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Abstract—In this paper we address the problem of constraint 
handling in t-way test sequence generation. We develop a 
notation for specifying sequencing constraints and present a t-
way test sequence generation that handles the constraints 
specified in this notation. We report a case study in which we 
applied our notation and test generation algorithm to a real-
life communication protocol. Our experience indicates that our 
notation is intuitive to use and allows us to express important 
sequencing constraints for the protocol. However, the test 
generation algorithm takes a significant amount of time. This 
work is part of our larger effort to make t-way sequence 
testing practically useful. 

Keywords-Test Sequence Generation; Sequencing Constraint; 
T-way Sequence Coverage; Sequence Testing; Event-based 
Testing; Combinatorial Testing 

I. INTRODUCTION 
Many systems, e.g., interactive systems [1], event-driven 

systems [2] and communication protocols [3], exhibit 
sequencing behavior, where a sequence of events is 
exercised during each execution and the order in which the 
events occur could significantly affect the system behavior. 
To test these systems, we need to generate test sequences, in 
addition to test data.  

T-way sequence testing applies the notion of t-way 
coverage to test sequence generation [4]. Informally, given 
any t events, if they could be exercised in a given order, there 
must exist at least one test sequence in which these events 
are exercised in this order. Doing so allows us to test all 
possible interactions between any t events. Thus, t-way 
sequence testing can expose faults that are caused by 
interactions between no more than t events.  

One important problem in t-way sequence testing is 
dealing with sequencing constraints [5], i.e., restrictions on 
the order of events that must be satisfied for a test sequence 
to be valid. The technical challenge is two-fold. First, a 
notation is needed to specify sequencing constraints. This 
notation must be easy to use and have the power to express 
commonly encountered constraints. Second, a test generation 
algorithm must be developed to handle sequencing 
constraints. Compared to constraints on data values, 
sequencing constraints can be more difficult to handle. This 
is because the space that needs to be searched in the 
evaluation process for sequencing constraints can be much 
larger due to the extra dimension, i.e., order of events.  

Recent years have seen significant progress on t-way test 
data generation, but not on t-way test sequence generation 
[6]. Kuhn et al. [4] presented an approach to generate SCAs 
(Sequence Covering Arrays) for testing special systems. 
Their approach requires each event occurs exactly once in 
each test sequence, and only supports one type of constraint. 
Yu et al. [7][8] presented another approach to t-way test 
sequence generation based on a Labeled Transition System 
(LTS) model that captures system behavior. An LTS model 
is similar to a finite state machine where the sequencing 
constraints are implicitly encoded in the state transitions. 
However, as an operational model, LTS is at a very low level 
of abstraction and requires a lot of details on how a system 
operates in terms of states and transitions. As a result, LTS 
models are seldom available in practice. 

In this paper we develop a notation for specifying 
sequencing constraints and present a t-way test sequence 
generation algorithm that handles constraints specified in this 
notation. Our notation adopts an event-oriented framework. 
It defines a small set of basic operators that capture several 
fundamental orderings that could happen between two events. 
These operators can be nested, if necessary, to specify the 
sequencing behavior between multiple events. Our notation 
is at a higher level of abstraction than an operational model 
such as LTS. Also we believe that since we deal with 
sequences of events, an event-oriented notation is more 
intuitive than a state machine-based notation.  

Our test sequence generation algorithm employs a greedy 
strategy in which each test sequence is generated such that a 
maximal number of t-way target sequences can be covered in 
the sequence. A t-way target sequence is a sequence of t 
events that could be covered in the given order, i.e., the order 
in which they appear in the sequence. Each test sequence is 
generated in two phases, including the starting phase and the 
extension phase. In the starting phase, we generate a starting 
sequence that is guaranteed to cover at least one target 
sequence. In the extension phase, we keep extending the test 
sequence until no extension is possible. At each extension, 
we append to the test sequence an event that covers the most 
t-way target sequences that are yet to be covered. 

We report a case study in which we applied our approach 
to a communication protocol, i.e., IEEE 11073-20601 [10]. 
This protocol is used to exchange data between Personal 
Health Devices (PHDs), e.g., smart scales, and computing 
devices, e.g., desktop computers. We identified a set of 9 
sequencing constraints and wrote them using our notation. 
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We generated a set of 24 test sequences that achieve 2-way 
sequence coverage while satisfying all the sequencing 
constraints. Our experience indicates that our notation is 
intuitive to use and allows us to express important 
sequencing constraints for this protocol. However, while our 
algorithm allows us to generate t-way test sequence set, it is 
computationally expensive. For example, it takes 5 and half 
hours for generating test sequences with lengths up to 9, and 
2 days with lengths up to 10. While this is partly due to the 
nature of the problem, we believe there are opportunities for 
optimization which we will explore in our future work.  

We focus on positive testing in this paper. That is, we 
generate test sequences that satisfy all the sequencing 
constraints. However, sequencing constraints are also useful 
for negative testing. For example, test sequences could be 
generated for negative testing that violate constraints in a 
systematic manner. 

The remainder of the paper is organized as follows. 
Section II explains our basic idea with a motivating example. 
Section III presents the syntax and semantics of our notation 
to specify sequencing constraints. We also introduce two 
other types of constraints, i.e., repetition and length 
constraints, which are used to control test sequence length. 
Section IV first presents the definitions of t-way target and 
test sequences, and then describes our test generation 
algorithm that handles constraints. Section V presents the 
results of our case study on the PHD protocol, including the 
sequencing constraints identified and some statistics on the 
test sequences generated. Section VI discusses related work 
on t-way test sequence generation. Section VII provides 
concluding remarks and our plan for future work. 

