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Abstract- Adobe offers an analytics product as part of the
Marketing Cloud software with which customers can track many 
details about users across various digital platforms. For the most 
part, customers define the amount and type of data to track. In
addition, customers can specify many feature combinations when 
reporting on this data. These features create high dimensionality
that makes validation challenging for some of the most critical 
components of the Adobe Analytics product. One of these critical 
components is the reporting engine. This component has a 
validation framework often qualitatively considered within the 
engineering organization as highly effective. However, the 
effectiveness of this framework has never been quantitatively 
measured. Due to recent applications of combinatorial testing, 
the Analytics Tools team determined to use combinatorial 
coverage measurements (CCM) to evaluate the effectiveness of 
the Replay validation framework.  In this paper, we therefore 
report the practical application of combinatorial coverage 
measurements to evaluate the effectiveness of the validation 
framework for the Adobe Analytics reporting engine. The results 
of this evaluation show that combinatorial coverage 
measurements are an effective way to supplement existing 
validation for several purposes. In addition, we report details of 
the approach used to parse moderately nested data for use with 
the combinatorial coverage measurement tools. 
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I. INTRODUCTION

Originating from web analytics, the Adobe Analytics 
product has evolved into a customer marketing platform 
allowing users to instrument data collection across many 
digital platforms for real-time reporting. Users of Adobe 
Analytics configure the amount and type of data to track in
addition to the type and complexity of reports. The available 
configurations result in high dimensionality for any elements 
of the system that interact with the collected data. For example, 
the reporting engine accesses the stored data and calculates 
user-defined metrics from the contents. As the product has 
evolved, the number of configurable elements has only
increased for these components. 

Given this domain knowledge, traditional validation of the
reporting engine has relied on reusing actual customer requests.
This provides the benefit of exercising the parts of the system 
commonly used by users. This approach was generally seen as 
a practical solution to exercise the input space based on the 
assumption that the input space was too broad to systematically 
cover. Over time, detected faults exposed interactions not 

covered by the existing approach. These detected faults show 
that existing validation fails to provide comprehensive 
coverage of the system.

A key observation of combinatorial testing maintains that 
software faults are generally caused by the interactions 
between a limited (small) number of input parameters [1].
Generally, a t-way combinatorial test covers all t-way 
interactions. After discovering combinatorial testing, initial 
investigations revealed several reports showing the 
effectiveness in practical industry applications [2]. Despite 
many being labeled as “uncontrolled” applications and studies
[3], these reports prompted the internal tools team within
Adobe Analytics to quantitatively evaluate the coverage of the 
traditional validation.

In this paper, we consequently report an industry 
application of combinatorial coverage measurement (CCM) to 
the Adobe Analytics reporting engine. The analysis is 
considered successful if the measurements produce the desired 
result:  quantitatively exposing the lack of coverage to prompt 
improvement in existing validation. The results of the 
combinatorial measurements indeed suggest a gap in coverage
that could be addressed with combinatorial testing.

It is important to note that the subject system is large in 
terms of both lines of code and number of input parameters. In 
addition, the input parameters have complex constraints. This 
has three main implications: (1) the input space was minimized 
to make the analysis both more manageable and precise and (2)
we were only able to use existing tools to generate 2-way and 
3-way measurements for most aspects of this analysis.
Consequently, we also report the details of the approach used 
to minimize the input space. The approach consists of four 
main steps: (1) collect test cases from previous validation, (2) 
parse the previous test cases, (3) normalize the values for the 
input parameters, and (4) format the parsed test cases for use 
with Automated Combinatorial Testing for Software (ACTS)
[4] and Combinatorial Coverage Measurement Command-line 
(CCMCL) [5] tools provided by the National Institute of 
Standards and Technology (NIST).

The remainder of the paper proceeds as follows. In section 
II, we provide background for the subject system. Section III 
reports the approach and setup of the application including the 
input space modeling process. Section IV details the results of 
this application.
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II. BACKGROUND

A. General Workflow
For the Analytics product, Adobe provides customers with 

a software development kit (SDK). Customers use the SDK to 
instrument web sites and mobile applications. The 
instrumented applications then send data to the Adobe 
Analytics data collection pipeline based on this 
implementation. This collection process supports thousands of 
individual data fields. Eventually, this pipeline converts the 
data into a columnar format where it waits to meet certain 
conditions. Once meeting the conditions, the collection system 
exports the data to the compression algorithm. This algorithm 
transforms the data to another format for long term storage. 
The processing system reads the compressed files and 
transforms the data for reporting. Users generate report 
requests from the data in these newly created files. These 
reports relate to general metrics used to evaluate the success of 
digital marketing platforms (i.e. website, mobile application) to 
produce the desired result (i.e. click, purchase, etc). For 
example, a conversion report might return ten percent if one 
person out of ten met a defined condition like purchasing a 
particular product.

