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Abstract — Uncertainty analysis of microwave electronic
measurements enables the quantification of device performance
and aides in the development of robust technology. The Monte
Carlo method is commonly used to attain accurate uncertainty
analyses for complicated nonlinear systems. Combining multiple
similar measurements, each with a Monte Carlo uncertainty
analysis, allows one to incorporate the uncertainty given by their
spread. In this paper, we compare two Monte Carlo sampling
methods, illustrate that one method reduces the bias of averaged
quantities, show how this impacts computed uncertainties, and
highlight microwave applications for which this corrected method
can be applied.
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I. INTRODUCTION

Uncertainty analysis quantifies the precision of
measurements and facilitates accurate characterization
of systems; Here we focus on applications to microwave
engineering. The Monte Carlo method is a key component
of uncertainty analysis [1] and is primarily used to propagate
uncertainties through nonlinear transformations. It has
been used by several national metrology institutes [2],
[3] to accurately determine uncertainty in high-frequency
electronic measurements and systems. At the Communications
Technology Lab at the National Institute of Standards and
Technology (NIST) we perform Monte Carlo analyses for
many of our measurements including VNA calibrations [4],
electro-optic sampling [5], as well as derived communication
metrics including error vector magnitude (EVM) [6].

Repeating equivalent measurements gives insight
into variability, noise, etc., allowing a more complete
characterization of the measurement setup and environment.
Incorporating the spread of these measurements in uncertainty
analyses often increases the estimate of uncertainty
in the measurement. This can account for differing or
changing environments (including temperature or humidity
fluctuations), lack of precise control in the measurement
(including connection repeatability [7], cable bending [6],
probe placement or other spatial positioning), reproducibility
using different components [8] or other unknown random
processes (e.g. unknown radio-frequency interference in the
laboratory). Thus it is often of interest to combine multiple
measurements, each with their own errors, to determine the
mean measurement response and its associated variability.

For Monte Carlo uncertainty analyses, this requires
combining multiple Monte Carlo samples, one for each
measurement, to calculate an estimate of the mean response
and its variance as represented by a further Monte Carlo
sample. Frey et al. [9] analyzed two Monte Carlo sampling
methods applied to this situation, determined that one of
the variants is typically more accurate, and recommended its
use in the NIST Microwave Uncertainty Framework (MUF),
a software tool for representing, propagating, and reporting
uncertainty in microwave measurement systems.

In this paper we illustrate the trade-offs of these Monte
Carlo sampling techniques, verify their implementation in the
MUF, and discuss the relevance to microwave systems. We
begin with a review of covariance-based uncertainty analysis
and the Monte Carlo method.

II. UNCERTAINTY ANALYSIS

Covariance-based uncertainty analysis [10] preserves
correlations across records (e.g. time records or frequency
data) through transformations. This allows the accurate
propagation of uncertainties in measurements through to
derived data, including corrected device responses, modulated
signals, or system-level metrics. Linear transfomations, such
as the Fourier transform, can use sensitivity analysis [11] to
propagate these uncertainties. However, sensitivity analysis
assumes that the transformation is linear and reduces to a local
approximation for nonlinear transformations.

A. The Monte Carlo Method

The typical method for propagating uncertainties through
nonlinear transformations is the Monte Carlo method.
This method tracks the statistical biases introduced by
nonlinearities, which are not captured by a sensitivity analysis.
These biases can include differences of the center (mean),
spread (variance) and shape of the probability distribution of
the transformed data.

Here we represent a quantity with known uncertainty as
a random variable S which is characterized by a nominal
value, snom, and a probability distribution. The Monte Carlo
method draws random realizations of S from the probability
distribution, attaining a sample of size Q as {sq}Qq=1.

Repeated measurements of a quantity can give an estimate
of its uncertainty. Taking multiple, J , measurements of a
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random variable X gives a sample {xj}Jj=1 of its distribution.
These data can be propagated through transformations to
obtain uncertainty in derived measurements. One relevant
transformation for high-frequency measurements takes a form
similar to

Y = F (X,S) (1)

which maps the random variables X and S into another
random variable Y . Equations of the form Eq. (1) can
represent a correction or calibration of measured data X using
a standard S which is only known up to some uncertainty. The
Monte Carlo method maps the nominal values

yj,nom =F (xj , snom) (2)

and Monte Carlo samples

yj,q =F (xj , sq) (3)

for j = 1, . . . , J and q = 1, . . . , Q through this
transformation. Thus, for each j we have a complete Monte
Carlo uncertainty analysis of yj : a nominal value yj,nom and
a Monte Carlo sample {yj,q}Qq=1. The yj incorporate the
uncertainty due to the uncertainty in S, however the spread of
the xj has not been included in these individual quantities.