II. MOTIVATING EXAMPLE 
In this section, we use File API as a motivating example 

to show the basic idea of our work, including how to model 
the sequencing behavior of a system in terms of events and 
constraints, and how to generate a set of test sequences for t-
way sequence coverage. 

A. Model Sequencing Behavior 
A sequencing model M = <E, C> consists of two 

components: (1) E: a set of events that could be exercised in 
a system execution; (2) C: a set of constraints that restrict the 
occurrences of these events in a system execution. 

In File API, there are four major file operations, 
including open, close, read, and write. In the sequencing 
model, each of these operations is modeled as an event. Thus, 
E = {open, close, read, write}. 

Based on the semantics of file operations, the following 
constraints can be identified in terms of the order in which 
these events could be exercised. These constraints are 
referred to as sequencing constraints. 

(1) The first event of a test sequence must be open. 

(2) The file must be open before read, write, or close. 

(3) The last event of a test sequence must be close. 

We introduce an event-oriented notation to model the 
above constraints. To model the first constraint, we specify 

that the open event must happen before all the other three 
events. More precisely, in a test sequence, whenever there is 
a read, write, or close event e, there must exist an open event 
that is exercised before e. To model the second constraint, 
we specify that open must happen before read, write or close 
and there shall be no close in between. To model the third 
constraint, we specify that the close event must happen after 
all other three events. More precisely, in a test sequence, 
whenever there is an open, read, or write event e, there must 
exist a close event that is exercised after e. 

In addition to sequencing constraints, we introduce two 
other types of constraint, namely repetition and length 
constraints, to control the length of a test sequence. A 
repetition constraint specifies the number of times a certain 
event could be repeated in a test sequence. For example, we 
could specify that open/close could only occur once in a test 
sequence. A length constraint specifies the minimum and/or 
maximum length of a test sequence. 

In Section III, we introduce a formal notation to specify 
the three types of constraints in detail. 

B. Test Sequence Generation 
After a sequencing model is specified, a test sequence set 

can be generated to achieve t-way sequence coverage. Recall 
that t-way sequence coverage requires that every t-way 
(target) sequence, i.e., every sequence of t events that could 
be exercised in the given order, consecutively or not, be 
exercised so by at least one test sequence. 

For example, for File API, the set of 2-way sequences is 
{<open, open>, <open, close>, ..., <read, write>, ..., <write, 
write>} (the set size = 4^2 = 16). Note that the existence of 
constraints may make some of these sequences uncoverable, 
i.e., they cannot be covered by any test sequence that 
satisfies all the constraints. In this paper, we use <e1, e2, ...> 
to represent target sequences, and use [e1, e2, ...] to represent 
test sequences. A 2-way target sequence <e1, e2> is covered 
by a test sequence in the form of [..., e1, ..., e2, ...]. 

If we specify some repetition constraints such that no 
event could be repeated in a test sequence, in addition to the 
three sequencing constraints mentioned earlier, there is a 
total of seven 2-way target sequences {<open, close>, <open, 
read>, <open, write>, <read, close>, <read, write>, <write, 
close>, <write, read>}. A greedy algorithm can be used to 
generate a 2-way test sequence set such that all the test 
sequences satisfy all the constraints, and every target 
sequence is covered by at least one test sequence. 

The details of the greedy algorithm are presented in 
Section IV. The following example illustrates the basic idea 
of the algorithm: 

1. We first construct a starting sequence that covers at 
least one target sequence. We begin with an empty test 
sequence []. The only possible event that could be added is 
open due to sequencing constraint (1). The resulting 
sequence is [open]. 

2. We further extend [open]. There are three possible 
choices: [open, read]/[open, write]/[open, close]. Note that 
[open, open] is not allowed due to the repetition constraint. 
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All of the three choices cover one target sequence. We 
choose [open, read] as our starting sequence. 

3. Now we try to extend the starting sequence. We 
append to the sequence one event at a time. We first append 
write, followed by close, as these two events allow the most 
target sequences to be covered. The resulting sequence is 
[open, read, write, close], which cannot be further extended.  

4. We repeat the above process to generate additional test 
sequences until all the remaining target sequences are 
covered. 

The final 2-way test sequence set consists of two test 
sequences {[open, read, write, close], [open, write, read, 
close]}. These two sequences satisfy all the constraints and 
cover all of the seven 2-way target sequences. 

III. NOTATION FOR CONSTRAINT SPECIFICATION 
Our notation supports three types of constraints, 

including repetition, length and sequencing constraints. 
Recall that repetition and length constraints are used to 
control the length of a test sequence.  

First, we introduce the syntax and semantics of repetition 
and length constraints: 

 A repetition constraint is in the form of “e.# ≤ r”, 
denoting that, in a test sequence, an event e could 
occur no more than r times. A default repetition 
constraint can be specified in the form of “# ≤ r”, 
denoting that no event could occur for more than r 
times. The default constraint can be overridden by an 
event-specific constraint.  

 A length constraint is in the form of “TOTAL_LEN ≥ 
min” or “TOTAL_LEN ≤ max”, denoting that, the 
total length of a test sequence should be greater than 
or equal to min, or/and smaller than or equal to max.  

By default, “# ≤ 1” is given to ensure the termination of 
test sequence generation. That is, by default, each event is 
only allowed to appear once in a test sequence. 

The rest of this section is focused on the syntax and 
semantics of sequencing constraints. 

