
An Approach to T-way Test Sequence Generation With Constraints

Feng Duan, Yu Lei
University of Texas at Arlington

Arlington, TX 76019, USA
feng.duan@mavs.uta.edu,

ylei@cse.uta.edu

Raghu N. Kacker, D. Richard Kuhn
National Institute of Standards and Technology

Gaithersburg, MD 20899, USA
{raghu.kacker, kuhn}@nist.gov

Abstract—In this paper we address the problem of constraint
handling in t-way test sequence generation. We develop a
notation for specifying sequencing constraints and present a t-
way test sequence generation that handles the constraints
specified in this notation. We report a case study in which we
applied our notation and test generation algorithm to a real-
life communication protocol. Our experience indicates that our
notation is intuitive to use and allows us to express important
sequencing constraints for the protocol. However, the test
generation algorithm takes a significant amount of time. This
work is part of our larger effort to make t-way sequence
testing practically useful.

Keywords-Test Sequence Generation; Sequencing Constraint;
T-way Sequence Coverage; Sequence Testing; Event-based
Testing; Combinatorial Testing

I. INTRODUCTION
Many systems, e.g., interactive systems [1], event-driven

systems [2] and communication protocols [3], exhibit
sequencing behavior, where a sequence of events is
exercised during each execution and the order in which the
events occur could significantly affect the system behavior.
To test these systems, we need to generate test sequences, in
addition to test data.

T-way sequence testing applies the notion of t-way
coverage to test sequence generation [4]. Informally, given
any t events, if they could be exercised in a given order, there
must exist at least one test sequence in which these events
are exercised in this order. Doing so allows us to test all
possible interactions between any t events. Thus, t-way
sequence testing can expose faults that are caused by
interactions between no more than t events.

One important problem in t-way sequence testing is
dealing with sequencing constraints [5], i.e., restrictions on
the order of events that must be satisfied for a test sequence
to be valid. The technical challenge is two-fold. First, a
notation is needed to specify sequencing constraints. This
notation must be easy to use and have the power to express
commonly encountered constraints. Second, a test generation
algorithm must be developed to handle sequencing
constraints. Compared to constraints on data values,
sequencing constraints can be more difficult to handle. This
is because the space that needs to be searched in the
evaluation process for sequencing constraints can be much
larger due to the extra dimension, i.e., order of events.

Recent years have seen significant progress on t-way test
data generation, but not on t-way test sequence generation
[6]. Kuhn et al. [4] presented an approach to generate SCAs
(Sequence Covering Arrays) for testing special systems.
Their approach requires each event occurs exactly once in
each test sequence, and only supports one type of constraint.
Yu et al. [7][8] presented another approach to t-way test
sequence generation based on a Labeled Transition System
(LTS) model that captures system behavior. An LTS model
is similar to a finite state machine where the sequencing
constraints are implicitly encoded in the state transitions.
However, as an operational model, LTS is at a very low level
of abstraction and requires a lot of details on how a system
operates in terms of states and transitions. As a result, LTS
models are seldom available in practice.

In this paper we develop a notation for specifying
sequencing constraints and present a t-way test sequence
generation algorithm that handles constraints specified in this
notation. Our notation adopts an event-oriented framework.
It defines a small set of basic operators that capture several
fundamental orderings that could happen between two events.
These operators can be nested, if necessary, to specify the
sequencing behavior between multiple events. Our notation
is at a higher level of abstraction than an operational model
such as LTS. Also we believe that since we deal with
sequences of events, an event-oriented notation is more
intuitive than a state machine-based notation.

Our test sequence generation algorithm employs a greedy
strategy in which each test sequence is generated such that a
maximal number of t-way target sequences can be covered in
the sequence. A t-way target sequence is a sequence of t
events that could be covered in the given order, i.e., the order
in which they appear in the sequence. Each test sequence is
generated in two phases, including the starting phase and the
extension phase. In the starting phase, we generate a starting
sequence that is guaranteed to cover at least one target
sequence. In the extension phase, we keep extending the test
sequence until no extension is possible. At each extension,
we append to the test sequence an event that covers the most
t-way target sequences that are yet to be covered.

We report a case study in which we applied our approach
to a communication protocol, i.e., IEEE 11073-20601 [10].
This protocol is used to exchange data between Personal
Health Devices (PHDs), e.g., smart scales, and computing
devices, e.g., desktop computers. We identified a set of 9
sequencing constraints and wrote them using our notation.

241

2019 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)

978-1-7281-0888-9/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSTW.2019.00059

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 18,2020 at 21:30:19 UTC from IEEE Xplore. Restrictions apply.

We generated a set of 24 test sequences that achieve 2-way
sequence coverage while satisfying all the sequencing
constraints. Our experience indicates that our notation is
intuitive to use and allows us to express important
sequencing constraints for this protocol. However, while our
algorithm allows us to generate t-way test sequence set, it is
computationally expensive. For example, it takes 5 and half
hours for generating test sequences with lengths up to 9, and
2 days with lengths up to 10. While this is partly due to the
nature of the problem, we believe there are opportunities for
optimization which we will explore in our future work.

We focus on positive testing in this paper. That is, we
generate test sequences that satisfy all the sequencing
constraints. However, sequencing constraints are also useful
for negative testing. For example, test sequences could be
generated for negative testing that violate constraints in a
systematic manner.

The remainder of the paper is organized as follows.
Section II explains our basic idea with a motivating example.
Section III presents the syntax and semantics of our notation
to specify sequencing constraints. We also introduce two
other types of constraints, i.e., repetition and length
constraints, which are used to control test sequence length.
Section IV first presents the definitions of t-way target and
test sequences, and then describes our test generation
algorithm that handles constraints. Section V presents the
results of our case study on the PHD protocol, including the
sequencing constraints identified and some statistics on the
test sequences generated. Section VI discusses related work
on t-way test sequence generation. Section VII provides
concluding remarks and our plan for future work.

II. MOTIVATING EXAMPLE
In this section, we use File API as a motivating example

to show the basic idea of our work, including how to model
the sequencing behavior of a system in terms of events and
constraints, and how to generate a set of test sequences for t-
way sequence coverage.

