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Abstract- Adobe offers an analytics product as part of the
Marketing Cloud software with which customers can track many 
details about users across various digital platforms. For the most 
part, customers define the amount and type of data to track. This 
high dimensionality makes validation difficult or intractable. Due 
to increasing attention from both industry and academia, 
combinatorial testing was investigated and applied to improve 
existing validation. In this paper, we report the practical
application of combinatorial testing to the data collection, 
compression and processing components of the Adobe analytics
product. Consequently, the effectiveness of combinatorial testing 
for this application is measured in terms of new defects found 
rather than detecting known defects from previous versions. The 
results of the application show that combinatorial testing is an 
effective way to improve validation for these components of 
Adobe Analytics.  In addition, we report the details of the input 
parameter modeling process and test value selection to provide 
more context for the problem and how combinatorial testing 
provides the structure to improve validation for Adobe Analytics.
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I. INTRODUCTION

Originating from web analytics, the Adobe analytics 
product has evolved into a customer marketing platform 
allowing users to instrument data collection across many 
digital platforms for real-time reporting. Users of Adobe 
Analytics configure the amount and type of data to track. The 
available configurations result in high dimensionality for any 
elements of the system that interact with the collected data. For 
example, the collected data are the main input parameters for 
the data collection, compression, and processing components. 
As the product has evolved, the number of configurable 
elements has increased to at least a few thousand just for these 
components. Given this domain knowledge, traditional 
validation of these components relied on randomly generated 
values for the data input parameters. This approach was 
generally seen as a practical solution to exercise the input space

based on the assumption that the input space was too broad to 
systematically cover. Over time, faults in these components 
exposed interactions not covered by this traditional approach.  
These faults revealed the insufficiency of this existing 
validation method.

A key observation of combinatorial testing maintains that 
software faults are generally caused by the interactions 
between a limited (small) number of input parameters [1].
Generally, a t-way combinatorial test covers all t-way 
interactions. After discovering combinatorial testing, initial 
investigations revealed several reports showing the 
effectiveness in practical industry applications [2]. Despite 
many being labeled as “uncontrolled” applications and studies
[3], these reports prompted the internal tools team at Adobe 
Analytics to apply combinatorial testing to provide better 
values for the data collection input parameters. 

In this paper, we consequently report an industry 
application of combinatorial testing to the data collection, 
compression, and processing components of Adobe Analytics. 
Intending to improve existing validation, the effectiveness of 
combinatorial testing is measured in terms of new faults found 
rather than detecting known defects in previous faulty versions. 
Initial results of this combinatorial testing application found 
new faults in each of the subject systems with a small set of 
test cases. For example, a significant fault was detected in the 
data compression algorithm by a 2-way test set containing only 
~150 tests. Furthermore, the results suggest that combinatorial 
testing may prove more effective than the traditional random 
approach. 

It is important to note that the subject systems vary in size 
in terms of lines of code, but all have a large number of input 
parameters with complex constraints and many possible values.  
This has two main implications that affect implementation of 
combinatorial testing: (1) no tool existed for creating covering 
arrays that supported so many input parameters and (2) the
values for the input parameters needed to be minimized.
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Consequently, we also report the details of the input space 
modeling process. The approach consists of four main steps: 
(1) define the input space, (2) define values from inferred input 
space and boundaries, (3) generate covering arrays, and (4)
build test cases from covering arrays and input space model. 
This approach further reduces the validation complexity of 
these systems.

The remainder of the paper proceeds as follows. In section 
II, we provide background for the subject systems. Section III 
reports the approach and setup of the application including the 
input space modeling process. Section IV details the results of 
this application and the detected faults.

II. BACKGROUND

A. Data Collection and Compression
For the analytics product, Adobe provides customers with a 

software development kit (SDK). Customers use the SDK to 
instrument their own sites and applications. Depending on 
implementation, the instrumented applications then send data 
to the Adobe Analytics data collection pipeline. For a large 
customer, this can exceed 2000 input parameters. Being largely 
user-defined, the input parameter values approach practical 
limits. Eventually, this pipeline converts the data into a 
columnar format where it waits to meet certain conditions.
Once meeting the conditions, the collection system exports the 
data to the compression algorithm. This algorithm transforms 
the data to another format for long term storage. 

B. Data Processing
The processing system reads the compressed files and 

transforms the data for reporting. Being similar to the 
collection and compression system, this system uses the same 
covering arrays for over 2000 parameters but has different 
constraints. 

III. APPROACH AND SETUP

Applying combinatorial testing to these subject systems 
heavily depends on the ability to generate covering arrays for 
the large number of input parameters and input parameter 
values. However, no existing tool succeeded in generating the 
desired t-way covering arrays for such a large number of input 
parameters and input parameter values. As mentioned, the 
subject systems can exceed 2000 input parameters with over
300 potential unique values. Given that the number of tests for 
a greedy algorithm generally grows as 

vt log n

where

v = number of possible values for each variable

t = interaction strength or t-way interactions

n = number of variables or parameters

The number of rows in the covering arrays quickly 
approach impracticality (described in [1]). Minimizing the 
effect of input parameter values proves crucial to making the 
application practically possible. To continue, Adobe engineers

consequently used domain knowledge of the subject systems to 
model and minimize the parameters and possible values. With 
this minimized input space, researchers from NIST and SBA 
Research generated the covering arrays. The remainder of this 
section gives the details.