A. Syntax of Sequencing Constraints 
The syntax of sequencing constraints is specified in BNF 

(Backus–Naur form) as shown in Fig. 1. 
<sequencing constraint> ::= <sequencing expression>  

| <sequencing constraint> ˅ <sequencing constraint>  
| <sequencing constraint> ˄ <sequencing constraint>  
| (<sequencing constraint>) 

<sequencing expression> ::=  
<sequencing expression> <general sequencing operator> <events>  
| <events> <general sequencing operator> <events>  
| <events> <immediate sequencing operator> <events> 

<events> ::= <event> | <event set>  
| <always sequencing operator> <event>  
| <always sequencing operator> <event set> 

<always sequencing operator> ::= “_” 
<immediate sequencing operator> ::= “*−” | “−*” | “~” 
<general sequencing operator> ::= “*⋯” | “⋯*” | “∙~∙” 

Figure 1.  BNF of sequencing constraints 

There are two types of operators: Boolean and 
sequencing operators. Sequencing operators can be divided 
into three groups: immediate operators, general operators, 
and always operator. 

Note that <event set> is a set of events. That is, we allow 
event sets, as well as individual events, in a constraint 
expression. In this paper, we will use the notation of {e1, 
e2, …, en} to denote an event set, where e1, e2, …, en are 
individual events. The reason why this is allowed is 
explained in Section III.B. 

A sequencing constraint can be derived from this syntax 
as shown in Fig. 2. 

<sequencing constraint> 
=> <sequencing expression>  
=> <sequencing expression> <general sequencing operator> <events>  
=> <events> <general sequencing operator> <events> <general sequencing 

operator> <events>  
=> <always sequencing operator> <event> <general sequencing operator> 

<event> <general sequencing operator> <event set> 
=> open ∙~∙ close ⋯* {read, write, close} 

Figure 2.  Derivation of a sequencing constraint from BNF 

Note that the precedence of the operators is defined from 
highest to lowest as follows: unary sequencing operator, 
binary sequencing operators, (), ˄ and ˅. 

B. Semantics of Sequencing Operators 

TABLE I.  INFORMAL EXPLANATION OF SEQUENCING OPERATORS 

Sequencing 
Operator 

Explanation 

_e (or e) e always happens 

e1 *− e2 If e1 happens, then e2 must immediately happen after e1 

e1 −* e2 If e2 happens, then e1 must immediately happen before e2 

e1 ~ e2 e2 never immediately happens after e1 (or e1 never 
immediately happens before e2) 

e1 *⋯ e2 If e1 happens, then e2 must happen after e1, but not 
necessarily immediately happen after e1 

e1 ⋯* e2 If e2 happens, then e1 must happen before e2, but not 
necessarily immediately happen before e2 

e1 ∙~∙ e2 e1 never happens before e2 (or e2 never happens after e1) 

 
TABLE I lists all the sequencing operators in our 

notation and provides an informal explanation of each 
operator. We make the following notes about the symbols 
used to represent the operator: 

(a) _: This indicates that the event always happens. (In 
this paper, this operator is shown as an underline, e.g., e.) 

(b) −/⋯: Both indicate the left event happens before the 
right event. However, − requires that the two events are next 
to each other, whereas ⋯ does not. 

(c) ~/∙~∙: Both indicate the left event never happens 
before the right event. However, ~ only requires that the two 
events do not happen next to each other, whereas ∙~∙ requires 
that the right event cannot happen one after the left event.  

(d) *: It indicates that the constraint applies only if the 
left (or right) event exists, if it appears left (or right) to the 
operator. 
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Recall that we allow a sequencing operator to be applied 
to a set of events. For example, “E1 *− E2” denotes that, 
immediately after any event in set E1, an event in set E2 
must happen. The reason why this is necessary is that 
Boolean operators on sequencing constraints with individual 
events cannot specify some constraints. For example, “e1 *− 
{e2, e3}” ≠ “e1 *− e2 ˅ e1 *− e3”. Given a test sequence [...e1, 
e2, ..., e1, e3, ...] containing two occurrences of event e1, “e1 
*− e2” is not satisfied on the second occurrence of e1, while 
“e1 *− e3” is not satisfied on the first occurrence of e1. Thus, 
none of the two constraints are satisfied. However, the 
constraint “an event belongs to {e2, e3} must happen after e1” 
denoted by “e1 *− {e2, e3}” is satisfied on both occurrences 
of e1. 

In the following, we use an automaton to formally define 
the semantics of each sequencing operator. (Note that in each 
automaton, ¬ e indicates any event other event e; ∀e 
indicates any event; e1 ˅ e2 indicates e1 or e2.) 

1. Always sequencing operator 
(1) e 

 
Figure 3.  Semantics of “e” 

Fig. 3 shows that, given an input sequence, if an 
occurrence of event e exists, the sequence should be accepted. 
Otherwise, it is rejected. 

2. Immediate sequencing operators 
(2) e1 *− e2 

 
Figure 4.  Semantics of “e1 *− e2” 

Fig. 4 shows that given an input sequence, if every 
occurrence of event e1 is immediately followed by an 
occurrence of event e2, the sequence should be accepted. 
Otherwise, it is rejected. 

(3) e1 −* e2 

 
Figure 5.  Semantics of “e1 −* e2” 

Fig. 5 shows that given an input sequence, if any 
occurrence of event e2 exists that is NOT immediately after 

an occurrence of event e1, the sequence should be rejected. 
Otherwise, it is accepted. 

(4) e1 ~ e2 

 
Figure 6.  Semantics of “e1 ~ e2” 

Fig. 6 shows that, given an input sequence, if any 
occurrence of event e2 exists immediately after an occurrence 
of event e1, the sequence should be rejected. Otherwise, it is 
accepted. 

