
Applying Combinatorial Testing
to Large-scale Data Processing at Adobe

Riley Smith
Adobe Inc.
Utah, USA

rilsmith@adobe.com

Darryl Jarman
Adobe Inc.
Utah, USA

djarman@adobe.com

Richard Kuhn
NIST

Maryland, USA
d.kuhn@nist.gov

Raghu Kacker
NIST

Maryland, USA
raghu.kacker@nist.gov

Dimitris Simos
SBA Research
Vienna, Austira

dsimos@sba-research.org

Ludwig Kampel
SBA Research
Vienna, Austria

lkampel@sba-research.org

Manuel Leithner
SBA Research
Vienna, Austria

mleithner@sba-research.org

Gabe Gosney
Adobe Inc.
Utah, USA

gosney@adobe.com

Abstract- Adobe offers an analytics product as part of the
Marketing Cloud software with which customers can track many
details about users across various digital platforms. For the most
part, customers define the amount and type of data to track. This
high dimensionality makes validation difficult or intractable. Due
to increasing attention from both industry and academia,
combinatorial testing was investigated and applied to improve
existing validation. In this paper, we report the practical
application of combinatorial testing to the data collection,
compression and processing components of the Adobe analytics
product. Consequently, the effectiveness of combinatorial testing
for this application is measured in terms of new defects found
rather than detecting known defects from previous versions. The
results of the application show that combinatorial testing is an
effective way to improve validation for these components of
Adobe Analytics. In addition, we report the details of the input
parameter modeling process and test value selection to provide
more context for the problem and how combinatorial testing
provides the structure to improve validation for Adobe Analytics.

Keywords- Combinatorial Testing, Industry, Application

I. INTRODUCTION

Originating from web analytics, the Adobe analytics
product has evolved into a customer marketing platform
allowing users to instrument data collection across many
digital platforms for real-time reporting. Users of Adobe
Analytics configure the amount and type of data to track. The
available configurations result in high dimensionality for any
elements of the system that interact with the collected data. For
example, the collected data are the main input parameters for
the data collection, compression, and processing components.
As the product has evolved, the number of configurable
elements has increased to at least a few thousand just for these
components. Given this domain knowledge, traditional
validation of these components relied on randomly generated
values for the data input parameters. This approach was
generally seen as a practical solution to exercise the input space

based on the assumption that the input space was too broad to
systematically cover. Over time, faults in these components
exposed interactions not covered by this traditional approach.
These faults revealed the insufficiency of this existing
validation method.

A key observation of combinatorial testing maintains that
software faults are generally caused by the interactions
between a limited (small) number of input parameters [1].
Generally, a t-way combinatorial test covers all t-way
interactions. After discovering combinatorial testing, initial
investigations revealed several reports showing the
effectiveness in practical industry applications [2]. Despite
many being labeled as “uncontrolled” applications and studies
[3], these reports prompted the internal tools team at Adobe
Analytics to apply combinatorial testing to provide better
values for the data collection input parameters.

In this paper, we consequently report an industry
application of combinatorial testing to the data collection,
compression, and processing components of Adobe Analytics.
Intending to improve existing validation, the effectiveness of
combinatorial testing is measured in terms of new faults found
rather than detecting known defects in previous faulty versions.
Initial results of this combinatorial testing application found
new faults in each of the subject systems with a small set of
test cases. For example, a significant fault was detected in the
data compression algorithm by a 2-way test set containing only
~150 tests. Furthermore, the results suggest that combinatorial
testing may prove more effective than the traditional random
approach.

It is important to note that the subject systems vary in size
in terms of lines of code, but all have a large number of input
parameters with complex constraints and many possible values.
This has two main implications that affect implementation of
combinatorial testing: (1) no tool existed for creating covering
arrays that supported so many input parameters and (2) the
values for the input parameters needed to be minimized.

190

2019 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)

978-1-7281-0888-9/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSTW.2019.00051

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 15:46:03 UTC from IEEE Xplore. Restrictions apply.

Consequently, we also report the details of the input space
modeling process. The approach consists of four main steps:
(1) define the input space, (2) define values from inferred input
space and boundaries, (3) generate covering arrays, and (4)
build test cases from covering arrays and input space model.
This approach further reduces the validation complexity of
these systems.