In order to calculate the mean and the uncertainty of the
mean of the yj , we need to combine the yj to capture the
uncertainty due to the spread of the xj . That is, we want
to combine the multiple Monte Carlo samples to produce a
new Monte Carlo sample which estimates the mean of these
data and the uncertainty in the mean. However, as the random
variable S is shared across all of the J measurements the
values sq are perfectly correlated across all of the yj,q . In
combining these data, care must be taken to preserve this
correlation.

B. The Microwave Uncertainty Framework

The NIST MUF is a tool that performs covariance-based
and Monte Carlo uncertainty analyses for high-frequency
electronic measurements. It supports many operations used
in microwave and millimeter wave applications including
calibrations, de-embedding, transformations between the time
and frequency domains, and the evaluation of system
metrics such as EVM. The MUF propagates uncertainties in
parameters through such operations obtaining uncertainty in
derived quantities. The specified uncertainty in the parameters
is typically given by an a priori model of the uncertainty in
these values. Examples for which a model can be provided
include uncertainties in the length of a transmission line or
in the alignment of a waveguide. However, there are some
uncertainty mechanisms which are difficult or impossible
to model. Often these uncertainties are characterized using
multiple measurements. Therefore, the process of estimating
uncertainties from multiple measurements is an essential issue
for users of the MUF and is an important feature that should
be handled accurately.

III. MONTE CARLO SAMPLING METHODS

Frey et al. [9] presented two procedures for combining
multiple Monte Carlo samples to estimate the uncertainty of
the mean of multiple measurements with uncertainty while
preserving these correlations. The first method corresponds
to the original MUF formulation, denoted here as “Original”,
which estimates the variance of the multiple measurements
using their nominal values, the yj,nom. This intuitive approach
uses the spread of measurements as transformed using the
nominal value of any quantities with uncertainty (the snom
values) as in Eq. (2). The other method, denoted here as
the “Alternative” method, estimates this variance using the
averages of the J Monte Carlo samples,

ȳj,· =
1

Q

Q∑
q=1

yj,q.

In [9] it was shown that both methods produce Monte Carlo
samples with unbiased means but biased variances. Monte
Carlo samples with an unbiased mean will have an average
value that, when averaged over many equivalent experiments,
will converge to the true value. The biased variance of the
Monte Carlo sample implies that the expected value of the
variance of Monte Carlo samples will not approach the true
variance. That is, these Monte Carlo samples will not yield the
correct value of uncertainty even when averaged over many
equivalent experiments. The bias of the Original method was
shown to be Ψ/J while the bias of the Alternative method
is Φ/(JQ) where both Ψ and Φ depend upon the function
F as well as the distributions of X and S (for more details
please see [9]). Although there are trade-offs between these
approaches, an analysis of these biases, the variability of the
underlying statistic, and the order of the parameters J and Q
in [9] yielded a recommendation to use the Alternative method
to combine the Monte Carlo samples.

IV. EXAMPLES

We apply these two methods to two examples where we
can analytically calculate the variance and corresponding bias
terms. Using these closed-form expressions, we analyze the
performance of each Monte Carlo sampling method. Each of
these examples, like the examples in [9], amount to taking J
independent samples of X , Q samples of the systematic error
S that are shared across all J samples, and propagating these
samples through a nonlinear function, as in Eq. (3).

These examples each take Xj ∼ N(µ, σ2
x) and Sq ∼

N(0, σ2
s) and only differ in the nonlinear functions. The first

example is a quadratic

F (Xj , Sq) = (Xj + Sq)2 (4)

while the second example is a cubic

F (Xj , Sq) = (Xj + Sq)3. (5)

These simple polynomial examples allow us to calculate the
true mean and variance of the data and also derive closed-form
expressions for the the biases (ψ/J and φ/(JQ) as in [9]) for
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Fig. 1. The sample variance cumulatively averaged over trials for each of the sampling methods applied to the quadratic, Eq. (4), and cubic, Eq. (5), examples.
The Original and Alternative methods produced little or no bias for the quadratic example (a). The Original method had a pronounced bias for the cubic
example (b), while the Alternative method showed little bias.

Table 1. Analytically calculated values of the mean, variance and the biases
of each method for the quadratic and cubic examples.