3. General sequencing operators 
The automaton of each general operator is similar to the 

automaton of the corresponding immediate operator, but in 
general simpler. This is because the semantics of the 
immediate operators are stricter, except that ∙~∙ is stricter 
than ~. 

(5) e1 *⋯ e2 

 
Figure 7.  Semantics of “e1 *⋯ e2” 

(6) e1 ⋯* e2 

 
Figure 8.  Semantics of “e1 ⋯* e2” 

(7) e1 ∙~∙ e2 

 
Figure 9.  Semantics of “e1 ∙~∙ e2” 

General sequencing operators can be nested in our 
notation. The semantics of a nested expression “<sequencing 
expression> <general sequencing operator> <events>”, 
where <sequencing expression> is the nesting expression, 
can be defined in a recursive manner. As an example, 
consider “B ⋯* e3”, where B = “e1 ∙~∙ e2”. This nested 
expression can be written as “e1 ∙~∙ e2 ⋯* e3”. It denotes that 
if event e3 happens, B must be satisfied by a subsequence 

e 
¬ e ∀e 

e2 

e1 
¬ e1 

¬ e2 Error 

Error e1 

¬ (e1 ˅ e2) 

e2 
e2 

¬ e2 e2 

¬ (e1 ˅ e2) 

e1 

e2 e1 
¬ e1 

¬ e2 
Error 

e2 

e1 
¬ e1 ¬ e2 

e1 

¬ (e1 ˅ e2) 

e2 

Error 

∀e 

e2 e1 
¬ e1 ¬ e2 

Error 
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before e3 in which “e1 always happens, and e2 never happens 
after e1”. In other words, before each occurrence of e3, there 
must be an occurrence of e1 to satisfy B, so that e2 never 
happens between this occurrence of e1 and the occurrence of 
e3. 

Recall that a sequencing operator may involve an event 
set E. The semantics of each operator with a set of events can 
be specified using the corresponding automaton with 
individual events, except that we need to replace “event e” 
with “any event in E”. 

C. Example 
We can use our constraint notation to represent the 

sequencing constraints identified in Section II as follows: 
(1) “open ⋯* {close, read, write}”: This constraint says that, 

if there exists an event close, read or write, there must 
exist an open event before this event. This ensures that 
open is the first event. 

(2) “open ∙~∙ close ⋯* {read, write, close}”: This constraint 
says that if there exists an occurrence of event read, 
write, or close, there must exist an occurrence of event 
open before it, and the subsequence separated by the 
two occurrences satisfies “after this occurrence of open, 
before this occurrence of read, write, or close, an 
occurrence of close never exist”. This ensures that the 
file is open before it is read, written, or closed. 

(3)  “{open, read, write} *⋯ close”: This constraint says that, 
after there exists an open, read or write event, a close 
event must exist. This ensures that close is the last event. 

IV. APPROACH 

A. Basic Concepts 
Informally, a target sequence is a sequence of events that 

needs to be covered. A test sequence is a sequence of events 
that can be executed by the subject system. Target sequences 
are covered by test sequences to satisfy t-way sequence 
coverage. In other words, target sequences are test 
requirements, i.e., entities that must be covered to achieve t-
way sequence coverage, while test sequences are test cases 
that cover test requirements. T-way sequence coverage 
requires that for every target sequence of t events, if they 
could be exercised in the given order, they must be exercised 
so in at least one test sequence.  

In the following, we formalize these concepts from the 
perspective of test sequence generation, without considering 
the semantics of the subject system. Let M = <E, C> be the 
sequencing model of the subject system.  

Definition 1. A sequence Q of events is valid if it satisfies 
all the constraints in C; otherwise it is invalid. 

In this paper we focus on positive testing. Thus, every 
test sequence must be a valid sequence. Also, every valid 
sequence can be used as a test sequence. 

Definition 2. A sequence Q of events is extendable if it is 
a proper prefix of another sequence of events that is valid.  

Note that an extendable sequence itself may or may not 
be valid. 

Definition 3. A sequence Q of events covers another 
sequence Q’ of events if all the events in Q’ appear in Q in 
the same order as they appear in Q’. 

In the above definition, it is important to note that the 
events in Q’ do not have to appear consecutively in Q. For 
example, a partial test sequence [open, read, write] covers 
three 2-way sequences: <open, read>, <open, write> and 
<read, write>. 

Definition 4. A t-way target sequence Q is a t-way 
sequence that can be covered by at least one test sequence. 

Note that not every t-way sequence is a target sequence. 
Consider the File API example. If a repetition constraint 
requires that no event can be repeated, then 2-way sequences 
<open, open> and <close, open> cannot be covered by any 
test sequence. Thus, these sequences are not 2-way target 
sequences.  

Definition 5. Let Π be the set of all the t-way target 
sequences. A t-way test sequence set Σ is a set of test 
sequences such that for ∀π Π, ∃Q Σ such that Q covers π.  

Considering the motivating example, a set of two test 
sequences {[open, read, write, close], [open, write, read, 
close]} covers all 2-way target sequences <open, close>, 
<open, read>, <open, write>, <read, close>, <read, write>, 
<write, close> and <write, read>. 

Note that the above definitions are similar to our earlier 
work in [7], which is however based on LTS. 