A. Model Sequencing Behavior
A sequencing model M = <E, C> consists of two

components: (1) E: a set of events that could be exercised in
a system execution; (2) C: a set of constraints that restrict the
occurrences of these events in a system execution.

In File API, there are four major file operations,
including open, close, read, and write. In the sequencing
model, each of these operations is modeled as an event. Thus,
E = {open, close, read, write}.

Based on the semantics of file operations, the following
constraints can be identified in terms of the order in which
these events could be exercised. These constraints are
referred to as sequencing constraints.

(1) The first event of a test sequence must be open.

(2) The file must be open before read, write, or close.

(3) The last event of a test sequence must be close.

We introduce an event-oriented notation to model the
above constraints. To model the first constraint, we specify

that the open event must happen before all the other three
events. More precisely, in a test sequence, whenever there is
a read, write, or close event e, there must exist an open event
that is exercised before e. To model the second constraint,
we specify that open must happen before read, write or close
and there shall be no close in between. To model the third
constraint, we specify that the close event must happen after
all other three events. More precisely, in a test sequence,
whenever there is an open, read, or write event e, there must
exist a close event that is exercised after e.

In addition to sequencing constraints, we introduce two
other types of constraint, namely repetition and length
constraints, to control the length of a test sequence. A
repetition constraint specifies the number of times a certain
event could be repeated in a test sequence. For example, we
could specify that open/close could only occur once in a test
sequence. A length constraint specifies the minimum and/or
maximum length of a test sequence.

In Section III, we introduce a formal notation to specify
the three types of constraints in detail.

B. Test Sequence Generation
After a sequencing model is specified, a test sequence set

can be generated to achieve t-way sequence coverage. Recall
that t-way sequence coverage requires that every t-way
(target) sequence, i.e., every sequence of t events that could
be exercised in the given order, consecutively or not, be
exercised so by at least one test sequence.

For example, for File API, the set of 2-way sequences is
{<open, open>, <open, close>, ..., <read, write>, ..., <write,
write>} (the set size = 4^2 = 16). Note that the existence of
constraints may make some of these sequences uncoverable,
i.e., they cannot be covered by any test sequence that
satisfies all the constraints. In this paper, we use <e1, e2, ...>
to represent target sequences, and use [e1, e2, ...] to represent
test sequences. A 2-way target sequence <e1, e2> is covered
by a test sequence in the form of [..., e1, ..., e2, ...].

If we specify some repetition constraints such that no
event could be repeated in a test sequence, in addition to the
three sequencing constraints mentioned earlier, there is a
total of seven 2-way target sequences {<open, close>, <open,
read>, <open, write>, <read, close>, <read, write>, <write,
close>, <write, read>}. A greedy algorithm can be used to
generate a 2-way test sequence set such that all the test
sequences satisfy all the constraints, and every target
sequence is covered by at least one test sequence.

The details of the greedy algorithm are presented in
Section IV. The following example illustrates the basic idea
of the algorithm:

1. We first construct a starting sequence that covers at
least one target sequence. We begin with an empty test
sequence []. The only possible event that could be added is
open due to sequencing constraint (1). The resulting
sequence is [open].

2. We further extend [open]. There are three possible
choices: [open, read]/[open, write]/[open, close]. Note that
[open, open] is not allowed due to the repetition constraint.

242

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 18,2020 at 21:30:19 UTC from IEEE Xplore. Restrictions apply.

All of the three choices cover one target sequence. We
choose [open, read] as our starting sequence.

3. Now we try to extend the starting sequence. We
append to the sequence one event at a time. We first append
write, followed by close, as these two events allow the most
target sequences to be covered. The resulting sequence is
[open, read, write, close], which cannot be further extended.

4. We repeat the above process to generate additional test
sequences until all the remaining target sequences are
covered.

The final 2-way test sequence set consists of two test
sequences {[open, read, write, close], [open, write, read,
close]}. These two sequences satisfy all the constraints and
cover all of the seven 2-way target sequences.

III. NOTATION FOR CONSTRAINT SPECIFICATION
Our notation supports three types of constraints,

including repetition, length and sequencing constraints.
Recall that repetition and length constraints are used to
control the length of a test sequence.

First, we introduce the syntax and semantics of repetition
and length constraints:

 A repetition constraint is in the form of “e.# ≤ r”,
denoting that, in a test sequence, an event e could
occur no more than r times. A default repetition
constraint can be specified in the form of “# ≤ r”,
denoting that no event could occur for more than r
times. The default constraint can be overridden by an
event-specific constraint.

 A length constraint is in the form of “TOTAL_LEN ≥
min” or “TOTAL_LEN ≤ max”, denoting that, the
total length of a test sequence should be greater than
or equal to min, or/and smaller than or equal to max.

By default, “# ≤ 1” is given to ensure the termination of
test sequence generation. That is, by default, each event is
only allowed to appear once in a test sequence.

The rest of this section is focused on the syntax and
semantics of sequencing constraints.

A. Syntax of Sequencing Constraints
The syntax of sequencing constraints is specified in BNF

(Backus–Naur form) as shown in Fig. 1.
<sequencing constraint> ::= <sequencing expression>

| <sequencing constraint> ˅ <sequencing constraint>
| <sequencing constraint> ˄ <sequencing constraint>
| (<sequencing constraint>)

<sequencing expression> ::=
<sequencing expression> <general sequencing operator> <events>
| <events> <general sequencing operator> <events>
| <events> <immediate sequencing operator> <events>

<events> ::= <event> | <event set>
| <always sequencing operator> <event>
| <always sequencing operator> <event set>

<always sequencing operator> ::= “_”
<immediate sequencing operator> ::= “*−” | “−*” | “~”
<general sequencing operator> ::= “*⋯” | “⋯*” | “∙~∙”

Figure 1. BNF of sequencing constraints

There are two types of operators: Boolean and
sequencing operators. Sequencing operators can be divided
into three groups: immediate operators, general operators,
and always operator.

