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The constrained-occupancy and (linear-response) self-consistent-field methods

for the screening of core-hole potentials that affect core-excitation near-edge

spectra are considered. The methods are not exact, but each has distinct

advantages and limitations. The excitation spectra which are referred to include

X-ray absorption spectroscopy (XAS), electron energy-loss spectroscopy

(EELS) and nonresonant inelastic X-ray scattering (NRIXS). The screening of

interactions that arises is always accompanied by self-energy or lifetime-

damping effects of electron and hole states, which are also discussed briefly.

1. Introduction

Core-excitation spectroscopies, such as electron energy-loss

spectroscopy (EELS), X-ray absorption spectroscopy (XAS)

and nonresonant inelastic X-ray scattering (NRIXS), probe

states of a physical system that involve a core hole and a

concomitant excited electron. In a one-electron picture, this is

a consequence of the promotion of a core electron to an

unoccupied electron level because of the experimental probe.

However, electron–electron and electron–core hole inter-

actions must also be addressed. The electron–core hole

interaction can be treated by considering a two-particle

equation of motion (the Bethe–Salpeter equation) for the

electron–hole pair, by treating the unoccupied electronic level

scheme as perturbed by the core hole, or by other techniques.

In all of these approaches it is necessary to evaluate the

effective screened potential of the core hole. In Section 2, we

discuss the treatment of the screening of the core-hole

potential.

The mutual electron–hole interaction is accompanied by

interactions with the rest of a system by either particle.

(Obviously, the fact that the interaction is screened already

implies interactions with the rest of the system.) Individually,

the electron and core hole experience self-energy effects that

shift and broaden the energies of their states because of life-

time damping. We discuss these effects and their treatments in

Section 3. Other effects, including vibrational effects, are

beyond the present scope.

2. Core-hole potential calculation methods

The accurate inclusion of core-hole effects requires their

computation in a system-specific fashion. In practice, a variety

of approximations are used. One class of approximations that

we consider here is the constrained-occupancy type, including

the ‘full core-hole’ (FCH) and ‘excited-electron and core-hole’

(XCH) methods, which usually involve a fixed-occupancy

pseudopotential or all-electron site that has a core vacancy, as



well as calculations where the potential of a core hole is

considered when calculating electronic spectra and/or total

energy differences in a Slater transition-state or transition-

potential ‘half core-hole’ (HCH) framework. The other class

of approximations we consider is the linear-response approach

to estimate core-hole screening.

2.1. Constrained-occupancy methods

Constrained-occupancy methods operate within the

framework of constrained self-consistent fields (SCFs),

wherein the definition of the electron density relies on an

orbital occupancy constraint that deviates from the ground-

state Aufbau principle. Here, we will discuss methods where a

specific occupation is assigned to the core level after excitation

and where this occupation, or the associated core-hole

potential, is used to define all excited states.

2.1.1. Full core-hole approach. The full core-hole (FCH) and

related excited-electron and core-hole (XCH) approaches

(with the latter being discussed later) attempt to model core-

excited final states by focusing on the resulting core-excited

electron density. In an effective single-particle approximation,

this includes the effects of a core-level vacancy. Ignoring the

excited electron itself, the resulting core-hole density,

computed self-consistently by the use of an orbital occupancy

constraint, can be associated with an effective core-hole

potential which can be considered to be screened by the

surrounding valence electron density and impacts valence

electron states, both occupied and unoccupied.

Some of the earliest core-hole calculations were used to

model the energy differences between core-excited states of

the same atom in different material or chemical contexts,

thereby probing chemical shifts. Pehlke & Scheffler (1993)

employed the FCH approach to study chemical shifts in silicon

and germanium at surfaces and in the bulk. Making use of the

plane-wave pseudopotential formalism to describe such

extended systems, thereby without the explicit inclusion of

core orbitals within the valence-only electron density, they

employed core-excited pseudopotentials to define the atomic

core contribution to the screened core-hole potential for the

valence electrons. The extension and development of this

pseudopotential formalism for X-ray absorption spectra was

made by Mauri, Cabaret and coworkers (Taillefumier et al.,

2002) and was applied to several insulators and semi-

conductors. These authors referred to this approach as

including core-hole screening to all orders, in contrast to the

linear-response approaches that already existed (and are

discussed later in Section 2.2). Unlike linear-response

methods, in a calculation with periodic boundary conditions

constrained-occupancy approaches require supercells that are

constructed from multiple primitive cells, yet contain a single

core-hole ‘defect’ in order to eliminate interaction between

core holes. Hence, this is strongly analogous to the defect

calculations prevalent in the study of semiconductors.

