advanced analysis and local physics adaptive 

modeling technique, otherwise known as the "Intelligent 

PYTHON (IP) code."  This is followed in Section 4 by the 

development of a new finite element meshing technique known 

as a "topological crack," which is capable of mimicking a real 

crack of a zig-zag or irregular shape.  In Sections 5 and 6, we 

show with a numerical example that it is feasible to link an IP 

code with a structural health monitoring (SHM) code to yield an 

early warning signal for an ageing component in service with a 

known small defect.   A discussion of our results and some 

concluding remarks are given in Sections 7 and 8, respectively.   

 
 
1. A Deterministic Crack Management Plan 

As shown in Fig. 1, the classical theory of fatigue based on 

a crack-length and stress-intensity-versus-yielding approach 

yields a deterministic crack management plan, where the 

remaining service (fatigue) life of a component,  Nif  , from an 

initial state ( i ) when a crack was first detected with length,  ad  

( = ai ), to a hypothetical final state ( f ) defined by the existence 

of a critical crack length,  ac  ( = af )  when catastrophic failure 

occurs, is given by the following formula ( S = Smax - Smin ) :             

 
 

    ,              (1) 

 
 

where   m  is the crack growth exponent from the  da/dN  vs.  K  

plot,   C , the modified y-intercept (C1) of the plot with an 

empirical material-dependent correction for the mean stress 

effect, and F, a purely crack-geometry-dependent dimensionless 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1: An application of the so-called crack-length-

based approach to fatigue modeling and crack 

management (after Dowling [2, p. 491, Fig. 11.2]) 

provides the basis for the above plot (a) Deterministic 

Formulation of a Scheduled Inspection Interval Plan, 

where the length of a growing crack, a , found in a 

component,  is  plotted against the number of cycles,  

N ,  for that component with an initially detected crack 

length,  ad , a critical crack length,  ac  , and an interval 

of inspection measured by the number of cycles,  Np , 

such that the crack length at the end of each scheduled 

inspection is reduced by the maintenance crew to the 

lowest detectable crack length.  The interval,  Np  , is 

estimated using Eq. (1) and a design safety factor. 

 

positive "fudge" factor, greater than 1.0, that depends on the ratio 

of the crack length to another geometric dimension (e.g., for a 

crack in an infinite plate,  F = 1.0  ,  as  shown  in  Dowling [2, 

p. 301, Fig. 8.12]).  

Note that Eq. (1) assumes constant amplitude loading with 

fixed maximum and minimum cyclic stresses, Smax and  Smin .  

Under the condition that the four parameters, S (loading), F 

(geometry), m and C (material properties), are all constant, it is 

possible to use Eq. (1) to evaluate an incremental life,  N12 , from 

stage-1 to stage-2 if a structural health monitoring (SHM) system 

reports a crack length,  a1  (replacing  ai ) at stage-1, and another 

crack length,  a2  (replacing  af ) after  N12  cycles of loading are 

completed at stage-2.   

Better still, if the SHM system is able to report, either 

continuously or intermittently, a sequence of crack length vs. 

cycles data ( a  vs. N ), one can easily calculate   da/dN  and its 

inverse,  dN/da , as a function of  N , such that a plot of   dN/da  
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vs.  N  , as  shown in Fig. 2, yields the result that the area under 

the curve equals the fatigue life,  Nif .  Such a plot is very 

interesting in the sense that one can obtain an estimate of  Nif  

from the output of an SHM system and an assumption of  af  

without knowing the one geometric, one loading, and two 

material property parameters of Eq. (1). 

 

 
 

FIGURE 2: Area under the  dN/da  (which is the inverse of 

da/dN) vs.  a  curve  used to estimate the number of 

cycles to grow a crack from initial size  ai  to final size  

af  (after Dowling [2, p. 521, Fig. 11.26]). 

 

To understand the subtleties of applying Eq. (1), and to pave 

the way for us to perform an uncertainty analysis of the 

relationship between the fatigue life,  Nif  , and the crack growth 

exponent,  m , we reproduce below a summary of a textbook 

exercise given by Dowling [2, pp. 522-524, Example 11.4]: 

 

Given:    (100 - 106   Material Properties)  

 

(100)   AISI 4340 Steel at room temperature. 