Note that <event set> is a set of events. That is, we allow
event sets, as well as individual events, in a constraint
expression. In this paper, we will use the notation of {e1,
e2, …, en} to denote an event set, where e1, e2, …, en are
individual events. The reason why this is allowed is
explained in Section III.B.

A sequencing constraint can be derived from this syntax
as shown in Fig. 2.

<sequencing constraint>
=> <sequencing expression>
=> <sequencing expression> <general sequencing operator> <events>
=> <events> <general sequencing operator> <events> <general sequencing

operator> <events>
=> <always sequencing operator> <event> <general sequencing operator>

<event> <general sequencing operator> <event set>
=> open ∙~∙ close ⋯* {read, write, close}

Figure 2. Derivation of a sequencing constraint from BNF

Note that the precedence of the operators is defined from
highest to lowest as follows: unary sequencing operator,
binary sequencing operators, (), ˄ and ˅.

B. Semantics of Sequencing Operators

TABLE I. INFORMAL EXPLANATION OF SEQUENCING OPERATORS

Sequencing
Operator

Explanation

_e (or e) e always happens

e1 *− e2 If e1 happens, then e2 must immediately happen after e1

e1 −* e2 If e2 happens, then e1 must immediately happen before e2

e1 ~ e2 e2 never immediately happens after e1 (or e1 never
immediately happens before e2)

e1 *⋯ e2 If e1 happens, then e2 must happen after e1, but not
necessarily immediately happen after e1

e1 ⋯* e2 If e2 happens, then e1 must happen before e2, but not
necessarily immediately happen before e2

e1 ∙~∙ e2 e1 never happens before e2 (or e2 never happens after e1)

TABLE I lists all the sequencing operators in our

notation and provides an informal explanation of each
operator. We make the following notes about the symbols
used to represent the operator:

(a) _: This indicates that the event always happens. (In
this paper, this operator is shown as an underline, e.g., e.)

(b) −/⋯: Both indicate the left event happens before the
right event. However, − requires that the two events are next
to each other, whereas ⋯ does not.

(c) ~/∙~∙: Both indicate the left event never happens
before the right event. However, ~ only requires that the two
events do not happen next to each other, whereas ∙~∙ requires
that the right event cannot happen one after the left event.

(d) *: It indicates that the constraint applies only if the
left (or right) event exists, if it appears left (or right) to the
operator.

243

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 18,2020 at 21:30:19 UTC from IEEE Xplore. Restrictions apply.

Recall that we allow a sequencing operator to be applied
to a set of events. For example, “E1 *− E2” denotes that,
immediately after any event in set E1, an event in set E2
must happen. The reason why this is necessary is that
Boolean operators on sequencing constraints with individual
events cannot specify some constraints. For example, “e1 *−
{e2, e3}” ≠ “e1 *− e2 ˅ e1 *− e3”. Given a test sequence [...e1,
e2, ..., e1, e3, ...] containing two occurrences of event e1, “e1
*− e2” is not satisfied on the second occurrence of e1, while
“e1 *− e3” is not satisfied on the first occurrence of e1. Thus,
none of the two constraints are satisfied. However, the
constraint “an event belongs to {e2, e3} must happen after e1”
denoted by “e1 *− {e2, e3}” is satisfied on both occurrences
of e1.

In the following, we use an automaton to formally define
the semantics of each sequencing operator. (Note that in each
automaton, ¬ e indicates any event other event e; ∀e
indicates any event; e1 ˅ e2 indicates e1 or e2.)

1. Always sequencing operator
(1) e

Figure 3. Semantics of “e”

Fig. 3 shows that, given an input sequence, if an
occurrence of event e exists, the sequence should be accepted.
Otherwise, it is rejected.

2. Immediate sequencing operators
(2) e1 *− e2

Figure 4. Semantics of “e1 *− e2”

Fig. 4 shows that given an input sequence, if every
occurrence of event e1 is immediately followed by an
occurrence of event e2, the sequence should be accepted.
Otherwise, it is rejected.

(3) e1 −* e2

Figure 5. Semantics of “e1 −* e2”

Fig. 5 shows that given an input sequence, if any
occurrence of event e2 exists that is NOT immediately after

an occurrence of event e1, the sequence should be rejected.
Otherwise, it is accepted.

(4) e1 ~ e2

Figure 6. Semantics of “e1 ~ e2”

Fig. 6 shows that, given an input sequence, if any
occurrence of event e2 exists immediately after an occurrence
of event e1, the sequence should be rejected. Otherwise, it is
accepted.

3. General sequencing operators
The automaton of each general operator is similar to the

automaton of the corresponding immediate operator, but in
general simpler. This is because the semantics of the
immediate operators are stricter, except that ∙~∙ is stricter
than ~.

(5) e1 *⋯ e2

Figure 7. Semantics of “e1 *⋯ e2”

(6) e1 ⋯* e2

Figure 8. Semantics of “e1 ⋯* e2”

(7) e1 ∙~∙ e2

Figure 9. Semantics of “e1 ∙~∙ e2”

General sequencing operators can be nested in our
notation. The semantics of a nested expression “<sequencing
expression> <general sequencing operator> <events>”,
where <sequencing expression> is the nesting expression,
can be defined in a recursive manner. As an example,
consider “B ⋯* e3”, where B = “e1 ∙~∙ e2”. This nested
expression can be written as “e1 ∙~∙ e2 ⋯* e3”. It denotes that
if event e3 happens, B must be satisfied by a subsequence

e
¬ e ∀e

e2

e1
¬ e1

¬ e2 Error

Error e1

¬ (e1 ˅ e2)

e2
e2

¬ e2 e2

¬ (e1 ˅ e2)

e1

e2 e1
¬ e1

¬ e2
Error

e2

e1
¬ e1 ¬ e2

e1

¬ (e1 ˅ e2)

e2

Error

∀e

e2 e1
¬ e1 ¬ e2

Error

244

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 18,2020 at 21:30:19 UTC from IEEE Xplore. Restrictions apply.

before e3 in which “e1 always happens, and e2 never happens
after e1”. In other words, before each occurrence of e3, there
must be an occurrence of e1 to satisfy B, so that e2 never
happens between this occurrence of e1 and the occurrence of
e3.

