
Measuring Combinatorial Coverage at Adobe

Riley Smith, Darryl Jarman, Jared Bellows
Adobe Systems Inc.

Utah, USA
{rilsmith, djarman, jbellows}@adobe.com

Richard Kuhn, Raghu Kacker
NIST

Maryland, USA
{d.kuhn, raghu.kacker}@nist.gov

Dimitris Simos
SBA Research

Vienna, Austria
dsimos@sba-research.org

Abstract- Adobe offers an analytics product as part of the
Marketing Cloud software with which customers can track many
details about users across various digital platforms. For the most
part, customers define the amount and type of data to track. In
addition, customers can specify many feature combinations when
reporting on this data. These features create high dimensionality
that makes validation challenging for some of the most critical
components of the Adobe Analytics product. One of these critical
components is the reporting engine. This component has a
validation framework often qualitatively considered within the
engineering organization as highly effective. However, the
effectiveness of this framework has never been quantitatively
measured. Due to recent applications of combinatorial testing,
the Analytics Tools team determined to use combinatorial
coverage measurements (CCM) to evaluate the effectiveness of
the Replay validation framework. In this paper, we therefore
report the practical application of combinatorial coverage
measurements to evaluate the effectiveness of the validation
framework for the Adobe Analytics reporting engine. The results
of this evaluation show that combinatorial coverage
measurements are an effective way to supplement existing
validation for several purposes. In addition, we report details of
the approach used to parse moderately nested data for use with
the combinatorial coverage measurement tools.

Keywords- Combinatorial Testing, Combinatorial Coverage
Measurement, Industry, Application

I. INTRODUCTION

Originating from web analytics, the Adobe Analytics
product has evolved into a customer marketing platform
allowing users to instrument data collection across many
digital platforms for real-time reporting. Users of Adobe
Analytics configure the amount and type of data to track in
addition to the type and complexity of reports. The available
configurations result in high dimensionality for any elements
of the system that interact with the collected data. For example,
the reporting engine accesses the stored data and calculates
user-defined metrics from the contents. As the product has
evolved, the number of configurable elements has only
increased for these components.

Given this domain knowledge, traditional validation of the
reporting engine has relied on reusing actual customer requests.
This provides the benefit of exercising the parts of the system
commonly used by users. This approach was generally seen as
a practical solution to exercise the input space based on the
assumption that the input space was too broad to systematically
cover. Over time, detected faults exposed interactions not

covered by the existing approach. These detected faults show
that existing validation fails to provide comprehensive
coverage of the system.

A key observation of combinatorial testing maintains that
software faults are generally caused by the interactions
between a limited (small) number of input parameters [1].
Generally, a t-way combinatorial test covers all t-way
interactions. After discovering combinatorial testing, initial
investigations revealed several reports showing the
effectiveness in practical industry applications [2]. Despite
many being labeled as “uncontrolled” applications and studies
[3], these reports prompted the internal tools team within
Adobe Analytics to quantitatively evaluate the coverage of the
traditional validation.

In this paper, we consequently report an industry
application of combinatorial coverage measurement (CCM) to
the Adobe Analytics reporting engine. The analysis is
considered successful if the measurements produce the desired
result: quantitatively exposing the lack of coverage to prompt
improvement in existing validation. The results of the
combinatorial measurements indeed suggest a gap in coverage
that could be addressed with combinatorial testing.

It is important to note that the subject system is large in
terms of both lines of code and number of input parameters. In
addition, the input parameters have complex constraints. This
has three main implications: (1) the input space was minimized
to make the analysis both more manageable and precise and (2)
we were only able to use existing tools to generate 2-way and
3-way measurements for most aspects of this analysis.
Consequently, we also report the details of the approach used
to minimize the input space. The approach consists of four
main steps: (1) collect test cases from previous validation, (2)
parse the previous test cases, (3) normalize the values for the
input parameters, and (4) format the parsed test cases for use
with Automated Combinatorial Testing for Software (ACTS)
[4] and Combinatorial Coverage Measurement Command-line
(CCMCL) [5] tools provided by the National Institute of
Standards and Technology (NIST).

