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Abstract 

Production simulation is useful to predict and optimize future production. However, it requires effort and expertise to create accurate simulation 

models. For instance, operational control rules, such as job sequencing rules, are modeled based on interviews with shop-floor managers and 

some assumptions since those rules are tacit in general. In this paper, we consider a data-driven approach to model operational control rules. We 

develop job sequencing rule identification methods that model rules from production data using machine learning techniques. These methods are 

evaluated based on accuracy and robustness against uncertainty in human decision making using virtual and real production data. 
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1. Introduction 

Market needs have diversified over the years, making 

production systems more complex. For complicated production 

systems, production simulation, an embodiment of discrete 

event simulation (DES), is a well-known and powerful tool to 

evaluate, plan, and control production. In that case, it is required 

to build simulation models that emulates the real system 

accurately. Simulation inaccuracy directly affects the 

performance of simulation-based applications such as decision-

support systems, scheduling systems, etc. However, building 

accurate simulation models is a time-consuming task, requiring 

both production domain knowledge and simulation expertise 

[1]. It makes the practical use of production simulation difficult. 

Therefore, automating production simulation modeling is still a 

challenging and important issue [2]. 

A general modeling process of production simulation is 

described as follows (adapted from [1]). First, characteristics of 

production systems are investigated mainly by field-work and 

interviews with shop-floor managers. Through the investigation, 

general requirements, such as scope and granularity of 

production simulation, are defined. In the second step, data 

required for simulation is collected and/or generated. In the 

third step, simulation models are constructed from the data 

obtained in the second step. Then, simulation accuracy is 

evaluated by comparing simulation results to historical 

production data. Lastly, these steps are iterated until the 

required accuracy is achieved. 

To reduce the effort in this modeling process, the 

automation of the second step (data collection and generation) 

is crucially important. Barlas et al. [3] state that collecting and 

generating simulation data is still one of the most time-

consuming tasks and a barrier to applying production 

simulation in practice. They also summarized existing studies 

on automatic collection and generation of simulation data, 

classifying the studies into five categories: intermediary 

database, PLC programs, developed applications, data 

interfaces / standards translators, and direct integration.  

Simulation data is mainly composed with structural 

information such as process route, time information such as 

processing time, and information regarding operational control 

rules. One idea to automate this step is to utilize data stored in 
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the existing information technology (IT) systems such as 

enterprise resource planning (ERP), manufacturing execution 

systems (MES), and hand-held personal digital assistant (PDA) 

devices. In most cases, the structural information is also stored 

alongside the production data and can be acquired from these 

IT systems. For instance, the process route can be determined 

from Bill of Material (BOM) and Bill of Process (BOP) data, 

which is often managed in ERP and MES. This structural 

information can be collected by converting data in IT systems 

to simulation data using appropriate data interfaces.  

Unlike structural data, timing data used to estimate 

processing times is often difficult to obtain directly from IT 

systems and rarely produces accurate estimations of actual 

processing times especially in high-mix and low-volume 

production. For example, in many systems the time information 

is collected by workers manually indicating start and stop times 

of a process. This leaves many opportunities to introduce errors, 

such as forgetting to start/stop time collection or not 

appropriately accounting for interruptions in processing. 

Several researchers have addressed this issue. Hosoe et al. [4] 

proposed methods to estimate processing time from Point of 

Production (POP) data using regression techniques for 

semiconductor production systems. Meidan et al. [5] also 

reported methods for estimating processing time for 

semiconductor production systems. They enumerated the 

explanatory variables such as batch size and extracted the 

factors with a large influence on processing time using Bayes 

classifier. Karnok et al. [6] and Nagahara et al. [7] have 

proposed methods that estimate processing time from noisy 

(incomplete) POP data of real production systems. Throughout 

this paper, point of production (POP) data includes all data that 

is collected from the shop-floor during production, such 

start/completion times, and can be tied to a specific production 

process, resource, operator, etc.; the point where production 

occurred. 