Recall that a sequencing operator may involve an event
set E. The semantics of each operator with a set of events can
be specified using the corresponding automaton with
individual events, except that we need to replace “event e”
with “any event in E”.

C. Example
We can use our constraint notation to represent the

sequencing constraints identified in Section II as follows:
(1) “open ⋯* {close, read, write}”: This constraint says that,

if there exists an event close, read or write, there must
exist an open event before this event. This ensures that
open is the first event.

(2) “open ∙~∙ close ⋯* {read, write, close}”: This constraint
says that if there exists an occurrence of event read,
write, or close, there must exist an occurrence of event
open before it, and the subsequence separated by the
two occurrences satisfies “after this occurrence of open,
before this occurrence of read, write, or close, an
occurrence of close never exist”. This ensures that the
file is open before it is read, written, or closed.

(3) “{open, read, write} *⋯ close”: This constraint says that,
after there exists an open, read or write event, a close
event must exist. This ensures that close is the last event.

IV. APPROACH

A. Basic Concepts
Informally, a target sequence is a sequence of events that

needs to be covered. A test sequence is a sequence of events
that can be executed by the subject system. Target sequences
are covered by test sequences to satisfy t-way sequence
coverage. In other words, target sequences are test
requirements, i.e., entities that must be covered to achieve t-
way sequence coverage, while test sequences are test cases
that cover test requirements. T-way sequence coverage
requires that for every target sequence of t events, if they
could be exercised in the given order, they must be exercised
so in at least one test sequence.

In the following, we formalize these concepts from the
perspective of test sequence generation, without considering
the semantics of the subject system. Let M = <E, C> be the
sequencing model of the subject system.

Definition 1. A sequence Q of events is valid if it satisfies
all the constraints in C; otherwise it is invalid.

In this paper we focus on positive testing. Thus, every
test sequence must be a valid sequence. Also, every valid
sequence can be used as a test sequence.

Definition 2. A sequence Q of events is extendable if it is
a proper prefix of another sequence of events that is valid.

Note that an extendable sequence itself may or may not
be valid.

Definition 3. A sequence Q of events covers another
sequence Q’ of events if all the events in Q’ appear in Q in
the same order as they appear in Q’.

In the above definition, it is important to note that the
events in Q’ do not have to appear consecutively in Q. For
example, a partial test sequence [open, read, write] covers
three 2-way sequences: <open, read>, <open, write> and
<read, write>.

Definition 4. A t-way target sequence Q is a t-way
sequence that can be covered by at least one test sequence.

Note that not every t-way sequence is a target sequence.
Consider the File API example. If a repetition constraint
requires that no event can be repeated, then 2-way sequences
<open, open> and <close, open> cannot be covered by any
test sequence. Thus, these sequences are not 2-way target
sequences.

Definition 5. Let Π be the set of all the t-way target
sequences. A t-way test sequence set Σ is a set of test
sequences such that for ∀π Π, ∃Q Σ such that Q covers π.

Considering the motivating example, a set of two test
sequences {[open, read, write, close], [open, write, read,
close]} covers all 2-way target sequences <open, close>,
<open, read>, <open, write>, <read, close>, <read, write>,
<write, close> and <write, read>.

Note that the above definitions are similar to our earlier
work in [7], which is however based on LTS.

B. Main Idea

Input: (a) A sequencing model M = (E, C), where E is a set of events and C
is a set of constraints, and (b) a test strength t
Output: A t-way test sequence set Σ
{

// Step 1: target sequence (candidate) generation
1. let Π be {π = <e1, e2, …, et> | ei E}

// Step 2: test sequence generation
2. let Σ be an empty set
3. while (Π is not empty) {
 // Step 2.1: starting phase
4. create a starting test sequence Q such that (a) Q covers at least one

target sequence in Π; and (b) Q is valid or extendable
5. if (Q cannot be created)
6. break
7. remove from Π the target sequences covered by Q
 // Step 2.2: extension phase
8. while (Q is extendable) {
9. append an event e in E to Q such that (a) Q.e covers the most target

sequences in Π; and (b) Q.e is valid or extendable
10. Q = Q.e
11. remove from Π the target sequences covered by Q
12. }
13. add Q into Σ
14. }
15. return Σ
}

Figure 10. Algorithm GenTestSeqs

Fig. 10 shows our test generation algorithm. The
algorithm consists of three major steps. The first step is to
generate target sequence candidates. Note that not every
sequence in Π is a target sequence, as some sequences in Π
may not be covered by any test sequence. As discussed later,
the second step guarantees that all the target sequences in Π

245

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 18,2020 at 21:30:19 UTC from IEEE Xplore. Restrictions apply.

will be covered. Thus, after the second step, the remaining
sequences in Π cannot be covered by any test sequence and
are not target sequences. We could check whether every
sequence in Π is a target sequence and remove those that are
not prior to the second step. This, however, is expensive and
redundant.

 In the second step, we generate test sequences to cover
all the target sequences. We first create a starting test
sequence Q to cover at least one remaining target sequence.
A starting test sequence must be valid or extendable. This is
necessary to ensure termination. If such a test sequence
cannot be created, all the target sequences in Π have already
been covered, and the algorithm terminates. Otherwise, we
extend Q by appending events one by one. Each time we
select an event that covers the most target sequences in Π.
When no event can be appended to Q, Q becomes a complete
(valid and not-extendable) test sequence, and we add Q into
the resulting test set and create another starting test sequence.
We continue to do so until we cannot find a starting
sequence that covers at least one sequence in Π.

We call the phase of creating a starting test sequence as a
starting phase in Line 4 - 7, and the phase of extending a test
sequence to be complete as an extension phase in Line 8 - 13.

C. Validity and Extensibility Check
In this part we discuss how to check if a test sequence is

valid and if a test sequence is extendable. These are two
important checks performed in our algorithm.