B. Main Idea 

Input: (a) A sequencing model M = (E, C), where E is a set of events and C 
is a set of constraints, and (b) a test strength t 
Output: A t-way test sequence set Σ 
{ 

// Step 1: target sequence (candidate) generation 
1.  let Π be {π = <e1, e2, …, et> | ei E} 

// Step 2: test sequence generation 
2.  let Σ be an empty set 
3.  while (Π is not empty) { 
     // Step 2.1: starting phase 
4.    create a starting test sequence Q such that (a) Q covers at least one 

target sequence in Π; and (b) Q is valid or extendable 
5.    if (Q cannot be created) 
6.       break 
7.    remove from Π the target sequences covered by Q 
     // Step 2.2: extension phase 
8.    while (Q is extendable) { 
9.       append an event e in E to Q such that (a) Q.e covers the most target 

sequences in Π; and (b) Q.e is valid or extendable 
10.     Q = Q.e  
11.     remove from Π the target sequences covered by Q 
12.   } 
13.   add Q into Σ 
14. } 
15. return Σ 
} 

Figure 10.  Algorithm GenTestSeqs 

Fig. 10 shows our test generation algorithm. The 
algorithm consists of three major steps. The first step is to 
generate target sequence candidates. Note that not every 
sequence in Π is a target sequence, as some sequences in Π 
may not be covered by any test sequence. As discussed later, 
the second step guarantees that all the target sequences in Π 
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will be covered. Thus, after the second step, the remaining 
sequences in Π cannot be covered by any test sequence and 
are not target sequences. We could check whether every 
sequence in Π is a target sequence and remove those that are 
not prior to the second step. This, however, is expensive and 
redundant. 

 In the second step, we generate test sequences to cover 
all the target sequences. We first create a starting test 
sequence Q to cover at least one remaining target sequence. 
A starting test sequence must be valid or extendable. This is 
necessary to ensure termination. If such a test sequence 
cannot be created, all the target sequences in Π have already 
been covered, and the algorithm terminates. Otherwise, we 
extend Q by appending events one by one. Each time we 
select an event that covers the most target sequences in Π. 
When no event can be appended to Q, Q becomes a complete 
(valid and not-extendable) test sequence, and we add Q into 
the resulting test set and create another starting test sequence. 
We continue to do so until we cannot find a starting 
sequence that covers at least one sequence in Π. 

We call the phase of creating a starting test sequence as a 
starting phase in Line 4 - 7, and the phase of extending a test 
sequence to be complete as an extension phase in Line 8 - 13. 

C. Validity and Extensibility Check 
In this part we discuss how to check if a test sequence is 

valid and if a test sequence is extendable. These are two 
important checks performed in our algorithm.  

1. Validity check: Recall that there are three types of 
constraints, sequencing, repetition, and length constraints.  

Given a test sequence Q, we first check whether it 
satisfies all the repetition and length constraints, which is 
accomplished by counting its number of events. Next we 
check whether it satisfies all the sequencing Constraints, 
which is more complicated and is described as follows. 

As indicated by the BNF grammar of Section III, there 
are two types of constraints for solving: basic and nested. 

(1) A basic expression “e <sequencing operator> e” only 
involves two events (or event sets) in sequence, such as “e1 
*− e2”. Based on basic temporal logic (as corresponding 
automaton), the basic expression is true on Q if and only if Q 
is accepted by our automaton. Note that, our Sequencing 
Constraint Solver is only applicable to test sequence, i.e., not 
target sequences whose validity need to be checked 
differently.  

(2) A nested expression “B <sequencing operator> e” 
involves more than two events in sequence, since B is 
another sequencing expression, such as “e1 ∙~∙ e2 *⋯ e3”, 
(i.e., “B *⋯ e3”, B = “e1 ∙~∙ e2”). Automatons will be 
recursively called by the nested structure. The Boolean result 
of the nested expression “B *⋯ e3” on Q is decided by “if B 
is true on a subsequence of Q, whether e3 happens after the 
subsequence”. Thus, the global Boolean result is that “if ‘e1 
always happens and e2 never happens after e1’ is true, 
whether e3 happens after e1”. 

2. Extensibility check: Fig. 11 shows our algorithm for 
checking whether a sequence is extensible. The algorithm 
employs a recursive DFS (Depth-First Search) strategy. Note 
that in order to prevent infinite extension, we set a default 

repetition constraint which requires every event be repeated 
no more than t times, where t is the coverage strength, if the 
user does not specify any length constraint to restrict the 
maximum length of a sequence. Thus, a maximum length 
could always be derived from the repetition and length 
constraint. 

Boolean isExtendable(Q, E, C) 
{ 
    let max_length be the maximum length implied by all the repetition and 

length constraints 
    if (Q.length >= max_length) 
       return false 
    for (each event e in E) { 

set Q’ to be Q.e 
if (isValid(Q’, C)) 

return true 
else if (isExtendable(Q’, E, C)) 

return true 
} 
return false 

} 

Figure 11.  Extensibility Check Algorithm 

D. Test Sequence Generation 
In this part, we discuss two main challenges of our 

generation approach shown in Fig. 10. 
The first challenge of our generation approach is that, 

due to the limitation of our automatons which are only 
available for consecutive sequence, we cannot directly check 
the validity of target sequences. 

As indicated in Line 1, we enumerate all possible 
permutations (with repetition) of any t events as t-way target 
sequence candidates. The same event could be exercised for 
up to t times in a permutation. Recall that some of these 
candidates cannot be covered by any test sequence, while 
others can be covered. 

Our solution is to remove covered t-way sequences from 
the set of candidates during test sequence generation. After 
the generation finished, we consider the remaining 
uncovered t-way sequence candidates as invalid. The reasons 
why our solution works are as follows. 

(1) Covered target sequences must be valid: According to 
our definition of valid sequence, and our previous research 
on constraint handling [9], all subsequences covered by a test 
sequence are valid. In other words, an invalid t-way 
sequence cannot be covered by any test sequence. 

(2) Valid target sequences must be covered: For each 
starting phase, it ensures to cover at least one remaining t-
way sequence candidate, until no such starting sequence can 
be created. So, before the break in Line 6, all valid t-way 
sequence candidates must have been covered by test 
sequences. 