Operational control rules such as job sequencing rules and 

resource assignment rules determine dynamic behavior of 

production systems. Like processing time, operation control 

rules are rarely managed explicitly in IT systems. In most 

practical cases, operational control is executed according to 

human decisions and the rules underlying these decisions are 

tacit or hidden. Sprock et al. [8] have proposed the Operational 

Control Model as a standard and comprehensive representation 

of operational controls. They classified the operational controls 

into five categories: admission, sequencing, resource 

assignment, dynamic processing planning, and changing 

resource states. In production simulation, rules for each control 

function must be modeled appropriately. Therefore, in general, 

the rules are determined through by interviewing shop-floor 

managers.  

In contrast to processing time, there is little research using 

data-driven approaches to modeling operational control rules. 

Bergman et al. [9, 10] proposed methods for identifying job 

sequencing rules from POP data using machine learning 

techniques. However, they evaluated the method through 

experiments using synthetic data generated from a simple 

simulation model. The applicability of this data-driven 

approach for more complex real-world scenarios has not been 

verified in this field.  

Additionally, when operational control is conducted 

according to human decisions, uncertainty in the decisions will 

be a critical issue. Consider job sequencing as an example. 

When workers select the next job from waiting jobs, it is 

possible that the job with the highest priority may not be 

selected. This uncertainty in the job sequencing would make the 

rule identification inaccurate, and so it is important to consider 

this uncertainty in the rule identification process.  

For the above issues, this research verifies the applicability 

of data-driven job sequencing identification methods through 

experiments using real production data. In addition, we propose 

a method that reduces the influence of the uncertainty in the job 

sequencing. 

The remainder of this paper is organized as follows. In 

section 2, we describe the problem statement of job sequencing 

rule identification and review some related works. In section 3, 

we detail the proposed method. In section 4, we first evaluate 

the proposed methods on virtual production data and then show 

experimental results of applying the methods to real production 

data. Finally, in section 5, we discuss conclusions and future 

work. 

2. Job Sequencing Rule Identification Problem 

2.1. Problem Statement 

Rule identification methods identify the rule mapping 

between system states and actions. For job sequencing rule 

identification, the job waiting to be processed corresponds to 

the state and selecting the next job to be processed corresponds 

to the action. The objective of the Job Sequencing Rule 

Identification Problem (JSRIP) is to derive a job ranking model 

that predicts the highest ranked job among the waiting jobs 

given the state/action data.  

The systems of interest in this research are discrete 

production systems such as job-shop production systems in 

which job sequence is decided based on tacit rules. We assume 

that POP data is available for job sequencing rule 

identification.In addition, we assume that only one job is 

selected from waiting jobs and the selected job is processed 

immediately after selection. Additionally, a list of waiting jobs 

when each job selection event occurred can be derived from the 

POP data.  

The job ranking model is trained using a training dataset 

composed with the event data. The accuracy of the trained 

model is evaluated using a test dataset composed with the other 

event data. We evaluate the accuracy of job ranking models 

using two metrics: Top-1 accuracy measures the rate at which 

the actual selected job (based on POP data) was predicted to be 

the best (Top 1) by the trained ranking model, and Top-5 

accuracy measures the rate at which the rank of the actual 

selected job is predicted to be among the five best options. 

2.2. Related Works on Ranking Method 

JSRIP can be thought of as one form of a “Learning to Rank” 

problem. Learning to Rank problems are actively studied in the 

information retrieval field. The objective of Learning to Rank 

in that field is to extract documents with high relevance to a 
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given query from a document set. A ranking model is derived 

from a dataset consisting of features of documents and queries. 

In the dataset, the degree of relevance of each document to the 

query is given as a label. Representative methods for Learning 

to Rank problems are divided into three approaches: pointwise, 

pairwise, and listwise [11].  

Pointwise approaches look at a single document. A 

regressor or classifier is trained to predict the relevance of a 

particular document to a query. The input variables to the 

regressor/classifier are features of a single document-query pair, 

and the output is estimated relevance of the document to the 

query. This approach assumes that the relevance of each 

document is independent of the other documents in the 

document set. General regression and classification techniques 

can be used for this approach. 

In pairwise approaches, a classifier is trained to estimate the 

magnitude relation of the relevance for a certain document-pair. 