1. Validity check: Recall that there are three types of
constraints, sequencing, repetition, and length constraints.

Given a test sequence Q, we first check whether it
satisfies all the repetition and length constraints, which is
accomplished by counting its number of events. Next we
check whether it satisfies all the sequencing Constraints,
which is more complicated and is described as follows.

As indicated by the BNF grammar of Section III, there
are two types of constraints for solving: basic and nested.

(1) A basic expression “e <sequencing operator> e” only
involves two events (or event sets) in sequence, such as “e1
*− e2”. Based on basic temporal logic (as corresponding
automaton), the basic expression is true on Q if and only if Q
is accepted by our automaton. Note that, our Sequencing
Constraint Solver is only applicable to test sequence, i.e., not
target sequences whose validity need to be checked
differently.

(2) A nested expression “B <sequencing operator> e”
involves more than two events in sequence, since B is
another sequencing expression, such as “e1 ∙~∙ e2 *⋯ e3”,
(i.e., “B *⋯ e3”, B = “e1 ∙~∙ e2”). Automatons will be
recursively called by the nested structure. The Boolean result
of the nested expression “B *⋯ e3” on Q is decided by “if B
is true on a subsequence of Q, whether e3 happens after the
subsequence”. Thus, the global Boolean result is that “if ‘e1
always happens and e2 never happens after e1’ is true,
whether e3 happens after e1”.

2. Extensibility check: Fig. 11 shows our algorithm for
checking whether a sequence is extensible. The algorithm
employs a recursive DFS (Depth-First Search) strategy. Note
that in order to prevent infinite extension, we set a default

repetition constraint which requires every event be repeated
no more than t times, where t is the coverage strength, if the
user does not specify any length constraint to restrict the
maximum length of a sequence. Thus, a maximum length
could always be derived from the repetition and length
constraint.

Boolean isExtendable(Q, E, C)
{
 let max_length be the maximum length implied by all the repetition and

length constraints
 if (Q.length >= max_length)
 return false
 for (each event e in E) {

set Q’ to be Q.e
if (isValid(Q’, C))

return true
else if (isExtendable(Q’, E, C))

return true
}
return false

}

Figure 11. Extensibility Check Algorithm

D. Test Sequence Generation
In this part, we discuss two main challenges of our

generation approach shown in Fig. 10.
The first challenge of our generation approach is that,

due to the limitation of our automatons which are only
available for consecutive sequence, we cannot directly check
the validity of target sequences.

As indicated in Line 1, we enumerate all possible
permutations (with repetition) of any t events as t-way target
sequence candidates. The same event could be exercised for
up to t times in a permutation. Recall that some of these
candidates cannot be covered by any test sequence, while
others can be covered.

Our solution is to remove covered t-way sequences from
the set of candidates during test sequence generation. After
the generation finished, we consider the remaining
uncovered t-way sequence candidates as invalid. The reasons
why our solution works are as follows.

(1) Covered target sequences must be valid: According to
our definition of valid sequence, and our previous research
on constraint handling [9], all subsequences covered by a test
sequence are valid. In other words, an invalid t-way
sequence cannot be covered by any test sequence.

(2) Valid target sequences must be covered: For each
starting phase, it ensures to cover at least one remaining t-
way sequence candidate, until no such starting sequence can
be created. So, before the break in Line 6, all valid t-way
sequence candidates must have been covered by test
sequences.

The second challenge of our generation approach is to
create a starting sequence, i.e., a valid or extendable test
sequence that covers at least one remaining t-way target
sequence, within a reasonable time.

As indicated in Line 4, in order to ensure termination of
test sequence generation, we create a starting test sequence
that covers at least one target sequence in Π. Our solution is
to adopt a BFS (Breadth-First Search) strategy as in Fig. 12.

246

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 18,2020 at 21:30:19 UTC from IEEE Xplore. Restrictions apply.

Note that, validity and extensibility check can only guarantee
to generate a complete test sequence, not for coverage, which
may not cover any remaining target sequence.

Input: (a) A sequencing model M = (E, C), where E is a set of events and C
is a set of constraints, (b) a test strength t, and (c) a set of remaining target
sequence candidates Π
Output: A starting test sequence Q
{
 // Initialize a queue of starting sequence candidates U

let U be a queue consisting of all the event sequences of length t
while (U is not empty) {

remove the first sequence Q from U
if (Q covers at least one target sequence in Π) {

if (Q is valid or extendable)
return Q

}
else if (Q is extendable) {

for (each event e in E)
append e to Q and add it to the end of U

}
}
return null

}

Figure 12. Algorithm for creating a Starting Test Sequence

V. CASE STUDY
In this section, we apply our test sequence generation

framework to the IEEE 11073-20601 protocol (Optimized
Exchange Protocol) [10]. As a core component in the
standards family of IEEE 11073, this protocol defines a
communication model that allows PHDs (Personal
Healthcare Devices) to exchange data with computing
devices like mobile phones, set-top boxes, and personal
computers.

A. Overview of the Protocol
In IEEE 11073, there are two types of devices, agent and

manager devices. Agents are personal healthcare devices that
are used to obtain measured health data from the user.
Examples of agents include blood pressure monitors,
weighing scales and blood glucose monitors. Managers
manage and process the data collected by agents. Examples
of managers include mobile phones, set-top boxes and PCs.

Figure 13. An example scenario of Data Exchange

We reuse an example scenario from our earlier work [8]
to illustrate how an agent exchanges data with a manager. In
the scenario, the agent device is a weighting scale. It sends
an Association request to the manager. The association
request contains the weighting scale’s configuration
information, e.g., system ID, protocol version number. If the
manager recognizes the agent, it accepts the association
request and sends to the agent an Association acceptance
message. At this point, the two devices are ready to exchange
actual data. Next the agent sends measurement data, e.g.,
weight information, to the manager using a Confirmed Event
Report message. The manager successfully receives the
Confirmed Event Report and sends back the
acknowledgement. At the end of this scenario the agent
requests to release the association with an Association
release request message, and the manager releases the
association and sends back to the agent an Association
release response message.

In this case study, we identify sequencing constraints that
the protocol imposes on the communication behavior. We
specify these constraints using the notation developed in
Section III and generate t-way test sequences that satisfy
these constraints. These test sequences can be used to
perform conformance testing of an implementation of the
protocol, e.g., Antidote [11].