The FCH potential (the self-consistent field resulting from

the core-hole orbital constraint) defines a full spectrum of

effective single-particle orbitals, which can be computed

explicitly up to high energies in order to determine the tran-

sition probabilities, or the associated core-excited spectral

function (related to the imaginary part of the Green’s func-

tion) can be used to determine the excitation spectral intensity

more efficiently.

2.1.2. Excited electron and core hole. The FCH approach

neglects the contribution of the excited electron within the

core-excited electron density. In this way it treats all core-

excited states equally, without emphasis on one final state over

any other. However, it was noted that for systems with parti-

cularly localized orbitals, such as molecular solids or liquids,

this had the effect of insufficiently screening the core hole,

leading to overestimated absorption intensity because of the

;deeper attractive potential for the unoccupied orbitals.

Explicit inclusion of the excited electron within the first

available orbital was used to ameliorate this effect in water

and ice (Prendergast & Galli, 2006). The effect of inclusion of

the excited electron also leads to almost complete screening at

relatively short distances in molecular condensed phases via

Gauss’s law.

The so-called excited-electron and core-hole (XCH)

approximation had, as an obvious choice, been employed by

multiple researchers before the FCH work just discussed. Mo

& Ching (2000) used it to describe periodic solids within a

localized atomic orbital framework both for X-ray absorption

and inner-shell electron energy-loss spectra. Prior to this, it

had been used in a study of the 1s core exciton in diamond by

Jackson & Pederson (1991). In fact, this (only slightly) more

expensive �SCF approach (which considers changes in the

total energy of two SCF calculations with and without core

excitation) is exactly what Slater was aiming to avoid through

the transition-state approach.

The XCH approach, which makes use of a neutral excited-

state approximation, facilitates easier comparison of the total

energies determined from core-excited electron densities,

particularly for cases within different periodic lattices or

inhomogeneous systems, such as surfaces, defects etc. In

contrast, the longer-ranged (partially screened) Coulomb

interactions of the full core-hole approach make such

comparisons difficult, particularly for systems with different

periodicities (and associated Madelung constants). The

example of water indicated above highlighted the need for

accurate relative alignment of core-excited states for atoms of

the same element at different sites or in different contexts.

The large configurational space of hydrogen-bonding envir-

onments found in liquid water at room temperature, sampled

using molecular dynamics within a finite supercell, presented

significant variations in the local on-site potential for the

excited O atoms and in the polarization response of the

valence electron density of the surrounding water molecules,

depending on whether they are donating, accepting or lacking

hydrogen bonds.

2.1.3. Slater transition state. In the Slater transition-state

method (Slater & Johnson, 1972; Slater, 1972) the excitation

energy is estimated as the orbital energy difference between

the half-occupied initial and final levels of a variationally

determined (transition) state; this corresponds to taking the
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excitation halfway and using this state as a reference. Because

only orbitals i and f change occupation, we can write the total

energy of the system as E(ni, nf), where the reference state is

given by ni = nf = 1/2. Compared with this reference, the

energy of the initial (ground) state can be written as E(ni + 1/2,

nf � 1/2) and correspondingly for the excited state E(ni � 1/2,

nf + 1/2). Expanding to second order in the occupation

numbers, we use Janak’s theorem (Janak, 1978) to replace the

derivative of the Kohn–Sham energy with respect to the

occupation number ni by the orbital energy "i. We thus obtain

for the ground state (with all derivatives taken at the varia-

tionally determined reference state):

Eðni þ 1=2; nf � 1=2Þ ¼ Eðni; nfÞ �
1

2
½"
ð1=2;� 1=2Þ
f � "

ð1=2;� 1=2Þ
i �

þ
1

2!