(101)    (yield) = 1255 MPa. 

(102)   u (ultimate strength) = 1296 MPa. 

(103)   KIC    =  130  MPa√m. 

(104)   m (crack-growth exponent)     =   3.24. 

(105)   C1     =   5.11 x 10-10  (unit omitted for brevity). 

(106)          =    0.420. 

 

 (200 - 204   Cracked Component Geometry) 

(200)   A center-cracked plate (see Ref. [2, Fig. 8.12(a)]. 

(201)   b   =    38 mm. 

(202)   t    =      6 mm. 

(203)   ai   =      1 mm.     (204)   af   =   To be determined. 

 

 (300 - 302   Loading) 

(300)   Tension-to-tension cyclic loading. 

(301)   Pmin  (minimum applied load)   =    80 kN. 

(302)   Pmax  (maximum applied load)  =  240 kN. 

 

To find:   (a)   At what crack length  af  is failure expected?  Is 

the cause of failure yielding or brittle fracture? 

                (b)   How many cycles can be applied before failure 

occurs? 

 

Answer: (a)   The crack length at fully plastic yielding is esti-

mated to be 22.1 mm (calculation omitted for 

brevity).  The crack length at brittle fracture is 

estimated as 15.8 mm (calculation also omitted 

for brevity).  The cause of failure is, therefore,  

brittle fracture. 

 

(b)   To apply Eq. (1) with  ai  =  1.0 mm,  af  =  15.8 mm, we 

need to estimate the following: 

 

(401)   F  =  1.03 (calculation omitted for brevity). 

(402)   R        =   Pmin / Pmax   =   80 / 240   =   0.333. 

(403)   C              =   C (C1, m, )   =  1.095 x 10-12            

(unit omitted for brevity). 

(404)   Smax          =    Pmax / 2bt   =   526 MPa. 

(405)   S            =    Smax  ( 1 - R )   =   351 MPa. 

(406)   (1 - m/2)   =   - 0.62. 

 

Substituting all the various numerical values of parameters in 

Eq. (1) finally gives  Nif  as follows: 

 

Answer (b):  Nif   =   70,600 cycles.                              (2) 

 
2. A Simplified Uncertainty Analysis of Equation (1) 

An examination of both Eq. (1) and the details of an 

application example given in the last section shows that the 

fatigue life,  Nif , depends on at least 12 parameters, of which  6  

are of material property,  4 , geometric, and  2 , of a loading 

nature.   A full uncertainty analysis of Eq. (1), based on the 

classical law of propagation of errors in the statistics literature 

(see, e.g., Ku [10]) is feasible and will be given in the later part 

of this section.   What is interesting for a start is to examine the 

change of   Nif   due to a small change, say, 5 % , in the crack-

growth exponent   m   , using the numerical example of an 

application of Eq. (1) in the last section with all other parameters 

being held constant. 

 

Given:    (100 - 106   Material Properties)  

 

(100)   AISI 4340 Steel at room temperature. 

(101)    (yield) = 1255 MPa. 

(102)   u (ultimate strength) = 1296 MPa. 
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(103)   KIC    =  130  MPa√m. 

(104)   m     =   3.24 x 1.05   =   3.40   (This is new.) 

(105)   C1     =   5.11 x 10-10  (unit omitted for brevity). 

(106)          =    0.420. 

 

 (200 - 204   Cracked Component Geometry) 

(200)   A center-cracked plate (see Ref. [2, Fig. 8.12(a)]. 

(201)   b   =    38 mm. 

(202)   t    =      6 mm. 

(203)   ai   =      1.0 mm.      

(204)   af   =  15.8 mm (from answer (a) in Section 1). 

 

 (300 - 302   Loading) 

(300)   Tension-to-tension cyclic loading. 

(301)   Pmin  (minimum applied load)   =    80 kN. 

(302)   Pmax  (maximum applied load)  =  240 kN. 

 

To find:  (b)  How many cycles can be applied before failure 

occurs? 