B. Sequencing Constraints
We identify constraints from the manager’s perspective.

Constraints can be similarly identified from the agent’s
perspective. In particular, as participants of the same
protocol, agent and manager exhibit to a large extent
symmetrical behavior, in terms that a send event on one side
corresponds to a receive event on the other side.

The events on the manager side can be divided into three
groups, based on their source and destination:

 Event beginning with REQ – There is a single request
event, REQ_assoc_rel, sent from the application
software interface, and it is triggered and handled
inside the manager.

 Events beginning with Rx – These events are requests
sent from the agent to the manager. They include
Rx_assoc_rel_req, Rx_assoc_rel_rsp, Rx_assoc_req,
Rx_config_event_report_req.

 Events beginning with Tx – These events are
responses sent from the manager to the agent. They
include Tx_assoc_rel_req, Tx_assoc_rel_rsp,
Tx_assoc_rsp_rejected, Tx_assoc_rsp_accepted,
Tx_assoc_rsp_accepted_unknown_config,
Tx_config_event_report_rsp_accepted_config,
Tx_config_event_report_rsp_unsupported_config.

Thus, there is a total of 12 events including 1 REQ, 4 Rx,
and 7 Tx events for the manager. Note that we ignore the
abort events which can happen anywhere, since we focus on
positive testing.

Alternatively, the events can be divided into three groups,
based on their functional areas.

 Events that establish association:

247

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 18,2020 at 21:30:19 UTC from IEEE Xplore. Restrictions apply.

Rx_assoc_req and its 3 possible responses
Tx_assoc_rsp_rejected, Tx_assoc_rsp_accepted,
Tx_assoc_rsp_accepted_unknown_config;
 Events that release association:

Rx_assoc_rel_req and its response Tx_assoc_rel_rsp;
REQ_assoc_rel, Tx_assoc_rel_req and its response

Rx_assoc_rel_rsp;
 Events that check configuration:

Rx_config_event_report_req and its 2 possible
responses Tx_config_event_report_rsp_accepted_config,
Tx_config_event_report_rsp_unsupported_config.

In our study, we first identify constraints from each

functional group separately and then put them together, e.g.,
using nested expressions. The final constraints are shown in
Fig. 14.

1. Rx_assoc_req ⋯* {all the events except Rx_assoc_req}

2. {all other events except the right three events} *⋯ {Tx_assoc_rel_rsp, Rx_assoc_rel_rsp, Tx_assoc_rsp_rejected}

3. Rx_assoc_rel_req − Tx_assoc_rel_rsp

4. Rx_assoc_req − {Tx_assoc_rsp_rejected, Tx_assoc_rsp_accepted, Tx_assoc_rsp_accepted_unknown_config}

5. Rx_config_event_report_req − {Tx_config_event_report_rsp_accepted_config, Tx_config_event_report_rsp_unsupported_config}

6. (Tx_assoc_rel_req ⋯* Rx_assoc_rel_rsp) ˄ (Tx_assoc_rel_req ∙~∙ {Tx_assoc_rel_rsp, Rx_assoc_rel_rsp} *⋯ Rx_assoc_rel_rsp)

7. {Tx_assoc_rsp_accepted, Tx_assoc_rsp_accepted_unknown_config} ∙~∙ {Tx_assoc_rel_rsp, Rx_assoc_rel_rsp} ⋯* {Rx_assoc_rel_req, REQ_assoc_rel}

8. (REQ_assoc_rel − Tx_assoc_rel_req) ˄ (Tx_assoc_rel_req *− {Rx_assoc_rel_rsp, Rx_assoc_rel_req}) ˄ (Tx_assoc_rel_req −* Rx_assoc_rel_rsp)

9. {Tx_assoc_rsp_accepted_unknown_config, Tx_config_event_report_rsp_unsupported_config} ∙~∙ {Rx_assoc_rel_req, REQ_assoc_rel} ⋯* Rx_config_event_report_req

Figure 14. All 9 sequencing constraints of PHD manager model

Constraint 1. Rx_assoc_req is the first event that must
happen before all other events. This event requests
association to be established.

Constraint 2. Tx_assoc_rel_rsp, Rx_assoc_rel_rsp,
Tx_assoc_rsp_rejected are the last events that must happen
after all other events. These events indicate that association
has been released or rejected.

Constraints 3-5. For convenience, we write “e1 −* e2 ˄ e1
*− e2” in its abbreviated form “e1 − e2”. Based on the
protocol semantics, after the manager receives a request, it
must immediately transmit an event as response.

Constraint 6. To maintain causal semantics, when a
response event happens, its corresponding request event
must happen before it. However, after a request event occurs,
a response event may not always happen, e.g., due to
disconnection or disassociation.

In the PHD protocol, after a request is transmitted, an
event of its possible response may not be received when
association has already been released by other events, which
is indicated by events Tx_assoc_rel_rsp or Rx_assoc_rel_rsp.
In other words, if these two events don’t happen after
Tx_assoc_rel_req, then Rx_assoc_rel_rsp must happen in
some time.

Constraint 7. We have two request events
Rx_assoc_rel_req and REQ_assoc_rel to release association
from agent and manager side. These two events can only
happen when the association is accepted and not yet released.

Constraint 8. When the manager triggers REQ_assoc_rel,
it will immediately transmit a release request, and then busy
wait until it receives either the release response or another
release request from the agent. The constraint restricts that
the manager must not finish association release until the
agent agrees.

Constraint 9. Similar to constraint 7,
Rx_config_event_report_req, which receives a new
configuration from the agent, can only happen after the

previous configuration is checked to be unknown or
unsupported and no release request has happened.

One benefit of our notation is that it allows incremental
specification. That is, we do not require all the constraints be
specified up front. Instead, we can begin with several
constraints, generate test sequences that satisfy these
constraints, and then check whether these sequences are as
expected. If not, we can add more constraints. This can be
repeated for multiple times until we capture all the
constraints.