Given a query and a pair of documents, the classifier is trained 

to minimize the difference between estimated magnitude 

relation of the documents and its ground truth. All the general 

classification techniques can be used for this approach, and the 

methods using Support Vector Machines, Boosting and 

Artificial Neural Network (ANN) as the classification 

technique are called as RankSVM [12], RankBoost [13] and 

RankNet [14], respectively. 

Listwise approaches look at the entire list of documents. In 

thes approaches, a regressor is trained to estimate the score of 

a particular document for a query. The score is normalized by 

the scores of all documents in a query, and the loss is calculated 

based on the difference between the normalized score and the 

normalized relevance of each document. The representative 

method of this approach is ListNet that uses ANN as the 

classification technique [15]. In ListNet, the top one (Top-1) 

probability is calculated by normalizing the score/relevance by 

Soft-max function, and the loss is calculated from Cross 

Entropy Loss of the top one probability. Top-1 probability of a 

document is the probability that it is the best, or on top, from 

the list. Likewise, Top-k probability indicates it is ranked 

among the k best. 

When formulating JSRIP as a Learning to Rank problem, 

the job selection event corresponds to the query and waiting 

jobs correspond to the documents. The characteristics of JSRIP 

compared to general Learning to Rank problems are as follows.  

a) In JSRIP, the complete ranking of waiting jobs is 

unknown. We know only which job was selected. 

Therefore, the relevance is determined in two levels 

(e.g. 0 - 1 value). The relevance of the selected job is 1, 

and the relevance of the other jobs is 0.  

b) In JSRIP, the relevance of each job is not independent 

of the other jobs. The job selection is decided based on 

the comparison of waiting jobs. From (b), it is obvious 

that pointwise approaches are not suitable for JSRIP. 

The uncertainty in the job sequencing can be thought of as 

label noise in Learning to Rank problems. Niu et al. [16] 

investigated the influence of label noise in Learning to Rank 

problems. They concluded that fewer relevance levels and 

greater class imbalances increase the influence of label noise in 

the learning. From this perspective, JSRIP is a problem that is 

sensitive to label noise because of the problem characteristics 

(a). Therefore, it seems critical to consider how to reduce the 

influence of the uncertainty. Ding et al. [17] proposed a method 

for Learning to Rank problems with label noise. In their method, 

the reliability of each data sample is calculated using a 

generative model, then the loss function is weighted by the 

reliability. However, this method is not suitable for JSRIP 

because it is based on the pointwise approach.  

As mentioned in the section 1, Bergmann et al. [9, 10] have 

proposed a job sequencing identification method. Their method 

is based on the pairwise approach and constructs a classifier 

that predicts the priority relationship between arbitrary two 

waiting jobs. They compared classification algorithms and data 

transformation techniques, and then verified the usefulness of 

their method through experiments using data generated from 

production simulation. We’ve not found any research that 

applied the listwise approach to JSRIP. 

3. Proposed method 

3.1. Feature Variables for Job Ranking Model 

In most of practical production systems, jobs of similar 

product type tend to be processed consecutively to reduce setup 

times. While simple job sequencing rules such as first in first 

out (FIFO), earliest due date (EDD), shortest processing time 

(SPT), etc. are useful and well-accepted, the reduction of 

sequence-dependent setup operations is especially important in 

high-mix and low-volume production systems. To make these 

methods, such as Bergmann et al. [9, 10], applicable to more 

realistic scenarios, it is important to consider this context. 

Therefore, we include classification features capturing product 

type differences between waiting jobs and the previous (or in-

process) job.  

In general, each product type has categorical attributes such 

as product type name and numerical attributes such as product 

length. As a result, the features are determined as follows. 

: e a
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i iDD t t= −  (2) 
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1 if
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X k N

 =
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where 𝑊𝑇𝑖  is the waiting time of i-th waiting job in a certain 

event, and 𝐷𝐷𝑖 is the remaining time until due date of i-th job. 