B. Reporting Engine Details
When generating report requests, users can select many 

different report types and options to change report behavior.
Table I and Table II summarize these most common report 
elements. Each of these report elements can be used with any 
of the thousands of potentially collected data fields mentioned 
above. 

TABLE I. ADOBE ANALYTICS REPORT TYPES

Report Type Description

Ranked Report field ranked by metrics
related to each value of field

Conversion/Average (CA) Returns conversion or average rate 
for users of the target application

TABLE II. ADOBE ANALYTICS REPORT OPTIONS

Report Option Description

Aggregation Aggregates data from user-defined 
rules

Breakdown Expands report by given field

Classification Dynamically labels data by pattern

Filter Filters data based on user-defined 
criteria for given field

Metric Defines metrics to calculate in 
context of selected fields

C. Existing Validation
The engineers of the reporting engine currently have two

main validation strategies: (1) regression testing and (2) 
integration testing. The existing regression testing involves 
randomly selecting recent customer requests for reuse. 
Meanwhile, the existing integration testing stores specific 
customer requests that have historically proved problematic. 

The validation framework executes the selected report 
requests with the current live code and the new proposed code. 
The framework then compares the output. Generally, 
engineers execute the framework once before delivering new 
code versions. However, the execution only occurs for an 
arbitrary period. This usually results in about 40,000 executed 
test cases. Despite flaws, this approach has proved both 
effective and practical. However, the current validation lacks
any quantification of coverage or stopping criteria.

This background information shows how the reporting 
system depends on two different sets of input parameters: (1) 
the data collected by the customer and (2) the details of report 
requests. A separate paper [6] focuses on applying 
combinatorial testing to the former while this paper focuses on 
the latter. Furthermore, this paper focuses only on the most 
common report types and options. For example, ranked and 
conversion/average reports account for 98 percent of customer 
reports and 100 percent of test cases completed by the existing 
validation during the last 6 months.

III. APPROACH AND SETUP

A. Data Preparation
Internally, the subject system uses extensible markup 

language (XML) to represent the elements of report requests.
Usually these XML document structures consist of a root 
element with one or more child elements for each report 
option. These child elements contain additional elements that 
define the individual objects of that report option (Figure 1).
Taking Figure 1 as an example, a customer might request a 
report that ranks the pages by number of page views, but only 
include certain pages from the site. Figure 2 shows what this 
might resemble. It is important to note that this is a trivial 
example.

Figure 1

Figure 2
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To measure combinatorial coverage of this existing test 
suite as quickly and easily as possible, the data in this nested 
XML structure required parsing the XML into the formats 
supported by existing tools. For example, the CCMCL tool 
provided by the National Institute of Standards and 
Technology (NIST) accepts a comma-separated value (CSV) 
file. We consequently considered two approaches for 
appropriately organizing each nested XML document into 
rows. 

The first option was the most obvious: flattening the nested 
XML such that each document becomes a single row where 
each tag and attribute becomes a column. For example, a row 
for the document in Figure 1 would have a column for the root 
tag, each root attribute, each child tag and attributes, and each 
nested child tag and attributes. This presents an easy solution 
while preserving context crucial to the analysis.  However, this 
approach also greatly increases the dimensionality of the 
analysis by making each row match the aggregated 
dimensionality of the XML documents with the most complex 
objects for each report option. Furthermore, the dimensionality 
of this approach often proves unnecessary as the resulting
combined row contains data not relevant to every XML 
document. 

The second option was less obvious, but perhaps more 
intuitive. Instead of considering each document as an 
individual row, the various elements of an individual document 
were divided by functionality. For instance, the report type tag 
and attributes hold significance, but the report type holds little 
bearing on the functionality of the individual report options.  
Similarly, the interactions for an individual report option hold 
significance, but one report option holds little bearing on the 
functionality of other report options. Consequently, relevant 
tags and attributes from the child elements can be included 
with those in the root or nested elements. Taking Figure 1 as an 
example, the tag and attributes of the root element would be 
written to a CSV for the report type with additional columns to 
mark the existence or absence of a child element. Meanwhile, 
the tag and attributes of the nested elements would be written 
to a CSV for the report option with additional columns to 
capture the specific details of the child element.  While losing
the exact details of some context information as a result of this 
forced isolation, this approach preserves the essence of the 
context (i.e. the existence of an input parameter) for the root 
element. Meanwhile, the nested elements maintain the exact 
details for isolated analysis of the discrete functional group (i.e.  
report option). 

With the data organized to accommodate easy 
transformation and analysis, we proceed with the input space 
modeling of the data objects we created.