The remainder of the paper proceeds as follows. In section
II, we provide background for the subject systems. Section III
reports the approach and setup of the application including the
input space modeling process. Section IV details the results of
this application and the detected faults.

II. BACKGROUND

A. Data Collection and Compression
For the analytics product, Adobe provides customers with a

software development kit (SDK). Customers use the SDK to
instrument their own sites and applications. Depending on
implementation, the instrumented applications then send data
to the Adobe Analytics data collection pipeline. For a large
customer, this can exceed 2000 input parameters. Being largely
user-defined, the input parameter values approach practical
limits. Eventually, this pipeline converts the data into a
columnar format where it waits to meet certain conditions.
Once meeting the conditions, the collection system exports the
data to the compression algorithm. This algorithm transforms
the data to another format for long term storage.

B. Data Processing
The processing system reads the compressed files and

transforms the data for reporting. Being similar to the
collection and compression system, this system uses the same
covering arrays for over 2000 parameters but has different
constraints.

III. APPROACH AND SETUP

Applying combinatorial testing to these subject systems
heavily depends on the ability to generate covering arrays for
the large number of input parameters and input parameter
values. However, no existing tool succeeded in generating the
desired t-way covering arrays for such a large number of input
parameters and input parameter values. As mentioned, the
subject systems can exceed 2000 input parameters with over
300 potential unique values. Given that the number of tests for
a greedy algorithm generally grows as

vt log n

where

v = number of possible values for each variable

t = interaction strength or t-way interactions

n = number of variables or parameters

The number of rows in the covering arrays quickly
approach impracticality (described in [1]). Minimizing the
effect of input parameter values proves crucial to making the
application practically possible. To continue, Adobe engineers

consequently used domain knowledge of the subject systems to
model and minimize the parameters and possible values. With
this minimized input space, researchers from NIST and SBA
Research generated the covering arrays. The remainder of this
section gives the details.

A. Input Space Modeling
Due to the large number of parameters and potential values,

the input space for these subject systems is largely unknown.
Fortunately, the data collection system temporarily stores the
data in database tables. Although We used the description of
these tables to infer the input space and parameters. Although
critical to the modeling efforts, the database table descriptions
could not encapsulate all the constraints of the subject systems
and the respective input parameters. Consequently, the input
space model was refined over several iterations. Furthermore,
the table descriptions provided the data types and sizes which
proved useful for selecting input parameter values.

B. Value Selection
Being user-defined, the input parameter values can also

seem intractable especially when considering how the values
could increase the combinatorics. Consequently, we
minimized the input space. Using the database table
descriptions again, we minimized the input parameter values
by limiting the possible values for each input parameter. The
data types and sizes from the table descriptions provided an
intuitive way to accomplish this: by using the boundary values
of the input parameters. When selecting values for each entry
in the covering arrays, three values were used.

Minimum value. The minimum value for number-based
database primitives was easy to determine. For
character-based primitives, we minimized both the
length and byte sizes.

Maximum value. The maximum for number-based
primitives was also easy to determine. For character-
based primitives, we inversely maximized the length
and byte sizes. This maximization limits this application
of combinatorial testing to 3-way interactions. Any t-
way interactions above this contained maximum value
that exhausted the memory resources of the machine to
execute the test cases.

Unset. In addition to minimum and maximum values,
we also used unset values where not prohibited by the
database table description.

In addition to these, two test cases were added to the
covering arrays: (1) all input parameters set to minimum values
and (2) all input parameters set to maximum values. Future
applications may incorporate a third entry in which all values
use default and unset values.

C. Covering Array Generation
For this application, we aimed to generate 6-way covering

arrays because empirical research suggests that most systems
do not require interactions beyond this magnitude to detect
faults [1]. Given that the subject systems have a large number
of input parameters, this seemed like the best target to avoid

191

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 15:46:03 UTC from IEEE Xplore. Restrictions apply.

poor results. However, no existing combinatorial test
generation tool was able to generate the t-way covering arrays
desired due to the large number of input parameters. In
particular, our application originally required the consideration
of t-way interactions of over 2000 input parameters. To be able
to construct the required combinatorial test sets, we deployed a
combination of a greedy algorithm together with theoretical
constructions of covering arrays, which we briefly describe as
follows. For the construction of a t-way covering array for
more than 2000 parameters, we constructed a set of seed
arrays, in this case 2-way up to t-way covering arrays for a
smaller number of parameters. We generated these arrays
relying on the greedy algorithm, called FIPO, described in [4].
Based upon these seed arrays we adopted a theoretical
construction (described in [5]), which provides means to
construct a t-way covering array for doubling the number of
parameters. This construction is based on combinatorial
methods, such as iterative multiplication and juxtaposition of
the seed arrays.