A. Input Space Modeling
Due to the large number of parameters and potential values, 

the input space for these subject systems is largely unknown. 
Fortunately, the data collection system temporarily stores the 
data in database tables. Although We used the description of 
these tables to infer the input space and parameters. Although 
critical to the modeling efforts, the database table descriptions 
could not encapsulate all the constraints of the subject systems 
and the respective input parameters. Consequently, the input 
space model was refined over several iterations. Furthermore, 
the table descriptions provided the data types and sizes which 
proved useful for selecting input parameter values.

B. Value Selection
Being user-defined, the input parameter values can also 

seem intractable especially when considering how the values 
could increase the combinatorics. Consequently, we 
minimized the input space. Using the database table 
descriptions again, we minimized the input parameter values 
by limiting the possible values for each input parameter. The 
data types and sizes from the table descriptions provided an 
intuitive way to accomplish this: by using the boundary values 
of the input parameters. When selecting values for each entry 
in the covering arrays, three values were used.

Minimum value. The minimum value for number-based 
database primitives was easy to determine. For 
character-based primitives, we minimized both the 
length and byte sizes.

Maximum value. The maximum for number-based 
primitives was also easy to determine. For character-
based primitives, we inversely maximized the length 
and byte sizes. This maximization limits this application 
of combinatorial testing to 3-way interactions. Any t-
way interactions above this contained maximum value 
that exhausted the memory resources of the machine to 
execute the test cases.

Unset. In addition to minimum and maximum values, 
we also used unset values where not prohibited by the 
database table description.

In addition to these, two test cases were added to the 
covering arrays: (1) all input parameters set to minimum values 
and (2) all input parameters set to maximum values. Future 
applications may incorporate a third entry in which all values 
use default and unset values.

C. Covering Array Generation
For this application, we aimed to generate 6-way covering

arrays because empirical research suggests that most systems 
do not require interactions beyond this magnitude to detect 
faults [1]. Given that the subject systems have a large number 
of input parameters, this seemed like the best target to avoid 
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poor results. However, no existing combinatorial test 
generation tool was able to generate the t-way covering arrays 
desired due to the large number of input parameters. In 
particular, our application originally required the consideration 
of t-way interactions of over 2000 input parameters. To be able 
to construct the required combinatorial test sets, we deployed a 
combination of a greedy algorithm together with theoretical 
constructions of covering arrays, which we briefly describe as 
follows. For the construction of a t-way covering array for 
more than 2000 parameters, we constructed a set of seed 
arrays, in this case 2-way up to t-way covering arrays for a 
smaller number of parameters. We generated these arrays 
relying on the greedy algorithm, called FIPO, described in [4]. 
Based upon these seed arrays we adopted a theoretical 
construction (described in [5]), which provides means to 
construct a t-way covering array for doubling the number of 
parameters. This construction is based on combinatorial 
methods, such as iterative multiplication and juxtaposition of 
the seed arrays. 

To facilitate automated construction of such covering 
arrays, we implemented a script that takes as an input the 
configuration of the target covering array (i.e. its interaction 
strength, number of input parameters and values), the 
maximum number of doublings, and parameters limiting the 
maximum number of input parameters in constructed seed 
arrays. The program first finds appropriate parameters for seed 
arrays. It then repeatedly executes the doubling construction 
described in [3] until the desired number of input parameters is 
reached. In each step, it either reuses existing covering arrays 
or generates them on the fly using FIPO, and finally stores the 
generated target covering array into a CSV file. 

Combining the flexibility of the efficient generation of t-
way covering arrays, for a comparatively small number of 
parameters and the capabilities of theoretical constructions to 
construct covering arrays for a large number of parameters, it 
was possible to construct covering arrays for the more than 
2000 parameters of interaction strength 2 to 5 where the input 
parameters can take 3, 7 or 10 values. Last, we would like to 
mention that we also constructed covering arrays for 20 ten-
valued parameters, as a direct computation of the FIPO 
algorithm [4], so as to provide the means for the verification 
of smaller input models. All generated t-way covering arrays 
are available publicly online [6]. To the best of our knowledge 
this is the first time that such large t-way covering arrays have 
ever been used in terms of an industrial application.

IV. APPLICATION

We used the two main parts of the Adobe Analytics data 
collection pipeline as our subject systems: (1) Data Collection 
and Compression and (2) Data Processing. After generating the 
test cases using the modeling and covering array generation 
approaches described in the previous sections, the tests were 
executed against the Data Collection and Compression system.
After successfully executing these, the resulting compressed
files were used to execute the Data Processing system.