And, 𝑡𝑒  is the event occurrence date, 𝑡𝑖
𝑎  and 𝑡𝑖

𝑑  denote the 

arrival date and due date of i-th job respectively. Furthermore, 

𝑥𝑖,𝑘is k-th categorical attribute value of product type of i-th job, 

and 𝑥𝑘
𝑝
 is that of the job processed before the event. Likewise, 

𝑦𝑖,𝑘 is k-th numerical attribute value of product type of i-th job, 

and 𝑦𝑘
𝑝

 is that of the job processed before the event.  And, 𝑁𝑐𝑎𝑡𝑒  

and 𝑁𝑛𝑢𝑚𝑒  denotes the number of categorical and numerical 

attributes, respectively, of each product type. The features 

shown in Eq. (3) and (5) will contribute to identify the rules 

including the setup reduction perspective. 
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3.2. Combination with Voting Filter 

One idea to reduce the influence of the uncertainty is 

filtering unreliable samples from the training dataset. From this 

point of view, we propose a method that combines the ranking 

algorithms with Voting filter. Voting filter is one of the 

countermeasures for label noise in classification problems [18]. 

In this method, several weak classifiers are trained using 

different training datasets and/or different classification 

algorithms. Then, the reliability of each data sample is 

evaluated based on the predictions by those weak classifiers, 

and unreliable samples are filtered from the original dataset. 

There are two major voting algorithms to judge the reliability 

of each sample. One is Majority voting that judges the sample 

as reliable for which half or more weak classifiers correctly 

predicted the ground truth class. Second is Consensus voting 

that judges the sample as reliable for which all weak classifiers 

correctly predicted the ground truth class. Majority voting is 

generally considered better than Consensus voting [18]. 

In the listwise approach, the reliability judgement is 

conducted for each event data since the listwise approach looks 

at the entire list of waiting jobs. On the other hand, in the 

pairwise approach, the reliability judgement is conducted for 

each pairwise comparison data.  

4. Experiment and Discussion 

4.1. Experiment using Virtual Production Data 

Since the ground truth rule is unknown in the real scenario, 

we start evaluating the proposed methods by conducting 

experiments using virtual production data. The virtual 

production data is created from a simulation model consisting 

of one machine. The machine processes 2,000 jobs sequentially. 

The attributes of each job such as product type, due date, arrival 

date and processing time are randomly set. At the machine, job 

selection is conducted based on the priority score shown in Eq. 

(6).  

( )expi i i iS a WT b DD c =  +  − +   (6) 

where 𝑆𝑖 , 𝑊𝑇𝑖  and  𝐷𝐷𝑖  denotes the priority score, waiting 

time and remaining time until due date of waiting job i 

respectively. If the product type of job i is the same as that of 

the job processed before, 𝛿𝑖 = 1. Otherwise, 𝛿𝑖 = 0. The first, 

second, and third terms corresponds to FIFO, EDD and setup-

reduction rule respectively, and a, b and c are the weighting 

coefficients for each term. The value of these coefficients is 

randomly set so that each rule influences job selection in some 

extent.  

In this experiment, two scenarios for job sequencing are 

considered. One scenario selects the job with the maximum 

score (maximum score selection scenario), and the second 

selects a job based on the probability shown in Eq. (7) 

(stochastic selection scenario). 

( ) ( )
1

exp exp

M

i i k

k

P S S

=

=   (7) 

where 𝑃𝑖  is the probability that job i is selected, and M denotes 

the number of waiting jobs. This probability is introduced to 

express the uncertainty in the job sequencing. 

The flowchart of the experiments for the proposed method 

is shown in Fig. 1. In the experiments, we use RankNet and 

ListNet to compare the pairwise and listwise approaches. In 

these methods, ANN is used as a classifier/regressor. In 

addition, the methods with/without Voting Filter are also 

compared. In the training of ANN, the Cross Entropy Loss with 

the L2 regularization term is applied as the loss function [19]. 

The event data is divided into training, validation, and test 

datasets. To prevent data leak, the event data are arranged in 

order of event occurrence date, and then divided into the three 

datasets. The rate of events in each dataset is 40% for training, 

20% for validation, and 40% for test. The validation dataset is 

used for tuning hyper-parameters of the L2 regularization term. 