1

2

� �2
@2E

@n2
i

� 2
@2E

@ni@nf

þ
@2E
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f

� �

þ . . . : ð1Þ

For the desired excited state we instead obtain

Eðni � 1=2; nf þ 1=2Þ ¼ Eðni; nfÞ þ
1

2
½"
ð1=2;� 1=2Þ
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For the transition energy Efi = Ef � Ei = E(ni � 1/2, nf + 1/2) �

E(ni + 1/2, nf � 1/2) we then find (to second order) Efi = "f(1/2,

� 1/2) � "i(1/2, � 1/2) + O½Eð3Þn �, with the last term indicating

corrections third order in orbital occupancy changes.

The derivation assumes that the second-order response of

the orbitals to the change in the occupation can be neglected,

i.e. the half-occupied orbitals represent both the initial and

final state characters; the first-order contribution is eliminated

through self-consistency and the second-order contribution

through a strict cancellation under this assumption. The same

orbitals can then be used to represent both initial and final

states. This simplifies the evaluation of transition moments to

single-electron transitions, because it avoids contributions

from the other occupied orbitals.

2.1.4. The transition-potential approximation. Each transition

in the transition-state approach requires a separate calcula-

tion. Even for an isolated molecule, this makes it impractical

to generate a complete X-ray absorption spectrum including

valence, Rydberg and continuum states, where hundreds of

states can be required for a reasonable representation. The

transition-potential (TP) approach of Triguero et al. (1998)

was introduced as an approximation to the Slater transition

state and eliminates the state-by-state calculations by simply

neglecting the half-excited electron. The variationally relaxed

density of the resulting molecular ion core with the half-

occupied core hole provides a potential from which all excited

states are obtained in one global diagonalization; this includes

all interactions between the excited electron and the mole-

cular ion, with the only approximation being that the elec-

tronic density of the molecular ion is kept frozen and is not

allowed to relax when interacting with the excited electron.

The TP approximation to computing XAS spectra builds on

the fact that the partially occupied core level is very isolated

both in space and energy, and is furthermore common to all

excited states; in cases where several atoms of the same

element are present, the core level can still be made unique by

replacing the other cores by effective core potentials or

pseudopotentials or by localizing and freezing these orbitals so

they cannot mix with the desired state (Leetmaa et al., 2010).

Removing an electron from the 1s level is the largest

perturbation on the remaining electron density. The half-

electron in the excited levels typically interacts only weakly

with the remaining molecular ion core, so that neglecting it is

normally a very good approximation. When the excitation is

into unoccupied, localized valence states, however, the inter-

action cannot be neglected. The choice of 0.5 electrons as the

fractional core-occupation number of the 1s level minimizes

the error by approximating the excitation energy as an orbital-

energy difference, but it is strictly valid only when the upper

level is also half-occupied and the same orbitals can describe

both the initial and the final state. The half-core-hole, TP

approximation is therefore not rigid and other core occupa-

tions/core potentials may be considered (Cavalleri et al., 2005;

Nyberg et al., 1999).

2.1.5. The core-hole potential: Newns–Anderson model.

Suppose that one can regard the core-excited atom or mole-

cule as an impurity in the band structure of the remaining

system and describe the resulting spectra following the

Newns–Anderson impurity model (Anderson, 1961; Newns,

1969) as illustrated in Fig. 1(a). The core-hole potential then

pulls down the local atomic orbitals of the core-excited

molecule, which changes the electronic interactions with the

surrounding condensed phase. In this picture one can consider

the core-excited atom as a local impurity with a different set of

atomic orbitals interacting with the surrounding bands. If the

interaction is with a broad featureless continuum of electronic

states, this results in a resonance that simply corresponds to a

broadening of the atomic level, with the width depending on

the strength of the interaction (Fig. 1).

If there are more specific features in the density of states

(DOS) the resulting resonances can be more complex, as

illustrated in Fig. 1(b) for the specific case of a core-excited

water molecule in hexagonal ice (Nilsson & Pettersson, 2011).