The remainder of the paper proceeds as follows. In section
II, we provide background for the subject system. Section III
reports the approach and setup of the application including the
input space modeling process. Section IV details the results of
this application.

194

2019 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)

978-1-7281-0888-9/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSTW.2019.00052

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 15:47:40 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND

A. General Workflow
For the Analytics product, Adobe provides customers with

a software development kit (SDK). Customers use the SDK to
instrument web sites and mobile applications. The
instrumented applications then send data to the Adobe
Analytics data collection pipeline based on this
implementation. This collection process supports thousands of
individual data fields. Eventually, this pipeline converts the
data into a columnar format where it waits to meet certain
conditions. Once meeting the conditions, the collection system
exports the data to the compression algorithm. This algorithm
transforms the data to another format for long term storage.
The processing system reads the compressed files and
transforms the data for reporting. Users generate report
requests from the data in these newly created files. These
reports relate to general metrics used to evaluate the success of
digital marketing platforms (i.e. website, mobile application) to
produce the desired result (i.e. click, purchase, etc). For
example, a conversion report might return ten percent if one
person out of ten met a defined condition like purchasing a
particular product.

B. Reporting Engine Details
When generating report requests, users can select many

different report types and options to change report behavior.
Table I and Table II summarize these most common report
elements. Each of these report elements can be used with any
of the thousands of potentially collected data fields mentioned
above.

TABLE I. ADOBE ANALYTICS REPORT TYPES

Report Type Description

Ranked Report field ranked by metrics
related to each value of field

Conversion/Average (CA) Returns conversion or average rate
for users of the target application

TABLE II. ADOBE ANALYTICS REPORT OPTIONS

Report Option Description

Aggregation Aggregates data from user-defined
rules

Breakdown Expands report by given field

Classification Dynamically labels data by pattern

Filter Filters data based on user-defined
criteria for given field

Metric Defines metrics to calculate in
context of selected fields

C. Existing Validation
The engineers of the reporting engine currently have two

main validation strategies: (1) regression testing and (2)
integration testing. The existing regression testing involves
randomly selecting recent customer requests for reuse.
Meanwhile, the existing integration testing stores specific
customer requests that have historically proved problematic.

The validation framework executes the selected report
requests with the current live code and the new proposed code.
The framework then compares the output. Generally,
engineers execute the framework once before delivering new
code versions. However, the execution only occurs for an
arbitrary period. This usually results in about 40,000 executed
test cases. Despite flaws, this approach has proved both
effective and practical. However, the current validation lacks
any quantification of coverage or stopping criteria.

This background information shows how the reporting
system depends on two different sets of input parameters: (1)
the data collected by the customer and (2) the details of report
requests. A separate paper [6] focuses on applying
combinatorial testing to the former while this paper focuses on
the latter. Furthermore, this paper focuses only on the most
common report types and options. For example, ranked and
conversion/average reports account for 98 percent of customer
reports and 100 percent of test cases completed by the existing
validation during the last 6 months.

III. APPROACH AND SETUP

A. Data Preparation
Internally, the subject system uses extensible markup

language (XML) to represent the elements of report requests.
Usually these XML document structures consist of a root
element with one or more child elements for each report
option. These child elements contain additional elements that
define the individual objects of that report option (Figure 1).
Taking Figure 1 as an example, a customer might request a
report that ranks the pages by number of page views, but only
include certain pages from the site. Figure 2 shows what this
might resemble. It is important to note that this is a trivial
example.

Figure 1

Figure 2

195

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 15:47:40 UTC from IEEE Xplore. Restrictions apply.

To measure combinatorial coverage of this existing test
suite as quickly and easily as possible, the data in this nested
XML structure required parsing the XML into the formats
supported by existing tools. For example, the CCMCL tool
provided by the National Institute of Standards and
Technology (NIST) accepts a comma-separated value (CSV)
file. We consequently considered two approaches for
appropriately organizing each nested XML document into
rows.