The second challenge of our generation approach is to 
create a starting sequence, i.e., a valid or extendable test 
sequence that covers at least one remaining t-way target 
sequence, within a reasonable time. 

As indicated in Line 4, in order to ensure termination of 
test sequence generation, we create a starting test sequence 
that covers at least one target sequence in Π. Our solution is 
to adopt a BFS (Breadth-First Search) strategy as in Fig. 12. 
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Note that, validity and extensibility check can only guarantee 
to generate a complete test sequence, not for coverage, which 
may not cover any remaining target sequence. 

Input: (a) A sequencing model M = (E, C), where E is a set of events and C 
is a set of constraints, (b) a test strength t, and (c) a set of remaining target 
sequence candidates Π 
Output: A starting test sequence Q 
{ 
  // Initialize a queue of starting sequence candidates U 

let U be a queue consisting of all the event sequences of length t 
while (U is not empty) { 

remove the first sequence Q from U 
if (Q covers at least one target sequence in Π) { 

if (Q is valid or extendable) 
return Q 

} 
else if (Q is extendable) { 

for (each event e in E) 
append e to Q and add it to the end of U 

} 
} 
return null 

} 

Figure 12.  Algorithm for creating a Starting Test Sequence 

V. CASE STUDY 
In this section, we apply our test sequence generation 

framework to the IEEE 11073-20601 protocol (Optimized 
Exchange Protocol) [10]. As a core component in the 
standards family of IEEE 11073, this protocol defines a 
communication model that allows PHDs (Personal 
Healthcare Devices) to exchange data with computing 
devices like mobile phones, set-top boxes, and personal 
computers. 

A. Overview of the Protocol  
In IEEE 11073, there are two types of devices, agent and 

manager devices. Agents are personal healthcare devices that 
are used to obtain measured health data from the user. 
Examples of agents include blood pressure monitors, 
weighing scales and blood glucose monitors. Managers 
manage and process the data collected by agents. Examples 
of managers include mobile phones, set-top boxes and PCs. 

 
Figure 13.  An example scenario of Data Exchange 

We reuse an example scenario from our earlier work [8] 
to illustrate how an agent exchanges data with a manager. In 
the scenario, the agent device is a weighting scale. It sends 
an Association request to the manager. The association 
request contains the weighting scale’s configuration 
information, e.g., system ID, protocol version number. If the 
manager recognizes the agent, it accepts the association 
request and sends to the agent an Association acceptance 
message. At this point, the two devices are ready to exchange 
actual data. Next the agent sends measurement data, e.g., 
weight information, to the manager using a Confirmed Event 
Report message. The manager successfully receives the 
Confirmed Event Report and sends back the 
acknowledgement. At the end of this scenario the agent 
requests to release the association with an Association 
release request message, and the manager releases the 
association and sends back to the agent an Association 
release response message. 

In this case study, we identify sequencing constraints that 
the protocol imposes on the communication behavior. We 
specify these constraints using the notation developed in 
Section III and generate t-way test sequences that satisfy 
these constraints. These test sequences can be used to 
perform conformance testing of an implementation of the 
protocol, e.g., Antidote [11].  

B. Sequencing Constraints  
We identify constraints from the manager’s perspective. 

Constraints can be similarly identified from the agent’s 
perspective. In particular, as participants of the same 
protocol, agent and manager exhibit to a large extent 
symmetrical behavior, in terms that a send event on one side 
corresponds to a receive event on the other side.   

The events on the manager side can be divided into three 
groups, based on their source and destination: 

 Event beginning with REQ – There is a single request 
event, REQ_assoc_rel, sent from the application 
software interface, and it is triggered and handled 
inside the manager.  

 Events beginning with Rx – These events are requests 
sent from the agent to the manager. They include 
Rx_assoc_rel_req, Rx_assoc_rel_rsp, Rx_assoc_req, 
Rx_config_event_report_req. 

 Events beginning with Tx – These events are 
responses sent from the manager to the agent. They 
include Tx_assoc_rel_req, Tx_assoc_rel_rsp, 
Tx_assoc_rsp_rejected, Tx_assoc_rsp_accepted, 
Tx_assoc_rsp_accepted_unknown_config, 
Tx_config_event_report_rsp_accepted_config, 
Tx_config_event_report_rsp_unsupported_config. 

Thus, there is a total of 12 events including 1 REQ, 4 Rx, 
and 7 Tx events for the manager. Note that we ignore the 
abort events which can happen anywhere, since we focus on 
positive testing.  

Alternatively, the events can be divided into three groups, 
based on their functional areas. 

 Events that establish association: 
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Rx_assoc_req and its 3 possible responses 
Tx_assoc_rsp_rejected, Tx_assoc_rsp_accepted, 
Tx_assoc_rsp_accepted_unknown_config; 
 Events that release association: 

Rx_assoc_rel_req and its response Tx_assoc_rel_rsp; 
REQ_assoc_rel, Tx_assoc_rel_req and its response 

Rx_assoc_rel_rsp; 
 Events that check configuration: 

Rx_config_event_report_req and its 2 possible 
responses Tx_config_event_report_rsp_accepted_config, 
Tx_config_event_report_rsp_unsupported_config. 
 
In our study, we first identify constraints from each 

functional group separately and then put them together, e.g., 
using nested expressions. The final constraints are shown in 
Fig. 14. 