The water molecular orbitals will be down-shifted because of

the core-hole potential where one 1s electron has been

removed. The unoccupied DOS of ice has a well defined

strong resonance corresponding to the conduction band (Chen

et al., 2010), but is otherwise rather featureless, decreasing in

intensity towards lower energies. The strength of the core-hole

potential determines the energy position of the antibonding

4a1 and 2b2 levels of the core-excited molecule and conse-

quently how they will be broadened into resonances; the 2b2

level will always interact more strongly, since there is a higher

DOS at similar energies in comparison to the energy region

close to the lower-lying 4a1. The hybridization with the strong

peak of the conduction band (post-edge in Fig. 1) leads to a

new resonance that will mostly be of band-structure character

involving the surrounding molecules. How the strength of the

core-hole potential affects the hybridization is seen in Fig. 2,

which shows computed XAS spectra using the transition-
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potential method (Triguero et al., 1998), but varying the core-

hole potential from half core hole to full core hole in steps of

0.1 (Leetmaa et al., 2010). The spectra have been energy

calibrated using the ‘�K-S’ approach of Kolczewski et al.

(2001) and therefore have exactly the same onset in terms of

DOS, but not in terms of the intensity distribution (Leetmaa et

al., 2010). With increasing core-hole potential both the pre-

edge and main-edge intensities shift to lower energy, consistent

with the simple picture of an increased energetic separation of

the ‘impurity’ states from those of the condensed phase in the

Newns–Anderson model. Because of weaker hybridization

with the conduction band, there will be less local 2p character

and the intensity of the post-edge also diminishes. There is

also a shift of the post-edge towards lower energy as the

isolated core-excited orbitals are pulled down with increasing

core-hole potential. Within the transition-potential approx-

imation (Triguero et al., 1998), the best agreement with the

experimental ice spectrum is with the half core-hole potential

(Leetmaa et al., 2010; Iannuzzi, 2008), which also has been

shown to work well for many other systems (Aziz, Freiwald et

al., 2006; Cavalleri et al., 2002, 2006; Damian Risberg et al.,

2007, 2009; Kolczewski & Hermann, 2003; Kolczewski et al.,

2001; MacNaughton et al., 2006; Näslund et al., 2003; Nyberg et

al., 2003; Ogasawara et al., 2002; Öström et al., 2004, 2006,

2007; Öström, Triguero, Nyberg et al., 2003; Öström, Triguero,

Weiss et al., 2003; Pettersson et al., 1999; Schiros et al., 2006,

2007; Wilks et al., 2006; Aziz, Zimina et al., 2006; Mijovilovich

et al., 2009).

2.1.6. Relaxation effects and variational core-excited states.

By the use of a �K-S approach, an absolute energy scale can

be determined by variationally computing the difference in

total energy between the ground state and the first fully

relaxed core-excited state for each configuration or each non-

equivalent center (Kolczewski et al., 2001). The lowest energy

state in the TP-XAS spectrum is set equal to the �K-S energy,

and all other states are shifted accordingly; this gives a quite

reliable absolute energy scale for the onset of each spectrum

(Kolczewski et al., 2001; Odelius et al., 2006). Considering

relative energy differences within each spectrum, the accuracy

relies on the fact that the relaxation effect of the state used to

compute the shift (usually the lowest core-excited state) is

similar in character for all shifted spectra. Because the
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Figure 1
(a) Illustration of the Newns–Anderson impurity model applied to (a) a single atomic level interacting with a featureless continuum of electronic states
and (b) the XAS of ice, where the gas-phase excited states interact strongly with the continuum DOS. Reprinted with permission from Nilsson &
Pettersson (2011).

Figure 2
Computed spectra of hexagonal ice using the transition-potential
approach (Triguero et al., 1998) with different core-hole potentials from
half core hole (0.5 CH) to full core hole (1.0 CH) in steps of 0.1; for
details, see Leetmaa et al. (2010). The full black line gives the experi-
mental spectrum from Nordlund et al. (2004) and the three main spectral
regions, pre-edge, main-edge and post-edge, are indicated.