The first option was the most obvious: flattening the nested
XML such that each document becomes a single row where
each tag and attribute becomes a column. For example, a row
for the document in Figure 1 would have a column for the root
tag, each root attribute, each child tag and attributes, and each
nested child tag and attributes. This presents an easy solution
while preserving context crucial to the analysis. However, this
approach also greatly increases the dimensionality of the
analysis by making each row match the aggregated
dimensionality of the XML documents with the most complex
objects for each report option. Furthermore, the dimensionality
of this approach often proves unnecessary as the resulting
combined row contains data not relevant to every XML
document.

The second option was less obvious, but perhaps more
intuitive. Instead of considering each document as an
individual row, the various elements of an individual document
were divided by functionality. For instance, the report type tag
and attributes hold significance, but the report type holds little
bearing on the functionality of the individual report options.
Similarly, the interactions for an individual report option hold
significance, but one report option holds little bearing on the
functionality of other report options. Consequently, relevant
tags and attributes from the child elements can be included
with those in the root or nested elements. Taking Figure 1 as an
example, the tag and attributes of the root element would be
written to a CSV for the report type with additional columns to
mark the existence or absence of a child element. Meanwhile,
the tag and attributes of the nested elements would be written
to a CSV for the report option with additional columns to
capture the specific details of the child element. While losing
the exact details of some context information as a result of this
forced isolation, this approach preserves the essence of the
context (i.e. the existence of an input parameter) for the root
element. Meanwhile, the nested elements maintain the exact
details for isolated analysis of the discrete functional group (i.e.
report option).

With the data organized to accommodate easy
transformation and analysis, we proceed with the input space
modeling of the data objects we created.

B. Input Space Modeling
The CCMCL tool offers two options for modeling the input

space. This analysis reports the results of both options: (1) infer
the input space from the CSV containing the test cases as rows
or (2) use an ACTS configuration file as an input space
definition. Using the first option, the CCMCL tool will collect
variable values from the input file which assumes the test cases
represent all values for all input parameters. That said, the

combinatorial coverage measurement of the inferred input
space still provides valuable insight. However, using an ACTS
configuration file will provide a more meaningful view of the
existing test suite considering the nuances of the existing
validation. Otherwise, we assume that the random selection of
recent customer requests contains a representative set of all
input parameter values.

Unfortunately, the subject system does not have an input
space model for easy conversion to the ACTS file format. To
compensate for this, we parsed nearly 28 million XML
documents from a short period of customer requests. From the
nearly 28 million XML documents, we removed duplicates to
reduce the parsing time. In addition, we identified another area
to reduce the data set while increasing usefulness. As
mentioned, the Adobe Analytics product allows customers to
collect diverse data and perform various operations on that
data. However, many of these fields and operations have the
same form and function. Like removing duplicate XML
documents above, we normalized the input parameter values to
accommodate this domain knowledge by replacing references
to equivalence classes with a common placeholder. This
applies to many of the report options in Table II. These actions
resulted in about 8 million unique XML documents. Compared
to the input space inferred from the test cases, these 8 million
XML documents did provide a more complete representation
of the input space.

IV. APPLICATION

We use the generated CSV and ACTS files with the
combinatorial coverage measurement command line tool
(CCMCL) available from NIST. The tool provides a few
measurements. We focused on the 2-way and 3-way coverage
percentage as the best indicator to evaluate the existing
validation suites. We measured the combinatorial coverage
measurement of several existing test suites by inferring the
input space from both the test cases and the prepared ACTS
configuration file. The coverage metrics seem to look better
with the inferred input space due to a smaller number of
represented input parameter values. For most of the report
objects, the input space inferred from the test cases represents
only ~60% of values present in the more complete ACTS
configuration file. Despite millions of documents, about 40%
of values and equally large percentages of combinations were
not included in existing validation. Table III describes the
results of the scenarios used to measure the various test suites
for the Adobe Analytics reporting engine.