1. Rx_assoc_req ⋯* {all the events except Rx_assoc_req} 

2. {all other events except the right three events} *⋯ {Tx_assoc_rel_rsp, Rx_assoc_rel_rsp, Tx_assoc_rsp_rejected} 

3. Rx_assoc_rel_req − Tx_assoc_rel_rsp 

4. Rx_assoc_req − {Tx_assoc_rsp_rejected, Tx_assoc_rsp_accepted, Tx_assoc_rsp_accepted_unknown_config} 

5. Rx_config_event_report_req − {Tx_config_event_report_rsp_accepted_config, Tx_config_event_report_rsp_unsupported_config} 

6. (Tx_assoc_rel_req ⋯* Rx_assoc_rel_rsp) ˄ (Tx_assoc_rel_req ∙~∙ {Tx_assoc_rel_rsp, Rx_assoc_rel_rsp} *⋯ Rx_assoc_rel_rsp) 

7. {Tx_assoc_rsp_accepted, Tx_assoc_rsp_accepted_unknown_config} ∙~∙ {Tx_assoc_rel_rsp, Rx_assoc_rel_rsp} ⋯* {Rx_assoc_rel_req, REQ_assoc_rel} 

8. (REQ_assoc_rel − Tx_assoc_rel_req) ˄ (Tx_assoc_rel_req *− {Rx_assoc_rel_rsp, Rx_assoc_rel_req}) ˄ (Tx_assoc_rel_req −* Rx_assoc_rel_rsp) 

9. {Tx_assoc_rsp_accepted_unknown_config, Tx_config_event_report_rsp_unsupported_config} ∙~∙ {Rx_assoc_rel_req, REQ_assoc_rel} ⋯* Rx_config_event_report_req 

Figure 14.  All 9 sequencing constraints of PHD manager model 

Constraint 1. Rx_assoc_req is the first event that must 
happen before all other events. This event requests 
association to be established. 

Constraint 2. Tx_assoc_rel_rsp, Rx_assoc_rel_rsp, 
Tx_assoc_rsp_rejected are the last events that must happen 
after all other events. These events indicate that association 
has been released or rejected. 

Constraints 3-5. For convenience, we write “e1 −* e2 ˄ e1 
*− e2” in its abbreviated form “e1 − e2”. Based on the 
protocol semantics, after the manager receives a request, it 
must immediately transmit an event as response.  

Constraint 6. To maintain causal semantics, when a 
response event happens, its corresponding request event 
must happen before it. However, after a request event occurs, 
a response event may not always happen, e.g., due to 
disconnection or disassociation. 

In the PHD protocol, after a request is transmitted, an 
event of its possible response may not be received when 
association has already been released by other events, which 
is indicated by events Tx_assoc_rel_rsp or Rx_assoc_rel_rsp. 
In other words, if these two events don’t happen after 
Tx_assoc_rel_req, then Rx_assoc_rel_rsp must happen in 
some time. 

Constraint 7. We have two request events 
Rx_assoc_rel_req and REQ_assoc_rel to release association 
from agent and manager side. These two events can only 
happen when the association is accepted and not yet released.  

Constraint 8. When the manager triggers REQ_assoc_rel, 
it will immediately transmit a release request, and then busy 
wait until it receives either the release response or another 
release request from the agent. The constraint restricts that 
the manager must not finish association release until the 
agent agrees. 

Constraint 9. Similar to constraint 7, 
Rx_config_event_report_req, which receives a new 
configuration from the agent, can only happen after the 

previous configuration is checked to be unknown or 
unsupported and no release request has happened. 

One benefit of our notation is that it allows incremental 
specification. That is, we do not require all the constraints be 
specified up front. Instead, we can begin with several 
constraints, generate test sequences that satisfy these 
constraints, and then check whether these sequences are as 
expected. If not, we can add more constraints. This can be 
repeated for multiple times until we capture all the 
constraints.  

C. Test Sequence Generation Results 
The experimental environment is set up as the following: 

OS: Windows 7 64bits, CPU: Intel Dual-Core i5 2.5GHz, 
Memory: 8 GB DDR3, SDK: Java SE 1.7. 

We use the 9 sequencing constraints in Fig. 14 with 
different repetition and length constraints in TABLE II to 
generate test sequences that achieve 2-way sequence 
coverage. 

TABLE II.  RESULTS OF 2-WAY TEST SEQUENCE GENERATION 

Rep 
cons 

Len 
cons 

# of 
target 
seqs 

Gen 
Time(sec) 

# of 
test 
seqs 

test seq length 
min avg max 

≤ 1 ≤ 6 36 3.9 7 2 4.6 6 
≤ 1 ≤ 7 45 26.7 9 2 5.1 7 
≤ 1 ≤ 8 45 155.5 9 2 5.1 7 
≤ 2 ≤ 6 61 13.1 15 4 5.7 6 
≤ 2 ≤ 7 79 157.1 16 4 6.4 7 
≤ 2 ≤ 8 105 1789.5 26 4 7.4 8 
≤ 2 ≤ 9 123 19802.9 24 4 8.2 9 
≤ 2 ≤ 10 135 206191.9 24 4 8.4 10 

 
TABLE II shows that the test generation time grows 

quickly as the maximum length of a test sequence increases. 
We believe our test generation algorithm has a lot of room 
for optimization, which will be explored in our future work.  
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Note that after we set the maximum repetition and 
maximum length constraint, test sequences may not grow up 
to the maximum length. For example, in TABLE II, for the 
third experiment, where each event can only appear once and 
the length limit is 8, the maximum length of a test sequence 
we generate is 7. The reason is that sequencing and repetition 
constraints may interact to reduce the maximal length of a 
test sequence. 