The experimental results using RankNet and ListNet are 

shown in Table 1. Cases 1 and 2 are the results from the 

maximum score selection and stochastic selection scenarios, 

respectively. Case 3 denotes the results when the training and 

validation dataset are generated from the stochastic selection 

scenario and the test dataset is generated from the maximum 

score selection scenario. In cases 1 and 2, there is no significant 

difference between RankNet and ListNet. However, in case 3, 

RankNet outperforms ListNet. This result means that in our 

case RankNet is more robust to the uncertainty.  

One reason why RankNet is better may be related to the rate 

of samples that comply with the ground truth rule, i.e. correct 

samples. Consider an event where there are N jobs waiting and 

the job with the second largest score is selected. This event is 

regarded as an incorrect sample in the listwise approach. On 

the other hand, in the pairwise approach, N-2 samples among 

N-1 samples generated from the pairwise comparisons of the 

waiting jobs hold correctness. The actual rate of correct 

samples in the training dataset is 64 % and 15 % in RankNet 

and ListNet, respectively. These results suggest that the 

pairwise approach is suitable for JSRIP with the uncertainty 

compared to the listwise approach. 

 

 

Fig. 1. Flowchart of the experiments for the proposed method 
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Table 1. Top-1 accuracy for virtual production data. 

Case RankNet ListNet 

1 Maximum score selection 98.0 % 98.1 % 

2 Stochastic selection 15.4 % 15.4 % 

3 
Training, Validation: Stochastic selection 

Test: Maximum score selection 
88.9 % 71.5 % 

Table 2. Result of reliable/unreliable judgement by Voting filter. 

            (i) RankNet                                        (ii) ListNet 

 

Table 3. Top-1 accuracy of RankNet/ListNet for different sample sets. 

Case RankNet ListNet 

1 All samples (a)(b)(c)(d) 88.9 % 71.5 % 

2 Correct samples (a)(b) 97.5 % 91.8 % 

3 Correct or reliable samples (a)(b)(c) 92.5 % 86.6 % 

4 Correct and reliable samples (a) 92.5 % 81.9 % 

5 Reliable samples (a)(c) 90.6 % 64.9 % 

 

Next, the experimental results using RankNet/ListNet with 

Voting filter is shown in Table 2 and 3. Table 2 shows the 

results of reliable / unreliable judgement by Voting filter. The 

percentage values in this table denotes the rate of samples in 

the training dataset. For instance, the value in (a) denotes the 

rate of samples which are correct and judged as reliable by 

Voting filter. The values in the parentheses in (b) and (c) denote 

the false detection rate and overlooking rate respectively. The 

false detection rate is the rate of the samples judged as 

unreliable among all correct samples, and the overlooking rate 

is the rate of samples judged as reliable among all incorrect 

samples.  

The reliable / unreliable judgment is made with a low false 

detection rate and overlooking rate in RankNet. On the other 

hand, the false detection rate is high in ListNet. This is because 

ListNet is a multi-class classification method, which is difficult 

to obtain the same prediction result among the weak classifiers, 

while RankNet is a 0-1 classification method. Table 3 shows 

the Top-1 accuracy of RankNet / ListNet for five cases in which 

the samples used for training are different. The case 5 

corresponds to the result of the proposed method (RankNet / 

ListNet with Voting Filter). In the case 2 that only correct 

samples are used for the training, high accuracy is realized. And, 

the accuracy degrades due to increase of incorrect data (case 3), 

decrease of correct data (case 4), and both of them (case 5). 

This degradation is more pronounced in ListNet, and ListNet 

with Voting filter (case 5) is inferior to the original ListNet 

(case 1). On the other hand, RankNet with Voting filter shows 

the improvement compared to the original RankNet because 

the false detection rate and the overlooking rate are low as 

described above.  

4.2. Experiment using Real Production Data 

To evaluate the feasibility of the proposed method for 

realistic scenarios, we then conducted experiments using POP 

data collected from a real production plant. In this plant, over 

one hundred product types of industrial equipment are 

produced in mixed flow. The attributes of the product type are 

composed with eight categorical attributes such as product 

model name and five numerical attributes such as product 

length. From the POP data, we selected one process as a target 

and extracted about 2,000 job selection events in the process. 