In addition to these analyses, we measured the
combinatorial coverage of the 28 million requests used to
generate the ACTS config file. The results show an increase in
coverage, but the increase is not proportional to the two-order
magnitude increase in number of test cases. This provides
additional perspective by showing that the current validation
would never achieve an acceptable balance of practicality and
coverage even if allowed to execute infinitely. However, this
analysis does interestingly confirm that the current validation
does what it was designed to do quite well. That said, it
obviously leaves room for improvement in more ways than
one.

196

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 15:47:40 UTC from IEEE Xplore. Restrictions apply.

TABLE III. COMBINATORIAL COVERAGE MEASUREMENTS

Regression Test Suite (Replay)

Report Object Inferred Input Space ACTS Config

2-Way 3-Way 2-Way 3-Way

Report type: Ranked 25 % 8 % 9 % 1 %

Report type: CA 98 % 96 % 18 % 3 %

Option: Metrics 9 % 1 % < 1 % 0 %

Option: Filters 2 % < 1 % 1 % 0 %

Option: Breakdowns 5 % < 1 % 1 % 0 %

Option: Aggregates 38 % 25 % 1 % 1 %

Integration Test Suite (Quince)

Report Object Inferred Input Space ACTS Config

2-Way 3-Way 2-Way 3-Way

Report type: Ranked 16 % 3 % 8 % 1 %

Report type: CA 65 % 39 % 13 % 3 %

Option: Metrics 12 % 1 % 1 % 0 %

Option: Filters 12 % 1 % 1 % 0 %

Option: Breakdowns 23 % 6 % 4 % 2 %

Option: Aggregates 27 % 9 % 1 % 1 %

V. CONCLUSIONS

These results expose glaring gaps in combinatorial
coverage for a validation approach typically viewed as quite
comprehensive and certainly sufficient. The combinatorial
coverage measurements clearly show that current validation
does not provide sufficient coverage. Furthermore, current
validation approaches are only capable of marginal increases
in combinatorial coverage. Consequently, we reported these

results to the engineers responsible for the reporting engine
who instantly recognized the deficiency and the potential to
drive improvement with these combinatorial coverage
measurements. The engineers are considering two applications
of the measurements: (1) use CCM to dynamically determine
stopping criteria for existing validation or (2) use CCM to
create covering arrays to supplement existing validation by
generating test cases for missing combinations.

Disclaimer: Products may be identified in this
document, but identification does not imply recommendation
or endorsement by NIST, nor that the products identified are
necessarily the best available for the purpose.

REFERENCES

[1] D.R. Kuhn, R.N. Kacker, and Y. Lei, “Introduction to
Combinatorial Testing,” Chapman & Hall/CRC
Innovations in Software Engineering and Software
Development Series, Taylor & Francis, 2013.

[2] L. Ghanderhari, M. Bourazjany, Y. Lei, R. N. Kacker, R.
Kuhn, “Applying Combinatorial Testing to the Siemens
Suite” 6th IEEE International Conference on Software
Testing Proceedings, April 2013

[3] R. Kuhn, I. D. Mendoza, R. N. Kacker, Y. Lei
“Combinatorial Coverage Measurement Concepts and
Applications” 6th International Conference on Software
Testing Proceedings, April 2013

[4] R. Kacker, R. Kuhn, “Automated Combinatorial Testing
for Software (ACTS)”, National Institute of Standards and
Technology, https://csrc.nist.gov/Projects/Automated-
Combinatorial-Testing-for-Software

[5] R. Kacker, R. Kuhn, Z. Ratliff, D. Yaga,
“CCMCL: Command-line Combinatorial Coverage
Measurement tool (CCM) supporting constraints”,
https://github.com/usnistgov/combinatorial-testing-tools

[6] R. Smith, D. Jarman, R. Kuhn, R. Kacker, D. Simos, L.
Kampel, M. Leithner, G. Gosney, “Applying
Combinatorial Testing to Large-scale Data Processing at
Adobe”, 2019, 8th International Workshop on
Combinatorial Testing

197

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 15:47:40 UTC from IEEE Xplore. Restrictions apply.