To facilitate automated construction of such covering
arrays, we implemented a script that takes as an input the
configuration of the target covering array (i.e. its interaction
strength, number of input parameters and values), the
maximum number of doublings, and parameters limiting the
maximum number of input parameters in constructed seed
arrays. The program first finds appropriate parameters for seed
arrays. It then repeatedly executes the doubling construction
described in [3] until the desired number of input parameters is
reached. In each step, it either reuses existing covering arrays
or generates them on the fly using FIPO, and finally stores the
generated target covering array into a CSV file.

Combining the flexibility of the efficient generation of t-
way covering arrays, for a comparatively small number of
parameters and the capabilities of theoretical constructions to
construct covering arrays for a large number of parameters, it
was possible to construct covering arrays for the more than
2000 parameters of interaction strength 2 to 5 where the input
parameters can take 3, 7 or 10 values. Last, we would like to
mention that we also constructed covering arrays for 20 ten-
valued parameters, as a direct computation of the FIPO
algorithm [4], so as to provide the means for the verification
of smaller input models. All generated t-way covering arrays
are available publicly online [6]. To the best of our knowledge
this is the first time that such large t-way covering arrays have
ever been used in terms of an industrial application.

IV. APPLICATION

We used the two main parts of the Adobe Analytics data
collection pipeline as our subject systems: (1) Data Collection
and Compression and (2) Data Processing. After generating the
test cases using the modeling and covering array generation
approaches described in the previous sections, the tests were
executed against the Data Collection and Compression system.
After successfully executing these, the resulting compressed
files were used to execute the Data Processing system.

We hoped to start with 2-way interactions and then move to
3-way interactions, and so on, until (1) a fatal fault is detected
or (2) testing at the current interaction strength does not detect

any fault that was not detected in testing with the previous
strength. However, the 4-way interactions exceeded the
memory resources of the machine used to execute the test cases
even after minimizing the input space. While likely due to the
4-way interaction of maximum boundary values, investigations
have not yet concluded whether the system should behave in
this manner. Regardless, the successful use of 2- and 3-way
interactions discovered previously undetected faults. The
remainder of this section details these faults.

A. Data Collection and Compression
As stated, we began with 2-way testing. This did not work

immediately as we discovered additional, undocumented
constraints while attempting to submit the 2-way test cases to
the data collection system. Although simple, finding these
undocumented constraints marks unplanned success. Adding
these missing constraints will prevent future faults caused by
incorrect implementations based on bad documentation.

After successfully writing the 2-way test cases into the
database tables, the data collection system exported the
columnar data to the compression algorithm. However, the
compression algorithm core dumped immediately. Originally
thought to be of little significance, further investigation
revealed otherwise. The compression algorithm declares a
pointer to a bit array used to track the occurrence of input
parameter values. This buffer initializes to a predetermined size
that facilitates over 2000 active input parameters (i.e. a
parameter with a non-null value). However, the 2-way test
cases exposed interactions where the number of input
parameters exceeded the size of the array thereby causing a
buffer overflow. Detecting this fault consequently requires the
simultaneous use of more than 2000 input parameters.
However, the values for the more than 2000 parameters do not
matter. So, many combinations of input parameters could have
revealed this fault provided the total number of input
parameters exceeded the size of the array. Combinatorial
testing provided the formal validation approach that
systematically detected this fault. As shown, the compression
system could not even accommodate the interactions of higher-
order input parameters from the 2-way test set. This first
application of combinatorial testing detected a significant fault
before any users. Consequently, this initial attempt
demonstrated enough success to warrant approval for
additional applications of combinatorial testing.