In this process, jobs are processed by a machine, and a operator 

of the machine selects a next job from waiting jobs.  

Table 4 shows the Top-1 and Top-5 accuracy of RankNet 

and ListNet. For the comparison, the accuracy when the 

rankings are predicted by general rules such as FIFO and EDD 

is also shown. As shown in the table, there is no significant 

difference in the prediction performance between RankNet and 

ListNet. In both methods, the Top-1 accuracy is not very high, 

but the Top-5 accuracy reaches about 90%. From this result, it 

can be considered that the trained ranking model can express 

the major tendency of the ground truth rule. One reason for the 

degraded Top-1 accuracy could be the uncertainty in the actual 

job sequencing, i.e. deviation from the ground truth rule.  

Additionally, we investigate the feature importance to find 

the key features in the job sequencing rule. By using Random 

Forest as the classification method in the pairwise approach, 

the out-of-bag feature importance is calculated as shown in Fig. 

2. The result shows that the key features are the waiting time 

(WT_A an WT_B in Fig.2) and the difference of 3rd and 4th 

categorical product type attributes between the waiting job and 

the job processed before (X_A3, X_B3, X_A4 and X_B4 in 

Fig.2). Here we have censored the actual attributes to protect 

the production data. This result indicates that the ground truth 

rule in this scenario includes the setup reduction perspective, 

Table 4. Top-1 and Top-5 accuracy for real production data. 

Ranking model Top-1 accuracy Top-5 accuracy 

RankNet 61 % 90 % 

ListNet 62 % 90 % 

FIFO 5 % 36 % 

EDD 15 % 49 % 

 

 

Fig. 2. Feature importance for real production data 
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and the features shown in Eq. (3), which describe the difference 

of categorical product type attributes between the waiting jobs 

and the job processed before, should be considered to identify 

the ground truth rule. 

5. Summary and Conclusion 

In this paper, we have proposed a job sequencing rule 

identification method to realize automated data-driven 

modeling of operational control rules for production simulation. 

At first, we organized the job sequencing rule identification 

problem (JSRIP) as a form of Learning to Rank problem. We 

clarified the difference between the two problems and 

investigated the applicability of Learning to Rank methods to 

JSRIP. Through the experiments using real production data, it 

was found that considering sequence-dependent setup 

operations is important for JSRIP in practical cases. By 

introducing the difference of product type attributes between 

the waiting job and the jobs processed before as features, the 

methods show good prediction accuracy for the real scenarios. 

In addition, we compared the pairwise and listwise 

approaches for JSRIP with the uncertainty in the job 

sequencing. We found that the pairwise approach (RankNet) is 

more robust to uncertainty than the listwise approach (ListNet) 

and the pairwise approach can identify the ground truth rule 

accurately even in the existence of the uncertainty. Furthermore, 

we proposed a novel method utilizing Voting filter to reduce 

the influence of the uncertainty. Voting filter did not work well 

for the listwise approach. On the other hand, in the pairwise 

approach, the training samples were filtered with low false 

detection rate and low overlooking rate by Voting filter and the 

proposed method (RankNet with Voting filter) showed the 

improvement in the accuracy compared to the original RankNet. 

The rules discovered by the proposed methodology are 

inputs into constructing production line simulation models. The 

rules are implemented by simulation queues that use the rules 

to sequence jobs to be processed. These simulations are useful 

for optimizing production planning and operations 

management decisions. 

One future works is to evaluate using other ranking methods 

and filtering methods. It would be also interesting to investigate 

what kind of classification / regression algorithm is suitable for 

JSRIP with uncertainty. In addition, it is important to 

investigate how the prediction error of the job ranking model 

affects the accuracy of production simulation. Furthermore, 

rule identification methods for the other operation control rules 

such as resource assignment rules should be developed to 

automate the whole production simulation modeling process. 

Disclaimer 

Commercial equipment and materials might be identified to 

adequately specify certain procedures. In no case does such 

identification imply recommendation or endorsement by the 

U.S. National Institute of Standards and Technology, nor does 

it imply that the materials or equipment identified are 

necessarily the best available for the purpose. 
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