 

Answer (b):  Nif   =   40,200 cycles.                                 (3) 

 

A comparison of the results in Eqs. (2) and (3) shows that a  

+ 5 %  change in the crack-growth exponent,  m  , can lead to a 

decrease in life,  Nif  ,  of  30,400  cycles, or, - 43 %.  This is 

alarmingly high, and not acceptable, since it is well-known in the 

literature that the crack-growth exponents for most metal alloys 

have a broad scatter band (see Fig. 3).  

Another parameter of interest to an uncertainty analysis of 

Eq. (1) is the initial crack length,  ai .    A visual inspection of 

Fig. 2  yields  the  conclusion  that  a change of  ai  , say,  from  

1 mm  to  2 mm  can lead to a major change in the area under the 

curve, i.e., the fatigue life,  Nif , because the ordinate of  a  is 

clearly the largest at  a = ai .  As shown in Fig. 4, a stochastic 

crack management plan can easily be developed to assist an 

SHM system as recently demonstrated by Fong, et al. [6]. 

 

 
 
FIGURE 3: Comparison of predicted and experimental fatigue 

crack growth results in 2024-T3 aluminum alloy for R = 0 

(after von Euw, Hertzberg, and Roberts [7] as captioned by 

Kanninen and Popelar [8, p. 522], and further analyzed by 

Fong, Marcal, Hedden, Chao, and Lam [6]).  Note the broad 

spread of the experimental  da/dN dta between 2.15x10-5 

and 3.35x10-5 for  K = 21 , and  a/W = 0.25.  Similar 

scatter also appears (in red) for a/W = 0.45. 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 4: A new application of the so-called crack-length-

based approach to fatigue modeling and crack management 

(after Dowling [2], and Fong, et al. [6]) provides the basis 

for the above plot (b) Stochastic Formulation of a 

Scheduled Inspection Interval Plan, where the length of a 

growing crack, a , found in a component, is plotted against 

the number of cycles,  N ,  for that component with an  

initially  detected crack length,  ad , with uncertainty, +/- 

qad /2 ,  a  critical  crack length,  ac  , with uncertainty, +/- 

qac /2 , and an interval of inspection measured by the 

number of cycles,  Np , with uncertainty, +/- qNp /2 , such 

that the crack length at the end of each scheduled inspection 

is reduced by the maintenance crew to the lowest detectable 

crack length.  
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Before we conduct a full uncertainty analysis of Eq. (1) 

using the theory of error propagation [10], let us re-examine the 

form of the equation, where the fatigue life,  Nif ,  supposedly 

depends on   6  material property,  4  geometric, and  2  loading 

parameters as listed in Sect. 1. 

First of all, we observe that some of the parameters are not 

totally independent, as for example in the case of the final crack 

length,  af , which depends on three of the six material property 

parameters, namely, the yield strength, the ultimate strength, and 

the critical stress intensity factor. 

Secondly, we can simplify the equation by discarding the 

term involving the final crack length,  af , because, according to 

the observation made in Fig. 2 of the last section, the contribution 

of the term involving  af  is negligibly small as compared with 

that involving the initial crack length,  ai .  Consequently, for the 

study of the uncertainty of the fatigue life, it is reasonable to use 

a  simplified  form  of Eq. (1) by discarding the term involving  

af , the final crack length, as shown below: 

 

 

 Nif   ≈   ai
(1-m/2) / { C ( F S √ )m (m/2 - 1) },             (2) 

 

 

where we are left with only five parameters,  ai,  m , C , F , and  

S , of which three. i.e,,  C , F , and  S , may be assumed 

constant for the simplified uncertainty analysis.  In other words, 

Eq. (2) may be re-written as a function of two variables,  ai, and  

m , as follows: 

 

 

   Nif (ai,  m)   =   ai
(1-m/2) / { C ( H )m (m/2 - 1) },            (3) 

 

 

where  H  =  F S √   Taking the natural logarithm of both sides 

of Eq. (3), we obtain, 

 

 

      Ln( Nif )     =    (1 - m/2) Ln( ai )    -   Ln( C ) 

 

   -   m Ln( H )   -   Ln( m/2 - 1 ).         (4) 

 

 

Let us re-order the five terms on the right hand side of Eq. (4) as 

follows: 

 

 

       Ln( Nif )      =       -   Ln( C )   -   m Ln( H )   

 

                            -   Ln( m/2 - 1 )    +   Ln( ai ) 

   

                            -   ( m/2 ) Ln( ai ),                                 (5) 

 

 

Where the first term is a constant, the second, a linear term 

involving the variable  m , the third and fourth terms, two log 

terms each involving one of two variables,  m  and  ai , and  the 

fifth term, a product of the variable  m  with the log of the other 

variable,  ai . 