complete spectrum contains excitations to valence, Rydberg

and continuum states, there may be different effects

depending on the character of the excited state. Additional

core-excited states may thus need to be determined varia-

tionally by applying the �K-S shifting procedure explicitly to

the required number of low-lying excited states and shifting

the remaining states according to the shift of the highest of

the �K-S corrected states (Kolczewski et al., 2001; Damian

Risberg et al., 2007, 2009; Mijovilovich et al., 2009). In a Kohn–

Sham framework, a sequence of orthogonal core-excited

states can be determined variationally by requiring that the

core level should be singly occupied and the system should be

neutral, which defines the lowest unoccupied molecular orbital

(LUMO). Removing this orbital from the basis set and

repeating the calculation gives the next state and defines

LUMO+1. This procedure is well defined for a few low-lying,

well separated discrete transitions, but becomes impractical

when the DOS becomes too high (Leetmaa et al., 2010).

The �K-S energy correction also corrects for the neglect of

relaxation because of the interaction of the excited electron

with the full core-hole state. However, the exchange-correla-

tion functionals used in density-functional theory (DFT) are

only approximate, and the absolute energy scale thus also

depends on which functional is used (Takahashi & Pettersson,

2004). The main contribution to the functional dependency is

because of the core level, which is where the electron density

is the highest, while the relative energies of core-excited states

are much less affected (Takahashi & Pettersson, 2004). This

opens the possibility of calibrating the calculations further if a

suitable reference can be found where the error in the func-

tional can be evaluated against some other higher level

calculation or experiment. In such cases the �K-S shifted

spectrum may be corrected to within a few tenths of an elec-

tronvolt of experiment through a computationally derived

empirical shift for functional-dependent and relativistic effects

(Leetmaa et al., 2006, 2008, 2010).

This empirical correction depends on the chemical envir-

onment in a molecule, such that it is in general not possible to

define a unique and generally applicable correction for each

element and functional (Takahashi & Pettersson, 2004); a

sufficiently similar system must be found for the calibration in

each case. Still, even in the absence of a reliable empirical

correction to the absolute energy scale, chemical shifts

between, for example, different O atoms at an oxide surface

(Kolczewski & Hermann, 2003, 2004; Kolczewski et al., 2007;

Cavalleri et al., 2007, 2009), different waters or OH groups on

a metal (Schiros et al., 2006, 2007) or inequivalent atoms in a

molecule can be very reliably obtained through just the �K-S

correction, because the functional dependency largely cancels

out when taking differences (Takahashi & Pettersson, 2004).

2.2. Linear-response self-consistent-field screening

Linear-response self-consistent-field (SCF) screening

derives its name from the fact that the total (tot) screened

potential includes the external (ext) potential because of the

core hole and the induced (ind) potential because of the

change in the electronic charge density. The latter charge

density is itself affected by the total potential. Proper treat-

ment of the screening must be self-consistent and can be

achieved, for instance, in the random-phase approximation

(RPA) or in the adiabatic local-density approximation

(ALDA) that incorporates an exchange-correlation kernel

into the RPA equations of motion. An ALDA treatment tends

to screen a core-hole potential more effectively than an RPA

treatment, and the difference between the two results depends

on the system studied. Near-edge spectra are sufficiently

sensitive to screening effects so that no single approximation

has been found to be sufficiently well controlled to always

render the most accurate spectra.

The starting point of an SCF screening calculation is

obtained from the solution of the ground-state Schrödinger-

like Kohn–Sham equations:

�
1

2
r2 þ Vat þ VH þ Vxc þ �’

� �

 nkðrÞ ¼ "nk nkðrÞ: ð3Þ

Here,  nk and "nk are a Kohn–Sham orbital and energy,

respectively, while Vat, VH and Vxc are the atomic, Hartree and

exchange-correlation potentials, respectively. Formally, some

of these operators may be nonlocal. The potential perturba-

tion �’ is only included when the core hole is present, and

effects of the core hole are only included in first-order

perturbation theory. The total perturbing potential is the

combination of the external potential and the induced

potential:

�’totðrÞ ¼ �’extðrÞ þ �’indðrÞ: ð4Þ

To find the response of the system to a disturbance, the one-

electron Green’s function is useful. Written in real space

and in the energy domain, with imaginary infinitesimals for

occupied and unoccupied Kohn–Sham levels, and not yet

accounting for spin, it is

Gðr; r0; EÞ ¼
P

nk

 nkðrÞ 
�
nkðr
0Þ

E � "nk � i�
: ð5Þ

In terms of the Green’s function, the induced density because

of a static total potential disturbance can be found using the

formula for the functional derivative,

�nðrÞ

�’totðr
0Þ
¼ �0ðr; r0;! ¼ 0Þ

¼ 2i
Rþ1

� 1

dt

2�
½Gðr; r0; Eþ itÞ�

2
: ð6Þ

Here, the factor of two accounts for spin. What is actually of

interest, however, is the induced density because of an

external potential disturbance:

�nðrÞ

�’extðr
0Þ
¼ �ðr; r0;! ¼ 0Þ: ð7Þ

The two response functions are related by the Dyson-like RPA

or ALDA equation of motion,
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�ðr; r0;! ¼ 0Þ ¼ �0ðr; r0;! ¼ 0Þ

þ
R

d3s
R

d3s0�0ðr; s;! ¼ 0Þvðs; s0Þ�ðs0; r0;! ¼ 0Þ: ð8Þ

Here, the electron–electron interaction that folds the induced

potential into what the electrons sense includes the Coulomb

potential vc and an exchange-correlation kernel Kxc,

vðs; s0Þ ¼ vcðs; s0Þ þ KxcðsÞ�
3ðs � s0Þ: ð9Þ

Given �0, finding � amounts to a matrix-inversion problem. In

practice, the real-space points can sample a grid that includes

radial quadrature grids (uniform or extended Legendre) and

an angular quadrature grid (Sloan & Womersley, 2004).

Finally, the induced potential results from solution of the

Poisson equation. It has been helpful to screen the potential of

a core hole plus that of a � e charge sphere at radius of about

2 Å, and screen the potential of a compensating +e charge

sphere using a model dielectric function, which is a sufficiently

accurate treatment. Soininen & Shirley (2001) demonstrated a

scheme performed entirely within reciprocal space, while

Shirley (2006) demonstrated the above real-space metho-

dology. In either case, screening by core electrons can be

carried out within an atomic program.

2.3. Exchange and multipolar terms

The treatment of core-excited states in a Bethe–Salpeter

approach implies solving an effective electron–hole pair

Hamiltonian of the form described in Shirley et al. (2020). In

its simplest form, the Hamiltonian can be expressed using

H ¼ He þHh þHeh: ð10Þ

Here, He includes effects related to the electron (affecting its

band energy, including many-body corrections thereto), Hh

includes effects related to the core hole (its binding energy

and spin–orbit terms) and Heh includes interaction effects

including the central potential, as well as exchange interaction

and multipolar terms describable in a fashion akin to Slater Fk

and Gk integrals, as described in Shirley et al. (2020) and

references therein. Treatments such as constrained-occupancy

approaches are encapsulated within SCF treatments of core-

hole screening and the concomitant effective electron–core

hole interaction, and so are less amenable to the inclusion of

exchange and multipolar terms. This is because calculations in

periodic boundary conditions usually do not consider core-

hole spin and orbital angular momentum degrees of freedom.

Conversely, nonspherical parts of the screened core-hole

potential because of the reduced symmetry of the environ-

ment of a core-excited site are at present readily included only

in the constrained-occupancy approaches.

2.4. On the assessment of core-level shifts

Total binding energies are difficult to determine theoreti-

cally, but the relative change in the binding energy, i.e. the shift

in X-ray photoelectron spectroscopy (XPS) peaks between

similar species in different situations, is smaller and easier to

estimate. These can be viewed simply as the difference in

chemical binding energy of the final-state core-ionized atom in

the different situations that are compared. This is the so-called

Z + 1 approximation, where it is realized that removing a

screening core electron from the viewpoint of the valence

electrons is equivalent to increasing the nuclear charge by one

unit (Mårtensson & Nilsson, 1995; Xia et al., 2018).