Also note that the number of target sequences increases 
as we relax the repetition and length constraints. Since the 
number of events is 12, the test strength is 2, the number of 
possible 2-way sequences is 12^2 = 144. Some of them 
cannot be covered due to repetition, length, and sequencing 
constraints.  

VI. RELATED WORK 
Combinatorial testing has been an active area of research 

[6]. However, most work has focused on t-way test data 
generation [12]. In this section, we focus our discussion on t-
way sequence generation that supports constraints.  

There exist many t-way test sequence generation 
approaches supporting constraints. However, some of them 
lack the capability to specify all possible constraints for real-
life systems, while others require a low-level specification of 
constraints such as dependency graph or state transition 
diagram.  

Kuhn et al. [4] presented an approach to generating t-way 
SCAs. Their approach require each event to appear exactly 
once in a test sequence. Thus the length of each test sequence 
is fixed, which equals the number of events. It supports one 
type of constraint on sequence “x..y”, which means that no 
test sequence should contain x and y in the given order. This 
is similar to our notation “x ∙~∙ y”. This notation cannot 
specify constraints involving more than two events. For 
example, it cannot specify that some event must or never 
happen between two events. Furthermore, there are certain 
types of constraints between two events that cannot be 
specified by this notation. For example, consider the 
constraint in our notation, “x ⋯* y”, meaning that if y 
happens, x must happen before y. This constraint cannot be 
specified using the notation in [4] to prevent sequence “y..x”. 
This is because a test sequence in the form of “[… x … y … 
x … y …]” satisfies this constraint, but x and y appear in 
different orders in the same sequence.  

Farchi et al. [13] developed an approach to generating 
test sets that satisfy ordered and unordered interaction 
coverage. Ordered restrictions can be considered as a type of 
sequencing constraints. For example, the ordered restriction 
excluding a case “Read.comesBefore(Open)” to prevent 
<Read, Open> from generation. This restriction is similar to 
the notation in [4], and thus has similar limitations as 
mentioned earlier. 

Several approaches have been reported that use a graph 
model to represent system behavior from which t-way test 
sequences are generated. Wang et al. [14] presented a 
pairwise test sequence generation approach for web 
applications. Their approach is based on a graph model 
called navigation graph that captures the navigation structure 
of a web application. Rahman et al. [15] presented a test 

sequence generation approach using simulated annealing. 
Their approach is based on a state transition diagram that 
models the system behavior. Yu et al. [7][8] presented 
several algorithms that generate t-way test sequences from 
LTS models. In these approaches, sequencing constraints are 
implicitly encoded in the graph model. Compared to our 
notation, the graph models used in these approaches are at a 
lower level of abstraction and require a lot of operational 
details that may not be readily available in practice.   

Kruse et al. [16] suggested that temporal logic formulas, 
e.g., Linear Temporal Logic (LTL) [17], Computational Tree 
Logic (CTL) [18], and modal μ-calculus [19], can be used to 
express sequencing constraints. They used LTL for 
dependency rules (i.e., sequencing constraints) and CTL for 
generation rules (i.e., strength t, repetition and length 
constraints). Temporal logic formulas are powerful in terms 
of the different types of property they could be used to 
express. However, these notations have a complex semantic 
model, and have found limited use in practice. For example, 
both LTL and CTL have a state-based semantic model. In 
theory, any state-based property can be specified using 
events, and vice versa. However, the notion of state is more 
difficult to grasp than that of event. This is because unlike 
events, states are not directly represented in a test sequence. 
Thus, in order to specify sequencing constraints, events must 
be translated into states. This translation can be difficult due 
to the fact that states can be defined at different levels of 
abstraction and thus the mapping between states and events 
may not be a simple one-to-one relation. 

Dwyer et al. [20] developed a system of property 
specification patterns to specify properties that are 
commonly encountered in practice. Our work is different in 
that we define a minimal set of basic operators, each of 
which captures a fundamental relationship between events. 
Complex properties can be specified using these basic 
operators. The work in [20] is complementary with ours in 
that similar patterns can also be identified to facilitate the use 
of our notation in practice. 

VII. CONCLUSION AND FUTURE WORK 
There seems to be a significant amount of interests on t-

way sequence testing in both academia and industry. 
However, progress is still lacking. In this paper we present 
an approach to handling sequencing constraints, which we 
believe is a key technical challenge in t-way test sequence 
generation but has not been adequately addressed. Our 
approach consists of an event-oriented notation for 
expressing sequencing constraints and a greedy algorithm for 
generating test sequences that achieve t-way coverage while 
ensuring that all the constraints are satisfied. We applied our 
approach to a real-life communication protocol. Our 
experience suggests that our notation is more intuitive to use 
and can capture important sequencing constraints for this 
protocol. However, our test generation algorithm seems to be 
time consuming. This work is part of our larger and ongoing 
effort to make t-way sequencing testing practically useful.   

In the future, we will continue our work in the following 
major directions. First, we want to optimize the performance 
of our test sequence generation algorithms. For example, 
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there seems to be quite some redundant computations in the 
generation process. We plan to explore ways to reduce such 
redundancy, e.g., by saving intermediate results. Second, we 
want to develop an algorithm to perform consistency check 
on constraints specified by the user. This is necessary 
because the user may specify constraints that contradict with 
each other. This consistency check can reject contradictory 
constraints prior to test generation and can also provide 
feedback to the user in terms of how to make corrections. 
Finally, we want to investigate the formal properties of our 
notation for sequencing constraints, in terms of what kind of 
constraints our notation can or cannot express. In particular, 
we want to check the possible equivalence relation between 
our notation and other notations such as LTS and LTL. For 
example, is it true that any properties that can be expressed 
using LTS or LTL can be expressed using our notation and 
vice versa?  
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