We are now ready to apply the error propagation formulas 

listed in Ku [10] to obtain a relationship between the variance of  

Nif  and the variances of  m  and  ai .  More specifically, we need 

the formulas for the variances of the sum and the product of two 

variables, and the natural logarithm of a single variable.  Let  X 

and  Y  be two random variables,  Xbar   and  sdX  denote the 

mean and standard deviation of  X , respectively, and  var(X) , 

the variance of  X  that is equal to the square of sdX.  The 

following three formulas are reproduced from Ku [10]: 

 

 

(Sum)      var(AX+BY) = A2var(X) + B2var(Y).                (6) 

 

 

(Prod.)         var( X Y ) = Ybar2var(X) + Xbar2var(Y).          (7) 

 

 

(LogeX or Ln(X))       var( Ln(X))  =  var(X)/ Xbar2.            (8) 

 

 

Repeated applications of the above three formulas to the 

uncertainty quantification of Eq. (5) yields the following result: 

 

 

{cv(Nif)}2   =   ( 1 + m2/4 ) {cv(ai)}2   

 

   + {[(m/2)Ln(ai)]2 + [mLn(H)]2 + [m/(2-m)]2} {cv(m)}2,     (9) 

 

 

where   cv(X)  is the coefficient of variation of the variable  X , 

defined by the following relation, 

 

 

     cv(X) = sdX/Xbar,  or,    cv(X)2  =  var(X)/Xbar2.          (10) 

 

 

It is interesting to observe that Eq. (9) resembles a weighted 

Pythagoras formula with the term,  cv(Nif) , acting as the 

hypotenuse of a right-angled triangle. 

We are now ready to verify a numerical result that was 

computed in the early part of this section that a small change of 

the crack growth exponent,  m , yields a shockingly large change 

in the remaining fatigue life,  Nif .  For the example cited earlier 

on an AISI 4030 steel specimen at room temperature in a cyclic 

loading, Eq. (9) becomes, 

 

 

       {cv(Nif)}2   =   3.6 {cv(ai)}2  + 566 {cv(m)}2 ,                (11) 

 

 

or,                  cv(Nif)   ≈   23.8  cv(m),                                   (12) 

 

if we neglect the uncertainty in the measurement of the initial 

crack length and focus only on that of the crack growth exponent. 
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3. Why Design An Intelligent PYTHON (IP) Code? 
Having developed a stochastic crack management plan as 

shown in Fig. 4, we show in this section why and how to design 

an intelligent PYTHON (IP) code to turn an SHM system into a 

"precision" structural integrity assessment tool. 

About a decade ago, an IP code to assist non-destructive 

examination (NDE) personnel in their field-detection and 

measurement of weld flaws was developed by Fong, Hedden, 

Filliben, and Heckert [11], another to assist designers of fire-

resistant structures to access huge databases of material 

properties at high temperatures was developed by Fong and 

Marcal [12], and a third to assist reliability engineers to access 

failure data scattered around the world was done by Fong, 

Marcal, and Yamagata [13]. 

Today, as demonstrated by Neapolitan and Jiang [14], 

Boobier [15], Chollet [16], etc., IP is a special type of artificial 

intelligence (AI), which can help engineers turn old imprecise 

methods  (based primarily on small-sample and globally-

acquired information) to new "precision" tools that can be 

tailored to the assessment of the health of individual components 

(requiring highly specific "local" information).  An example of 

this trend was recently given by Frolov [17], where he applied 

AI and machine learning to empower models for digital twins 

based on advanced sensor technology. 