B. Data Processing
After successfully compressing the data, we submitted the

compressed files to the data processing system. Consequently,
this system uses the same covering arrays with over 2000
parameters. This process took more iterations than the previous
application of combinatorial testing despite reusing the output
of the previous system. Application of combinatorial testing to
this system discovered many more, but less significant faults. It
is important to note that these faults were not nor ever would
be detected using existing validation for this subject system.
Consequently, the application of combinatorial testing still
proves responsible for the detection of these faults by
providing the formal validation approach that allowed
detection.

192

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 15:46:03 UTC from IEEE Xplore. Restrictions apply.

The faults detected in this system largely related to
inadequate data input validation. Similar to the initial issue
with the previous subject system, there were several
undocumented constraints. Violating these constraints caused
test cases to prevent successful execution of the program.

Some of the undocumented constraints were valid. These
constraints were documented to avoid faults from future
implementation errors. However, other interaction failures
were due to invalid input parameter handling. Code was
changed to appropriately accommodate these valid parameter
interactions. For example, a set of columns were defined in the
database tables as varchar, but the processing system expects
specific values that it interprets as Booleans. Table I
summarizes the detected faults within this system. Again, note
that this system uses the covering arrays of over 2000
parameters with three values each.

Table I. PROCESS FAULTS DETECTED BY COMBINATORIAL TESTING

Fault Descriptions, Causes, and
Resolutions

Description t-way Cause Resolution

Flag-type fields throw error 2 Undocumented
value constraint

Update input
space model

Event-type fields throw error 2 Undocumented
format constraint

Update input
space model

Parser throws error (CDS) 2 Undocumented
value constraint

Update input
space model

Parser throws error (JSON) 3 Undocumented
format constraint

Add input
validation

Invalid date fields interaction 2 Undocumented
value constraint

Update input
space model

V. CONCLUSIONS

This initial application of combinatorial testing to
these subject systems detected seven previously undetected
faults. By finding previously undetected faults, this
application shows the great potential of combinatorial testing
to improve existing validation for the Adobe Analytics
product. Furthermore, the application of combinatorial testing
to these subject systems provided the engineers of the Adobe
Analytics product to learn valuable lessons by challenging

ingrained assumptions. Most notably, these results debunk
long-held beliefs that these subject systems are too complex to
practically achieve systematic coverage.

Overall, the organization considers this application of
combinatorial testing successful enough to warrant continued
augmentation of existing validation with additional
combinatorial testing. The immediate benefactors of future
applications include downstream components that consume
the outputs of the subject systems mentioned in this paper. In
addition, the results of this application lead us to anticipate
increasing yields (i.e. detected faults) from existing
applications of combinatorial testing as we increase the
interaction strength currently limited by available resources.

ACKNOWLEDGMENT

The research presented in this work was partly funded
under the Austrian COMET program (FFG).

Disclaimer: Products may be identified in this document,
but identification does not imply recommendation or
endorsement by NIST, nor that the products identified are
necessarily the best available for the purpose.

REFERENCES

[1] D.R. Kuhn, R.N. Kacker, and Y. Lei, “Introduction to Combinatorial
Testing,” Chapman & Hall/CRC Innovations in Software Engineering
and Software Development Series, Taylor & Francis, 2013.

[2] L. Ghanderhari, M. Bourazjany, Y. Lei, R. N. Kacker, R. Kuhn,
“Applying Combinatorial Testing to the Siemens Suite” 6th IEEE
International Conference on Software Testing Proceedings, April 2013

[3] R. Kuhn, I. D. Mendoza, R. N. Kacker, Y. Lei “Combinatorial Coverage
Measurement Concepts and Applications” 6th International Conference
on Software Testing Proceedings, April 2013

[4] K. Kleine, and D.E. Simos, “An efficient design and implementation of
the inparameter-order algorithm,” Mathematics in Computer Science
12(1), 51–67, 2018.

[5] S. Martirosyan, and T. van Trung, “On t-covering arrays,” Designs,
Codes and Cryptography, 32(1):323–339, 2004.

[6] D. Simos, L. Kampel, M. Leithner, Covering Arrays, SBA Research
2018, https://matris.sba-research.org/data/adobe/

193

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 15:46:03 UTC from IEEE Xplore. Restrictions apply.