In the FCH and XCH frameworks, within the same periodic

supercell or cluster model, chemical shifts in the X-ray

absorption of atoms in different chemical environments could

be calculated through total energy differences. For example,

comparing atoms a and b of the same element X, we realize

that they share the same ground-state energy (E0
a ¼ E0

b ¼ E0),

but very possibly different core-excited total energies

(E�a 6¼ E�b). Hence, the associated chemical shift in their first

excited state might be more accurately approximated using

the total energy difference E�b � E�a. This was found to be a

superior approximation to merely using the orbital energy

differences from the different core-excited self-consistent

fields. Furthermore, when comparing excitations from

different systems (subject to the same boundary conditions),

which may have different ground-state energies, a more

inclusive expression should be adopted. For configurations i

and j, and atom indices a and b for the same element X, we

can determine the difference in excitation energies as

½E�bðjÞ � E0
bðjÞ� � ½E

�
aðiÞ � E0

aðiÞ�. Such comparisons still

require an overall alignment with an experimental reference

because of the inaccuracies of most density-functional

approximations for describing core-excited state energies.

In the same framework but with different periodic

boundary conditions, such as comparing O atoms in different

oxides, an additional theoretical reference is required for

useful relative alignment of the calculated spectra. We make

convenient use of an isolated atom placed within the super-

cells employed for each specific case and draw a connection to

formation (or atomization) energy differences between the

ground and excited states. This was independently developed

within the XCH approach for molecules and solids (England et

al., 2011; Jiang et al., 2013), but was previously employed by

Hamann and Muller for electron energy-loss (Hamann &

Muller, 2002) and by Pickard and coworkers for X-ray

absorption (Rez et al., 1999). Specifically, the formation energy

difference of the excited and ground states reveals differences

in the total energies of the excited and ground state of the

relevant system and the core-excited atom,

E�aðiÞ �
P

n

e�nðiÞ

� �

� E0
aðiÞ �

P

n

e0
nðiÞ

� �

¼ ½E�aðiÞ � e�aðiÞ� � ½E
0
aðiÞ � e0

aðiÞ�

¼ ½E�aðiÞ � E0
aðiÞ� � ½e

�
aðiÞ � e0

aðiÞ�; ð11Þ

where the final expression groups together the total energies

of system i in its excited and ground states, and the excited and

ground-state energies of the isolated atom Xa under the same

boundary conditions as system i.

In the other constrained-occupancy methods, core-level

shifts are computed through a �K-S calculation between the

ground state and the fully core-ionized state. Absolute values

of the core binding energy (CBE) depend strongly on the

international tables

6 of 9 Eric L. Shirley et al. � Core-hole potentials and related effects Int. Tables Crystallogr. I (2021).



functional used, while shifts relative to a reference do so to a

lesser extent (Takahashi & Pettersson, 2004). A particularly

challenging case is provided by the so-called ESCA molecule,

ethyl trifluoroacetate, with four inequivalent C atoms for

which the chemical shifts span 7.5 eV. Here the self-interaction

error on the CBEs is found to be significant, and hybrid

functionals are necessary to get the shifts even qualitatively

correct (Van den Bossche et al., 2014).

In the linear-response approach, a core-level shift can be

estimated as follows. Let Eref
B be a large, system-independent

constant that is the main part of the core-binding energy, and

VKS(�) be the ground-state Kohn–Sham potential at the core-

excited nucleus located at �. The core-level binding energy can

then be estimated to be

EB ¼ Eref
B � VKSðsÞ �

1

2
�’indðsÞ: ð12Þ

The factor of one-half arises from adiabatically turning on the

core-hole potential. This method has been used to good effect

in the extreme case of ammonium nitrate (NH4NO3), which

features nitrogen sites with nominal oxidation numbers of � 3

(NHþ4 ) and +5 (NO�3 ) (Vinson et al., 2014). Such an ad hoc

approach still constitutes an uncontrolled approximation,

because it attributes physicality to the Kohn–Sham potential

and assumes the validity of the linear-response theory for the

valence screening of the core hole.

3. Self-energy effects

3.1. Core-hole lifetime effects

Once created, core holes can decay in a variety of fashions.

Krause & Oliver (1979) tabulate lifetime broadening effects

because of Auger processes and radiative recombination.