Consequently, in light of the above, let us first answer the 

question,  

 

"why do we need IP to alleviate the uncertainty 

problem in fatigue life prediction?" 

 

and then proceed to show how an IP code could be developed to 

solve the uncertainty problem. 

To answer the "why" question, we need to first identify a 

major knowledge gap between (A) what we knew about a 

component when it first went into service, and (B) what we now 

know about that component after years of service.  Knowledge 

(A) consisted of information we collected from handbooks and  

by sampling and scaling (global data) with statistical bounds of 

uncertainty that were seldom documented, while Knowledge (B) 

on an ageing component is practically non-existent, because no 

one is willing to cut several pieces of that component for testing 

to see how much damage has resulted from years of service.   

Fortunately, advanced sensor technology and the 

development of SHM systems made Knowledge (B) richer, so 

our  first  argument  is  that   

 

"we need to discover ""'local  damage physics' from 

SHM-generated data by intelligently 'guessing' and 

subsequently 'validating' key parameters in Eq. (1)." 

 

Unfortunately that first argument is not good enough, 

because when we look at all the tools and methods in fracture 

mechanics [1, 2, 7, 8], very few are applicable to real cracks, i.e., 

most tools deal with idealized cracks that are plane in geometry.  

For example, real cracks that are formed by void growth have 

irregular shapes that are zig-zag in nature (see, e.g., Fig. 5 after 

Osovski, Srivastava, Ponson, Bouchaud, Tvergaard, Ravi-

Chandar and Needleman [18]). 

So our second argument for using IP tools to discover "local 

damage physics" is that  

 

"We need to adopt PYTHON as a management tool to 

activate a large number of simulation codes of 

different platforms such that we could intelligently 

're-mesh' the entire component, particularly in the 

vicinity of the crack tip which is moving in time, and 

perform a nonlinear finite element stress analysis  

with the newly-discovered 'local damage physics' to 

yield solutions that can be verified every step of the 

way when a crack is advancing." 

 

With those two arguments, we are convinced that only through 

IP are we able to turn an SHM system into a "precision" 

structural integrity assessment tool. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 5: A typical computer-simulated crack due to void-by-

void growth at a relatively low loading rate of 1 x 105  

MPa√m s-1 (after Osovski, Srivastava, Ponson, Bouchaud, 

Tvergaard, Ravi-Chandar and Needleman [18]), shows the 

zig-zag shape of cracks found in many  real components. 

 
 
 
 
 
 
 

 



  Copyright © 2019 by ASME 

4. Finite Element Meshing of a Real Crack 
To discover "local damage physics" in a specific ageing 

component and to predict with greater confidence its remaining 

fatigue life,  Nif , using early-reported SHM data, we rely on 

closed-form formulas such as Eq. (1) and numerical simulation 

tools such as the finite element method (FEM).   

A pre-requisite in using FEM is the ability to design finite 

element meshes of high quality and near "optimal" density 

distribution to assure the achievement of accurate results at a 

reasonable cost and time.  For example, using an FEM 

preprocessor named TRUEGRID, Rainsberger, Fong, and 

Marcal [19, 20] recently showed that high-quality and optimally-

balanced mesh designs with quadratic 10-node tetrahedron or 

27-node hexahedron elements, or a mixture of both types 

produce more accurate results based on two a posterior and one 

a priori metrics. 

  In addition, two more features of TRUEGRID make it a 

suitable choice for this AI application.  The first is the use of a 

TRUEGRID command, "write," that allows a user to output 

executable codes that will run on many FEM platforms such as 

ABAQUS, ANSYS, LS-DYNA, MPACT, NASTRAN, etc. for 

the same problem, thus facilitating FEM verification.  The 

second is that the structure of the TRUEGRID language is based 

on topology, making it ideal to handle a real crack with any 

irregular shape.  The latter is demonstrated in Figs. 6, 7, and 8, 

where the component with a crack of zig-zag shape is meshed in 

three stages with a denser mesh always at the new crack tip.  The 

importance of a balanced mesh is also illustrated in Fig. 9. 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 6: Finite element mesh in the neighborhood of a small 

crack with (a) an all-hexagonal-element-and-optimally-

dense-at-crack-tip design, and (b) an automatic re-meshing 

capability such that when the initial crack length,  ai , is 

increased to, say,  ai  + d1 , with  d1 not necessarily collinear 

with the initial crack, the crack-tip mesh design follows the 

new crack with the increment,  d1 , as shown in Fig. 7. 

