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INTRODUCTION 

The first International Roadmap for Devices and Systems (IRDS)1 was published in 2018 and builds on the decades-long 

effort by the International Technology Roadmap Semiconductors (ITRS). The IRDS Metrology Chapter identifies emerging 

measurement challenges from devices, systems, and integration in the semiconductor industry and describes research and 

development pathways for meeting them, covering the next 15 years1. This includes, but is not limited to, measurement needs 

for extending CMOS, accelerating beyond CMOS technologies, novel communication devices, sensors and transducers, 

materials characterization and structure-function relationships. 

 

Although devices based on traditional CMOS architectures are expected to reach their physical limits in the next few years, 

the devices and materials involved are more complex and difficult to measure than ever before2. The nanoscale sizes mean that 

the same fundamental limitations that will affect device performance also affect available metrology methods3. In addition to 

nanoscale size and complex structure, next generation devices will incorporate new materials such as graphene and transition 

metal dichalcogenide films. Because of changes in materials properties, measurements of film thickness and other parameters 

will require considerably more information about the layer-dependent material properties. This could be challenging for 

existing metrology techniques. The presentation will outline some of the key materials and lithography metrology challenges 

and highlight promising new techniques in an era of not only increased complexity, but one where scaling is no longer the main 

industry driver. 
 

 

DEVICE AND LITHOGRAPHY OPTIONS 

With the proliferation of non-planar device architectures, a key challenge for metrologists has been to develop the techniques 

required to obtain full three-dimensional device structure information.  The introduction of gate all around (GAA) structures 

(lateral GAA and vertical GAA) and monolithic 3D structures4 would make this even more challenging. Some of the challenges 

of GAA include small target volumes, localized information, and low signal to noise ratios. In addition to the above issues, 

monolithic 3D has the problem of non-uniform sensitivities at different depths. This means that metrology solutions would 

need to have a large depth of focus or be transmissive. In addition, 3D stacked chips and 3D very large-scale integration (3D 

VLSI) are fully functional tiers, so destructive characterization would be prohibitively expensive. Table 1 lists some of the 

device and lithography metrology challenges. 

Beyond classical CMOS, most of the proposed device candidates, such as 1D-2D field effect transistors, lateral and vertical 

heterostructures, include the use of 2D materials (such as graphene and molybdenum disulfide), which are susceptible to beam 

damage.  In addition to complex device structures, specific lithography options have their own challenges; for example, extreme 

ultra-violet (EUV) lithography has problems with mask defectivity, line-edge roughness and stochastics. Nanoimprint 

lithography’s metrology challenges include defectivity, overlay, and template inspection. In addition to defect inspection, 

directed self-assembly has unique challenges with overlay and defectivity. 
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TABLE 1. Device structure and lithography metrology challenges 
 Lateral Gate All 

Around  

Vertical Gate All 

Around 

3DVLSI/ Monolithic 3D 

Patterning 193i, EUV 193i, EUV 193i, High NA, EUV+(DSA) 

Channel 

Material 
Ge, IIV(TFET) Ge, IIV(TFET) Ge, IIV(TFET) 

2D Materials 

Metrology 

Challenges 
(Select 

Examples) 

• Small target volumes. 

• Localized information 

• Low SNR.  

• Non-uniform 

sensitivities 

 

• Small target volumes. 

• Localized information 

• Low SNR.  

• Non-uniform 

sensitivities 

• Future metrology 

techniques may be 

destructive. 

• Different materials on multiple levels. 

• Low contrast materials 

• Small target volumes. 

• Localized information 

• Low SNR.  

• Non-uniform sensitivities at different depths. 

• Nonsystematic DSA overlay shift. 

• Potential beam damage. 

• Low image contrast 

• Reduced cross-scattering due to small sizes 

• Difficulty obtaining optical properties (n & k) 

DSA, directed self-assembly; TFET, tunnel field-effect transistor; SNR, signal-to-noise ratio; NA, numerical aperture 

 

 

 
FIGURE 1: Lithography metrology gaps and limits. Continuous improvement and combined use of multiple methods could 

extend the applicability of some of these techniques5-8. All values are in nanometers; color key refers to limits of measurement 

techniques; LLBSE, low loss back-scattered electrons; SAXS, small angle x-ray scattering, HV, high voltage;  Figure courtesy of 

B. Bunday9. 

 

POSSIBLE METROLOGY SOLUTIONS 

Progress has been made in addressing many of the challenges listed in Table 1, but there continues to be the need for an 

additional broad range of metrology solutions commensurate with the complexities of the problems5, 10. Figure 1 shows 

metrology capabilities and approximate size limit needs for a wide range of lithography applications.  The range of 

measurements needed to characterize different aspects of 3D features means that a wide variety of tools and instruments are 

required11. No single technique has the needed resolution, range, and low levels of uncertainty required to enable it to fully 

characterize these features.  

A metrology approach that is gaining wider application is hybrid metrology, which relies on the complimentary use of 

multiple instruments. Figure 2 shows a conceptual diagram of multiple instruments being used to characterize a device. Each 

technique shown (scanning electron microscopy2, 6, atomic force microscopy12, 13, critical dimension x-ray scattering14, 

scatterometry15, and transmission electron microscopy16, 17) provides a specific capability18 that the others do not have.  In 

addition to multiple instruments, hybrid metrology also includes the use of statistical and combinatory techniques19 that allow 

complementary analysis of the same features using the best measurement attributes of each technique. 

Other promising methods include the use of ptychography-based methods to enhance electron, optical and X-ray based 

methods. Electron ptychography techniques were recently demonstrated for imaging 2D materials without causing beam 

damage, achieving a resolution of 0.04 nm20. At a larger length scale, X-ray ptychography methods were recently used to image 

and reconstruct whole chips with a resolution of 14.6 nm over a 10 m range21. 



Machine learning and other advanced analytics22 techniques are gaining wide application in metrology2. This goes beyond 

data analysis and classification, and extends to instrument and measurement process optimization, including hybrid and virtual 

metrology.  

 

 

 
FIGURE 2: Multi-Instrument evaluation of a 3D stacked chip. Increasingly, advanced data analytics plays an increasingly major 

role in synthesizing information from multiple instruments23-30  and process parameters. Figure courtesy of G. Orji and B. Barnes2. 
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