B. Input Space Modeling
The CCMCL tool offers two options for modeling the input 

space. This analysis reports the results of both options: (1) infer 
the input space from the CSV containing the test cases as rows 
or (2) use an ACTS configuration file as an input space 
definition. Using the first option, the CCMCL tool will collect 
variable values from the input file which assumes the test cases 
represent all values for all input parameters. That said, the 

combinatorial coverage measurement of the inferred input 
space still provides valuable insight. However, using an ACTS 
configuration file will provide a more meaningful view of the 
existing test suite considering the nuances of the existing 
validation. Otherwise, we assume that the random selection of 
recent customer requests contains a representative set of all 
input parameter values.

Unfortunately, the subject system does not have an input 
space model for easy conversion to the ACTS file format. To 
compensate for this, we parsed nearly 28 million XML 
documents from a short period of customer requests. From the 
nearly 28 million XML documents, we removed duplicates to 
reduce the parsing time. In addition, we identified another area 
to reduce the data set while increasing usefulness. As 
mentioned, the Adobe Analytics product allows customers to 
collect diverse data and perform various operations on that 
data. However, many of these fields and operations have the 
same form and function. Like removing duplicate XML 
documents above, we normalized the input parameter values to 
accommodate this domain knowledge by replacing references 
to equivalence classes with a common placeholder. This 
applies to many of the report options in Table II. These actions
resulted in about 8 million unique XML documents. Compared 
to the input space inferred from the test cases, these 8 million 
XML documents did provide a more complete representation
of the input space.

IV. APPLICATION

We use the generated CSV and ACTS files with the 
combinatorial coverage measurement command line tool 
(CCMCL) available from NIST. The tool provides a few 
measurements. We focused on the 2-way and 3-way coverage 
percentage as the best indicator to evaluate the existing 
validation suites. We measured the combinatorial coverage 
measurement of several existing test suites by inferring the 
input space from both the test cases and the prepared ACTS 
configuration file. The coverage metrics seem to look better 
with the inferred input space due to a smaller number of 
represented input parameter values. For most of the report 
objects, the input space inferred from the test cases represents 
only ~60% of values present in the more complete ACTS 
configuration file. Despite millions of documents, about 40% 
of values and equally large percentages of combinations were 
not included in existing validation. Table III describes the 
results of the scenarios used to measure the various test suites
for the Adobe Analytics reporting engine.

In addition to these analyses, we measured the 
combinatorial coverage of the 28 million requests used to 
generate the ACTS config file. The results show an increase in 
coverage, but the increase is not proportional to the two-order 
magnitude increase in number of test cases. This provides 
additional perspective by showing that the current validation 
would never achieve an acceptable balance of practicality and 
coverage even if allowed to execute infinitely. However, this 
analysis does interestingly confirm that the current validation 
does what it was designed to do quite well.  That said, it 
obviously leaves room for improvement in more ways than 
one.
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TABLE III. COMBINATORIAL COVERAGE MEASUREMENTS

Regression Test Suite (Replay)

Report Object Inferred Input Space ACTS Config

2-Way 3-Way 2-Way 3-Way

Report type: Ranked 25 % 8 % 9 % 1 %

Report type: CA 98 % 96 % 18 % 3 %

Option: Metrics 9 % 1 % < 1 % 0 %

Option: Filters 2 % < 1 % 1 % 0 %

Option: Breakdowns 5 % < 1 % 1 % 0 %

Option: Aggregates 38 % 25 % 1 % 1 %

Integration Test Suite (Quince)

Report Object Inferred Input Space ACTS Config

2-Way 3-Way 2-Way 3-Way

Report type: Ranked 16 % 3 % 8 % 1 %

Report type: CA 65 % 39 % 13 % 3 %

Option: Metrics 12 % 1 % 1 % 0 %

Option: Filters 12 % 1 % 1 % 0 %

Option: Breakdowns 23 % 6 % 4 % 2 %

Option: Aggregates 27 % 9 % 1 % 1 %

V. CONCLUSIONS

These results expose glaring gaps in combinatorial 
coverage for a validation approach typically viewed as quite 
comprehensive and certainly sufficient. The combinatorial 
coverage measurements clearly show that current validation 
does not provide sufficient coverage.  Furthermore, current 
validation approaches are only capable of marginal increases 
in combinatorial coverage. Consequently, we reported these 

results to the engineers responsible for the reporting engine 
who instantly recognized the deficiency and the potential to 
drive improvement with these combinatorial coverage 
measurements. The engineers are considering two applications 
of the measurements: (1) use CCM to dynamically determine 
stopping criteria for existing validation or (2) use CCM to
create covering arrays to supplement existing validation by 
generating test cases for missing combinations.

Disclaimer: Products may be identified in this 
document, but identification does not imply recommendation 
or endorsement by NIST, nor that the products identified are 
necessarily the best available for the purpose.
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