 

 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 7: Finite element mesh in the neighborhood of a small 

crack of initial length,  ai , and a first increment of  d1 not 

collinear with the initial crack but with the crack-tip mesh 

design same as the initial crack length.  Such re-meshing 

capability is automatic and independent of the angle of 

orientation of the increment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 8: Finite element mesh in the neighborhood of a small 

crack of initial length,  ai , and two increments of  d1 and  

d2  not collinear with any of its preceding increment but 

with the crack-tip mesh design same as the initial crack.  

Such re-meshing capability is automatic and independent 

of the angle of orientation of any new increment.  Such 

crack of an irregular shape is called a topological crack, and 

the algorithm that generates the optimally-dense-crack-tip 

mesh is furnished by a finite-element-pre-processor named 

TRUEGRID and its commands based on geometric and 

topological concepts. 
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FIGURE 9:  A typical representation of a finite element fatigue  

and static loading history-driven analysis showing the 

importance of meshing design, where denser mesh is 

chosen near holes, crack tips, and discontinuities to achieve 

higher accuracy in stress and strain results (after Beesley, 

Chen and Hughes [21]). 

 
 
5. Design of an Intelligent PYTHON (IP) Code 

As shown by Chlotte [16], PYTHON is highly suited as a 

language for writing AI codes in general, because PYTHON 

code acts as a manager to call on all types of application codes 

to run on different platforms either  sequentially, iteratively, or 

both. 

For example, the following chunk of codes, written in 

PYTHON, is part of a larger code that will allow a user to run a 

TRUEGRID application code named "zigzag.tg": 

 
Def InverseProgram() : 

    self_m_fileInput=True 
    print '***  Run TGManager.py ' 

    total_volume=0.0 

    if self_m_fileInput : 
        returncode=None 

        try : 
            z=y[0]+'.tg' 

            tg_data=os.path.join(dir_name,z) 

            #returncode= call(['C:/TrueGrid/tgd.exe' , zigzag]) 
            returncode= subprocess.Popen(['C:/TrueGrid/tgd.exe' , zigzag]) 

            #subprocess.Popen.terminate() 

            pass 
            if returncode : 

                print 'Failure with return code' ,returncode 

        except : 
            pass 

InverseProgram()                 

 
For the purpose of writing an IP code to turn an SHM data 

code into a "precision" structural integrity assessment tool by 

accurately predicting the remaining life of an ageing component, 

we need to embed in a computing environment the following 

software packages: 

 

Name of Software  Purpose 

 

(1)   PYTHON         (1.1) AI Manager. 

(2) DATAPLOT (DP)        3 application codes 

                                            (2.1) SHM interface. 

           (2.2) Validate  m . 

           (2.3) TRUEGRID interface 

        to validate  af  using 

                                                      two FEM platforms.  

(3) TRUEGRID         (3.1) Design mesh and 

       output FEM apps. 

   

(4) & (5)   Any two of the   (4.1) Interface with (2.3). 

   following FEM codes:      (5.1) Interface with (2.3). 

    ABAQUS, ANSYS,  

    LS-DYNA, MPACT. 

 

In the next section, we will show a numerical example of how to 

validate  m  using an IP code. 

 
 

6. A Numerical Example of How to Validate  m 
We begin our numerical example of how to validate  m  by 

repeating below the same tutorial exercise we used in Section 1  

with  the  exception  that  the initial crack length,  ai  , be changed 

from  1.0 mm  to  2.0 mm: 

 

  Given:    (100 - 106   Material Properties)  

 

(100)   AISI 4340 Steel at room temperature. 

(104)   m     =   3.24   (This is the target to be validated) 

(105)   C1     =   5.11 x 10-10  (unit omitted for brevity). 

(106)          =    0.420. 

 

 (200 - 206   Cracked Component Geometry) 

(200)   A center-cracked plate (see Ref. [2, Fig. 8.12(a)]. 