C. Test Sequence Generation Results
The experimental environment is set up as the following:

OS: Windows 7 64bits, CPU: Intel Dual-Core i5 2.5GHz,
Memory: 8 GB DDR3, SDK: Java SE 1.7.

We use the 9 sequencing constraints in Fig. 14 with
different repetition and length constraints in TABLE II to
generate test sequences that achieve 2-way sequence
coverage.

TABLE II. RESULTS OF 2-WAY TEST SEQUENCE GENERATION

Rep
cons

Len
cons

of
target
seqs

Gen
Time(sec)

of
test
seqs

test seq length
min avg max

≤ 1 ≤ 6 36 3.9 7 2 4.6 6
≤ 1 ≤ 7 45 26.7 9 2 5.1 7
≤ 1 ≤ 8 45 155.5 9 2 5.1 7
≤ 2 ≤ 6 61 13.1 15 4 5.7 6
≤ 2 ≤ 7 79 157.1 16 4 6.4 7
≤ 2 ≤ 8 105 1789.5 26 4 7.4 8
≤ 2 ≤ 9 123 19802.9 24 4 8.2 9
≤ 2 ≤ 10 135 206191.9 24 4 8.4 10

TABLE II shows that the test generation time grows

quickly as the maximum length of a test sequence increases.
We believe our test generation algorithm has a lot of room
for optimization, which will be explored in our future work.

248

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 18,2020 at 21:30:19 UTC from IEEE Xplore. Restrictions apply.

Note that after we set the maximum repetition and
maximum length constraint, test sequences may not grow up
to the maximum length. For example, in TABLE II, for the
third experiment, where each event can only appear once and
the length limit is 8, the maximum length of a test sequence
we generate is 7. The reason is that sequencing and repetition
constraints may interact to reduce the maximal length of a
test sequence.

Also note that the number of target sequences increases
as we relax the repetition and length constraints. Since the
number of events is 12, the test strength is 2, the number of
possible 2-way sequences is 12^2 = 144. Some of them
cannot be covered due to repetition, length, and sequencing
constraints.

VI. RELATED WORK
Combinatorial testing has been an active area of research

[6]. However, most work has focused on t-way test data
generation [12]. In this section, we focus our discussion on t-
way sequence generation that supports constraints.

There exist many t-way test sequence generation
approaches supporting constraints. However, some of them
lack the capability to specify all possible constraints for real-
life systems, while others require a low-level specification of
constraints such as dependency graph or state transition
diagram.

Kuhn et al. [4] presented an approach to generating t-way
SCAs. Their approach require each event to appear exactly
once in a test sequence. Thus the length of each test sequence
is fixed, which equals the number of events. It supports one
type of constraint on sequence “x..y”, which means that no
test sequence should contain x and y in the given order. This
is similar to our notation “x ∙~∙ y”. This notation cannot
specify constraints involving more than two events. For
example, it cannot specify that some event must or never
happen between two events. Furthermore, there are certain
types of constraints between two events that cannot be
specified by this notation. For example, consider the
constraint in our notation, “x ⋯* y”, meaning that if y
happens, x must happen before y. This constraint cannot be
specified using the notation in [4] to prevent sequence “y..x”.
This is because a test sequence in the form of “[… x … y …
x … y …]” satisfies this constraint, but x and y appear in
different orders in the same sequence.

Farchi et al. [13] developed an approach to generating
test sets that satisfy ordered and unordered interaction
coverage. Ordered restrictions can be considered as a type of
sequencing constraints. For example, the ordered restriction
excluding a case “Read.comesBefore(Open)” to prevent
<Read, Open> from generation. This restriction is similar to
the notation in [4], and thus has similar limitations as
mentioned earlier.

Several approaches have been reported that use a graph
model to represent system behavior from which t-way test
sequences are generated. Wang et al. [14] presented a
pairwise test sequence generation approach for web
applications. Their approach is based on a graph model
called navigation graph that captures the navigation structure
of a web application. Rahman et al. [15] presented a test

sequence generation approach using simulated annealing.
Their approach is based on a state transition diagram that
models the system behavior. Yu et al. [7][8] presented
several algorithms that generate t-way test sequences from
LTS models. In these approaches, sequencing constraints are
implicitly encoded in the graph model. Compared to our
notation, the graph models used in these approaches are at a
lower level of abstraction and require a lot of operational
details that may not be readily available in practice.

Kruse et al. [16] suggested that temporal logic formulas,
e.g., Linear Temporal Logic (LTL) [17], Computational Tree
Logic (CTL) [18], and modal μ-calculus [19], can be used to
express sequencing constraints. They used LTL for
dependency rules (i.e., sequencing constraints) and CTL for
generation rules (i.e., strength t, repetition and length
constraints). Temporal logic formulas are powerful in terms
of the different types of property they could be used to
express. However, these notations have a complex semantic
model, and have found limited use in practice. For example,
both LTL and CTL have a state-based semantic model. In
theory, any state-based property can be specified using
events, and vice versa. However, the notion of state is more
difficult to grasp than that of event. This is because unlike
events, states are not directly represented in a test sequence.
Thus, in order to specify sequencing constraints, events must
be translated into states. This translation can be difficult due
to the fact that states can be defined at different levels of
abstraction and thus the mapping between states and events
may not be a simple one-to-one relation.

Dwyer et al. [20] developed a system of property
specification patterns to specify properties that are
commonly encountered in practice. Our work is different in
that we define a minimal set of basic operators, each of
which captures a fundamental relationship between events.
Complex properties can be specified using these basic
operators. The work in [20] is complementary with ours in
that similar patterns can also be identified to facilitate the use
of our notation in practice.

VII. CONCLUSION AND FUTURE WORK
There seems to be a significant amount of interests on t-

way sequence testing in both academia and industry.
However, progress is still lacking. In this paper we present
an approach to handling sequencing constraints, which we
believe is a key technical challenge in t-way test sequence
generation but has not been adequately addressed. Our
approach consists of an event-oriented notation for
expressing sequencing constraints and a greedy algorithm for
generating test sequences that achieve t-way coverage while
ensuring that all the constraints are satisfied. We applied our
approach to a real-life communication protocol. Our
experience suggests that our notation is more intuitive to use
and can capture important sequencing constraints for this
protocol. However, our test generation algorithm seems to be
time consuming. This work is part of our larger and ongoing
effort to make t-way sequencing testing practically useful.