Atomic programs such as the Cowan code (Cowan, 1981) can

be used to consider lifetimes as well, although most of this

work is performed in isolated atoms. Kas et al. (2016) have

begun treating core-hole lifetime damping and satellite effects

within the context of realistic solid-state calculations. In

principle, effects such as Coster–Kronig transitions should be

treatable using a GW-type self-energy, if the dynamical

screening effects of the valence electrons can be treated in an

RPA fashion, especially because so few core levels contribute

to the electron Green’s function that appears explicitly in the

self-energy.

3.2. Electron self-energy lifetime damping

Electron self-energy damping effects have been treated by

several workers, including the large body of work by Powell,

Tanuma and coworkers (see, for example, Kas et al., 2016),

Fleszar (Fleszar & Hanke, 1997) and Soininen and coworkers

(Soininen et al., 2003). Most treatments consider the fact that a

fast photoelectron can scatter through other electronic exci-

tations describable in the form of the momentum-dependent

loss function. Experimentally, knowledge of the loss function

is mostly obtainable from electron energy-loss scattering

(EELS), nonresonant inelastic X-ray scattering (NRIXS) or

measurement of optical constants. Typically, this is restricted

to small values of momentum transfer from the electron to the

system. Of course, it has recently become possible to carry out

calculations that sample momentum space explicitly, as

described in the work by Fleszar and Soininen and coworkers.

Alternatively, it is often sufficient to include the salient effects

of momentum dependence of the loss function only, without a

severe cost in accuracy. Kas et al. (2007) have introduced a so-

called ‘multipole self-energy’ that mimics the continuous loss

function with a set of discrete poles, each of which disperses

with momentum according to a prescription. In a method first

described by Fister et al. (2011), a model self-energy is intro-

duced with certain properties. These include a jellium-like

model for a bulk solid, with the loss function being known

from a modified, momentum-dependent Lindhard function

with static properties found according to a model dielectric

function by Levine & Louie (1982), adherence to the f-sum

rule and a zeroth frequency momentum of the imaginary part

being related to properties of the density matrix that can be

extracted from the output of a band-structure calculation,

1

�

R1

0

d! !0�000;Lðx; x0;!Þ ¼
1

2
j�1ðx; x0Þj2 � hnðxÞi�3ðx � x0Þ:

ð13Þ

Here, �1 denotes the one-particle density matrix for one spin,

n denotes the electron density and �000;L denotes the imaginary

part of the Lindhard dielectric function. (Its momentum

dependence is inferred following transformation to Fourier

space and ignoring effects because of the direction of

momentum.) Once a model loss function is in hand, its

convolution with a model Green’s function (for example that

in a free-electron gas) leads to a reasonable self-energy

(Shirley, 2020).

4. Summary

In short, there are a variety of methods that can be used to

determine the effective, screened potential because of a core

hole that electrons in a physical system experience. We note

that all methods have their strengths, but also weaknesses. The

HCH transition potential, with its unscreened half-core hole,

can run into difficulties describing the transition between a

fully interacting, fully screened chemisorbed molecule and the

gas phase as the molecule desorbs, followed in XAS using

modern free-electron X-ray lasers (Wang et al., 2020). XCH is

excellent for conducting systems where the states are delo-

calized and the screening electron does not affect the

remaining states to a great extent. It also works well for

semiconductors with a small band gap, but for insulators with a

more dielectric response populating a specific localized

screening state may artificially modify the higher localized

excited states. One should thus be aware of the different

approximations involved in each approach. A comparison of

the C 1s near-edge spectrum in C60 is shown in Fig. 3.

Beyond the main effects, one can also consider exchange

and multipolar electron–core hole interactions, lifetime
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damping and other effects beyond the scope of this descrip-

tion. In addition, all of the work discussed here assumes the

overall validity of a self-consistent-field or independent-

electron picture for the system of valence electrons, so that

studying intrinsically multi-reference and strongly correlated

systems might require one to exercise greater caution.
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Figure 3
C 1s near-edge spectrum of C60 using linear-response core-hole screening
and the BSE (OCEAN), the XCH approach and the StoBe program. The
varying degrees of chemical realism of the unoccupied states are reflected
in the accuracy of the associated spectral features and are inversely
correlated with computational efficiency (Fossard et al., 2017).
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