(201)   b   =    38 mm.          (202)   t    =      6 mm. 

(203)   ai   =   2.0 mm.     (This is new. ) 

(205)   d1  =    1.0 mm.     (This is the first increase in  ai 

                                            after 8,000 cycles (= Ni1 )). 

(206)   d2  =    1.0 mm.     (This is the second increase in  ai 

                                            after 4,000 cycles (= Ni2- Ni1)). 

 

 (300 - 302   Loading) 

(301)   Pmin  (minimum applied load)   =    80 kN. 

(302)   Pmax  (maximum applied load)  =  240 kN. 

 
To find (c):   The correct  m  after first and second increases. 

             (d):   The remaining life,  N2f . 
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Answer (c): 

 

Step C-101:   We first calculate  Ni1  using  m = 3.24 , 

          ai = 2.0 mm , a1 = ai + d1 = af =  3.0 mm: 

 From Eq. (1),        Ni1  =  13,700   cycles, 

 which differs from the true Ni1 (= 8,000 cycles). 

 

Step C-102:   We go back to Eq. (1) using  Ni1 = 8,000 to 

                        estimate   m .   The answer is: 

 

   m  =  3.40.  

 

Step C-103:   We next calculate  Ni2  using the new  m = 3.40, 

                       ai = 2.0 mm , a2 = a1 + d2 = af =  4.0 mm: 

 Again from Eq. (1),    Ni2  =  12,300 cycles, 

 which is very close to the correct  Ni2 (= 12,000). 

 Therefore,  "m = 3.40"  has been validated.    Q.E.D. 

 

Ans. (d):   Using m = 3.40, we estimate  Nif = 22,200 cycles. 

                 Remaining life = N2f = Nif - Ni2 = 10,200 cycles. 

 

 
7. Discussion 

In this paper, we have narrowed our attention to the effect 

of the uncertainty of the crack growth exponent on fatigue life, 

largely because of two new results given by Eqs. (9) and (11), 

where we show more specifically in Eq. (11) that the effect of 

the uncertainty of the initial crack length is an order of magnitude 

smaller than that of the crack growth exponent.  

In addition, we did not address the effect of the uncertainty 

of the crack depth, simply because crack depth is not a parameter 

in Eq. (1), the governing equation of our fatigue life model.  In 

other words, within the confines of this simple fatigue life model, 

crack depth and aspect ratio are necessarily ignored.  That does 

not mean they are not important, and the solution is to introduce 

a more complicated fatigue life model to address them.   

It is, however, worthwhile to point out that as a result of this 

narrowly-restricted investigation, based on the convergence of 

fast computing power, large database memory, rigorous 

mathematical and statistical analysis methodologies,  multi-scale 

continuum-fracture-fatigue-creep mechanics and materials 

science, and advanced sensor technologies, it is now feasible to 

develop an IP code to bridge the knowledge gap between the 

state of a new component and that of an ageing one after years 

of service.   The result outlined in this paper is, therefore, 

significant because it finally allows engineers to design, build, 

and manage with confidence the operation of any complex 

structure or system of components as long as adequate SHM 

systems are in place to utilize the IP code to discover local 

damage physics and validate predictive simulation models. 

However, the IP code designed in this paper does have its 

limitations, among which the principal one being the assumption 

that the training sets for deep learning are vast enough to assure 

convergence of the attempts to validate all of the relevant local 

material property parameters.  

 

8. Concluding Remarks 
An intelligent PYTHON code to utilize the crack length and 

orientation data from a structural health monitoring (SHM) 

system mounted on a cracked component, has been designed 

with the capability of learning from the data to (a) discover local 

damage physics by an iterative procedure to validate all relevant 

material property parameters, e.g., the crack-growth exponent, 

and (b) predict with high confidence the remaining service life 

of an ageing component.  This intelligent code paves the way to 

the development of a "precision" structural integrity assessment 

methodology, that is timely and of critical importance to the 

implementation of a new ASME Boiler and Pressure Vessel 

Section XI Division 2 Reliability and Integrity Management 

(RIM) code for inspection of  nuclear components [22-24]. 
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