In the future, we will continue our work in the following
major directions. First, we want to optimize the performance
of our test sequence generation algorithms. For example,

249

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 18,2020 at 21:30:19 UTC from IEEE Xplore. Restrictions apply.

there seems to be quite some redundant computations in the
generation process. We plan to explore ways to reduce such
redundancy, e.g., by saving intermediate results. Second, we
want to develop an algorithm to perform consistency check
on constraints specified by the user. This is necessary
because the user may specify constraints that contradict with
each other. This consistency check can reject contradictory
constraints prior to test generation and can also provide
feedback to the user in terms of how to make corrections.
Finally, we want to investigate the formal properties of our
notation for sequencing constraints, in terms of what kind of
constraints our notation can or cannot express. In particular,
we want to check the possible equivalence relation between
our notation and other notations such as LTS and LTL. For
example, is it true that any properties that can be expressed
using LTS or LTL can be expressed using our notation and
vice versa?

ACKNOWLEDGMENT
This research is partly supported by two research grants

(70NANB15H199, 70NANB18H207) from National
Institute of Standards and Technology.

Disclaimer: We identify certain software products in this
document, but such identification does not imply
recommendation by the US National Institute of Standards
and Technology or other agencies of the US government, nor
does it imply that the products identified are necessarily the
best available for the purpose.

REFERENCES
[1] A. Canny. "Interactive system testing: beyond GUI testing." In

Proceedings of the 2018 ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, p. 18.

[2] R.C. Bryce, S. Sampath, and A.M. Memon. "Developing a single
model and test prioritization strategies for event-driven software."
IEEE Transactions on Software Engineering 37, no. 1 (2011): 48-64.

[3] D.E. Simos, J. Bozic, B. Garn, M. Leithner, F. Duan, K. Kleine, Y.
Lei, and F. Wotawa. "Testing TLS using planning-based
combinatorial methods and execution framework." Software Quality
Journal (2018): 1-27.

[4] D.R. Kuhn, J.M. Higdon, J.F. Lawrence, R.N. Kacker, and Y. Lei.
"Combinatorial methods for event sequence testing." In 2012 IEEE
Fifth International Conference on Software Testing, Verification and
Validation (ICST), pp. 601-609.

[5] F. J. Daniels, and K. C. Tai. "Measuring the effectiveness of method
test sequences derived from sequencing constraints." In Proceedings
of the 1999 Technology of Object-Oriented Languages and Systems,
pp. 74-83.

[6] C. Yilmaz, S. Fouche, M.B. Cohen, A. Porter, G. Demiroz, and U.
Koc. "Moving forward with combinatorial interaction testing."
Computer 47, no. 2 (2014): 37-45.

[7] L. Yu, Y. Lei, R.N. Kacker, D.R. Kuhn, and J. Lawrence. "Efficient
algorithms for t-way test sequence generation." In 2012 IEEE 17th
International Conference on Engineering of Complex Computer
Systems (ICECCS), pp. 220-229.

[8] L. Yu, Y. Lei, R.N. Kacker, D.R. Kuhn, R.D. Sriram, and K. Brady.
"A general conformance testing framework for IEEE 11073 PHD's
communication model." In sixth International Conference on
Pervasive Technologies Related to Assistive Environments (PETRA
2013), p. 12.

[9] L. Yu, Y. Lei, M. Nourozborazjany, R.N. Kacker, and D. R. Kuhn.
"An efficient algorithm for constraint handling in combinatorial test
generation." In 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation (ICST), pp. 242-251.

[10] J.H. Lim, C. Park, S.J. Park, and K.C. Lee, "ISO/IEEE 11073 PHD
message generation toolkit to standardize healthcare device." In 2011
Annual International Conference of the IEEE Engineering in
Medicine and Biology Society. pp. 1161-1164.

[11] Antidote IEEE 11073-20601 stack library. [Online].
http://oss.signove.com/index.php/Antidote:_IEEE_11073-
20601_stack

[12] K. Kleine, and D.E. Simos. "An efficient design and implementation
of the In-Parameter-Order algorithm." Mathematics in Computer
Science 12, no. 1 (2018): 51-67.

[13] E. Farchi, I. Segall, R. Tzoref-Brill, and A. Zlotnick. "Combinatorial
testing with order requirements." In 2014 IEEE Seventh International
Conference on Software Testing, Verification and Validation
Workshops (ICSTW), , pp. 118-127.

[14] W. Wang, S. Sampath, Y. Lei, and R.N. Kacker. "An interaction-
based test sequence generation approach for testing web
applications." In Proceedings of the 2008 11th IEEE High Assurance
Systems Engineering Symposium (HASE), pp. 209-218

[15] M. Rahman, R.R. Othman, R.B. Ahmad, and M.M. Rahman. "Event
driven input sequence t-way test strategy using simulated annealing."
In 2014 5th International Conference on Intelligent Systems,
Modelling and Simulation (ISMS), pp. 663-667.

[16] P.M. Kruse, and J. Wegener. "Test sequence generation from
classification trees." In 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation (ICST), pp. 539-548.

[17] A. Pnueli. "The temporal logic of programs." In 1977 18th Annual
Symposium on Foundations of Computer Science, pp. 46-57..

[18] E.M. Clarke, and E.A. Emerson. "Design and synthesis of
synchronization skeletons using branching time temporal logic." In
1981 Workshop on Logic of Programs, pp. 52-71.

[19] D. Kozen. "Results on the propositional μ-calculus." Theoretical
computer science 27, no. 3 (1983): 333-354.

[20] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. "Patterns in property
specifications for finite-state verification." In Proceedings of 1999
21st International Conference on Software Engineering (ICSE), pp.
411-420.

250

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 18,2020 at 21:30:19 UTC from IEEE Xplore. Restrictions apply.