We hoped to start with 2-way interactions and then move to 
3-way interactions, and so on, until (1) a fatal fault is detected 
or (2) testing at the current interaction strength does not detect 

any fault that was not detected in testing with the previous 
strength. However, the 4-way interactions exceeded the 
memory resources of the machine used to execute the test cases
even after minimizing the input space. While likely due to the 
4-way interaction of maximum boundary values, investigations 
have not yet concluded whether the system should behave in 
this manner. Regardless, the successful use of 2- and 3-way 
interactions discovered previously undetected faults.  The 
remainder of this section details these faults.

A. Data Collection and Compression
As stated, we began with 2-way testing. This did not work 

immediately as we discovered additional, undocumented 
constraints while attempting to submit the 2-way test cases to 
the data collection system. Although simple, finding these 
undocumented constraints marks unplanned success.  Adding 
these missing constraints will prevent future faults caused by 
incorrect implementations based on bad documentation.

After successfully writing the 2-way test cases into the 
database tables, the data collection system exported the 
columnar data to the compression algorithm. However, the 
compression algorithm core dumped immediately. Originally 
thought to be of little significance, further investigation 
revealed otherwise. The compression algorithm declares a
pointer to a bit array used to track the occurrence of input 
parameter values. This buffer initializes to a predetermined size
that facilitates over 2000 active input parameters (i.e. a 
parameter with a non-null value). However, the 2-way test 
cases exposed interactions where the number of input 
parameters exceeded the size of the array thereby causing a 
buffer overflow. Detecting this fault consequently requires the 
simultaneous use of more than 2000 input parameters. 
However, the values for the more than 2000 parameters do not 
matter. So, many combinations of input parameters could have 
revealed this fault provided the total number of input 
parameters exceeded the size of the array. Combinatorial 
testing provided the formal validation approach that 
systematically detected this fault. As shown, the compression 
system could not even accommodate the interactions of higher-
order input parameters from the 2-way test set. This first 
application of combinatorial testing detected a significant fault 
before any users. Consequently, this initial attempt 
demonstrated enough success to warrant approval for 
additional applications of combinatorial testing.

B. Data Processing
After successfully compressing the data, we submitted the 

compressed files to the data processing system. Consequently, 
this system uses the same covering arrays with over 2000
parameters. This process took more iterations than the previous 
application of combinatorial testing despite reusing the output 
of the previous system. Application of combinatorial testing to 
this system discovered many more, but less significant faults. It
is important to note that these faults were not nor ever would 
be detected using existing validation for this subject system. 
Consequently, the application of combinatorial testing still 
proves responsible for the detection of these faults by 
providing the formal validation approach that allowed 
detection. 
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The faults detected in this system largely related to 
inadequate data input validation.  Similar to the initial issue
with the previous subject system, there were several
undocumented constraints. Violating these constraints caused 
test cases to prevent successful execution of the program. 

Some of the undocumented constraints were valid. These 
constraints were documented to avoid faults from future 
implementation errors. However, other interaction failures 
were due to invalid input parameter handling. Code was 
changed to appropriately accommodate these valid parameter 
interactions. For example, a set of columns were defined in the 
database tables as varchar, but the processing system expects 
specific values that it interprets as Booleans. Table I 
summarizes the detected faults within this system. Again, note 
that this system uses the covering arrays of over 2000
parameters with three values each.

Table I. PROCESS FAULTS DETECTED BY COMBINATORIAL TESTING

Fault Descriptions, Causes, and 
Resolutions

Description t-way Cause Resolution

Flag-type fields throw error 2 Undocumented
value constraint

Update input 
space model

Event-type fields throw error 2 Undocumented 
format constraint

Update input 
space model

Parser throws error (CDS) 2 Undocumented 
value constraint

Update input 
space model

Parser throws error (JSON) 3 Undocumented 
format constraint

Add input 
validation

Invalid date fields interaction 2 Undocumented 
value constraint

Update input 
space model

V. CONCLUSIONS

This initial application of combinatorial testing to 
these subject systems detected seven previously undetected 
faults. By finding previously undetected faults, this 
application shows the great potential of combinatorial testing 
to improve existing validation for the Adobe Analytics 
product. Furthermore, the application of combinatorial testing 
to these subject systems provided the engineers of the Adobe 
Analytics product to learn valuable lessons by challenging 

ingrained assumptions. Most notably, these results debunk
long-held beliefs that these subject systems are too complex to
practically achieve systematic coverage. 

Overall, the organization considers this application of 
combinatorial testing successful enough to warrant continued 
augmentation of existing validation with additional 
combinatorial testing. The immediate benefactors of future 
applications include downstream components that consume 
the outputs of the subject systems mentioned in this paper. In
addition, the results of this application lead us to anticipate 
increasing yields (i.e. detected faults) from existing
applications of combinatorial testing as we increase the 
interaction strength currently limited by available resources.
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