Mean Variance Original Bias Alternative Bias
Quadratic 0.7500 0.5313 0.0000 6.250 ×10−4

Cubic 0.8750 2.332 -0.1446 6.016 ×10−3

each method. We use these analytic expressions to examine the
effect of these biases for the examples and use these relations
to verify the numerical implementation in the MUF.

A. Analytic Results

For each example, Eqs. (4) and (5), we choose µ =
0.5, σx = 0.5, σs = 0.5, J = 4, and Q = 100‡, evaluate the
closed-form expressions for these parameters, and tabulate the
analytically computed values of the true mean and variance as
well as the biases of the variance estimates for each sampling
method in Table 1. Here we see that the Original method
produces no bias of the variance in the quadratic example
but a significant bias in cubic example while the Alternative
method produces relative biases of ≈ .1% for both cases.

B. Microwave Uncertainty Framework Numerical Results

We now turn to numerical experiments to verify the
implementation in the MUF. Using the parameters above
(for each example and sampling method) we run 1,000
independent trials and compute the sample mean and variance
of the resulting Monte Carlo samples of each trial. Figure 1
shows the value of the sample variance of the Monte Carlo
samples produced by the Original and Alternative methods
cumulatively averaged over trials — we see that this statistic

‡We chose Q = 100 for computational convenience and this was
sufficient for illustration purposes for these simple polynomial examples. In
general, we recommend using 10,000 Monte Carlo samples or more.

Table 2. The averaged mean and variance along with the variance of these
quantities as computed from 1,000 simulated Monte Carlo trials.

Mean Var. Var. of Mean Var. of Var.

Quadratic Original 0.7515 0.5331 0.3193 0.3892
Alternative 0.7518 0.5324 0.3194 0.3902

Cubic Original 0.8755 2.170 0.6646 2.296
Alternative 0.8745 2.342 0.6661 2.508

begins to converge around 400 trials. Both methods approach
the true variance for the quadratic case in Fig. 1a, while the
variance of the Original method is clearly biased for the cubic
example in Fig. 1b.

Histograms of the sample variance, along with the true
and averaged values, are shown in Fig. 2. Here we see the
center of this statistic (mean of the variance) as well as the
spread (variance of the variance) and we tabulate these values
in Table 2 along with the corresponding values of the mean.

V. DISCUSSION

Table 2 shows that both methods produce Monte Carlo
samples whose mean on average had little deviation from the
analytic value. For the quadratic example, the Original method
produced Monte Carlo samples whose average variance
produced a value close to the analytically calculated value
verifying that there is no significant bias in this case. Similarly,
the Alternative scheme produced an average variance very
close to the predicted value in agreement with the calculated
bias shown in Table 1. However, in the cubic case the averaged
variance produced by the Original method differed from the
true value by −0.1620 which is very close to the analytically
calculated bias −0.1446 (from Table 1). The Alternative
method differed by 0.010 a bias an order of magnitude smaller
than the Original method.
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Fig. 2. Histograms of the sample variance using 1,000 trials for both sampling methods. The inset images show small or no significant biases for the quadratic
example (a) but a significant bias for the Original method in the cubic example (b).

These results support the intuition for choosing the
Alternative sampling method over the Original. Although the
Original method is unbiased for some specific examples, such
as the quadratic example above, it can produce significant bias
in relevant transformations. The Alternative method is biased
for both of our examples but, as this bias decreases with Monte
Carlo sample size Q, this bias can be quite small even for
the limited Monte Carlo sample size used here. Using the
Monte Carlo averaged values to calculate the variance, as in
the Alternative method, can yield more accurate uncertainty
analyses when applying nonlinear transformations. As many
microwave systems employ such nonlinear calculations (EVM,
bit error rate), this more accurate method will improve the
uncertainty analysis of such systems.

This numerical study also verified that the MUF
implementation of the Original and Alternative methods agree
with the analytically calculated results derived from [9].

VI. CONCLUSION

We applied the two Monte Carlo sampling methods
outlined in [9] to two polynomial examples. These simple
examples allowed us to derive closed-form expressions for the
true variance and the bias of each method, examine the effect
of bias in these methods, and verify the implementations in
the MUF. The Original method, which estimates the variance
of multiple measurements using the corresponding nominal
values, can produce significant bias in the estimate of variance.
The Alternative method, which estimates the variance of
multiple measurements using the averages of the Monte Carlo
samples, produces small biases for these examples, even for
the small Monte Carlo sample size considered here. As the
Alternative sampling method produces more accurate results
for these examples and the numerical simulations verified this
implementation in the MUF, the MUF will use the Alternative

sampling method moving forward, providing more accurate
uncertainty analyses for microwave measurement systems.
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