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Fabry-Perot laser interferometry is a common laboratory technique used to interrogate res-

onant micro- and nano-electromechanical systems (MEMS/NEMS). This method uses the

substrate beneath a vibrating MEMS/NEMS device as a static reference mirror, encoding

relative device motion in the reflected laser power. In this work, we present a general

approach for calibrating these optical systems based on measurements of large-amplitude

motion that exceeds one half of the laser wavelength. Utilizing the intrinsic nonlinearity

of the optical transduction, our method enables the direct measurement of the system’s

transfer function (motion-to-detected-voltage). We experimentally demonstrate the use of

this technique to measure vibration amplitudes and changes in the equilibrium position of

a MEMS/NEMS device using monolithic silicon nitride and silicon cantilevers as sample

systems. By scanning the laser along a cantilever surface, we spatially map static and dy-

namic deflection profiles simultaneously, and then compare the static profile against results

from a commercial optical profilometer. We further demonstrate extension of our calibra-

tion technique to measurements taken at small amplitudes, where the optical transduction

is linear, and to those taken in the frequency domain by a lock-in amplifier. Our aim is

to present a robust calibration scheme that is independent of MEMS/NEMS materials and

geometry, to completely negate the effects of nonlinear optical transduction, and to en-

able the assessment of excitation forces and MEMS/NEMS material properties through

the accurate measurement of the MEMS/NEMS vibrational response.

a)Electronic mail: robert.ilic@nist.gov
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I. INTRODUCTION

Modern MEMS/NEMS experiments utilize mechanical resonators to push the limits of force

and mass sensing1–6, demonstrate novel electromechanical circuit applications7–11, measure the

structural properties of materials12–14, and study quantum physics15,16. These devices have var-

ied geometries including cantilevers, doubly-clamped bridges, microdisks, and membranes, and

are made from materials ranging from standard semiconductors and dielectrics (e.g. Si, GaAs,

SiN)17–19 to carbon nanotubes4,20, graphene14,21,22, and other atomically-thin films23–26.

Fabry-Perot laser interferometry is a popular and robust technique for probing MEMS/NEMS

devices1,9,13,14,21,23–36 because it is non-invasive – requiring no electrical contact to the test sample

– and provides exceptional motion sensitivity (roughly 10fm ·Hz−1/2 in Ref. 30). Furthermore,

a typical laboratory setup can function over a wide frequency range, from a few Hz to hundreds

of MHz, and is compatible with any MEMS/NEMS material that is partially optically transparent.

This requirement is easily satisfied with typical device thicknesses on the order of 100nm or

less. Additionally, the interferometry technique utilizes a partially reflective substrate as a static

reference mirror beneath the MEMS/NEMS resonator. Doing so provides common-mode noise

rejection when compared to interferometers that use an external reference mirror.

An important feature of the Fabry-Perot interferometry setup is the tight focus of the laser used

to detect MEMS/NEMS motion. This focus is typically achieved using a microscope objective,

and results in a spot diameter of w≈ 1 µm to 5 µm over which the device motion is effectively

averaged. For devices with lateral dimensions much larger than the focused laser spot, scanning

the spot location provides a means to image the vibrational modes of the device. A noteworthy

example of this technique appears in Ref. 30, in which multiple modes of a 20 µm-wide SiC

microdisk were imaged using only its thermal Brownian motion for excitation. This result, as with

most reported measurements, is made possible by the linearity of the optical transduction when

vibration amplitudes are much smaller than the laser wavelength, λ .

Despite the simplicity and sensitivity of this optical technique, it suffers from two main short-

comings: Firstly, motion transduction is highly nonlinear when MEMS/NEMS motion exceeds

λ/4. This artificially constrains MEMS/NEMS experiments to small vibration amplitudes, lim-

iting the signal-to-noise ratio and therefore sensitivity of some mass sensing devices. Secondly,

because the reference mirror cannot be moved independently, there is no simple or established

technique for calibrating device motion. For this reason, vibration amplitudes are typically re-
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ported in arbitrary units, and only the resonant frequency is known with certainty. This single

datum can be used to estimate one mechanical parameter of the system (e.g. total mass, internal

stress, elastic modulus, or applied force), assuming all other relevant parameters are known. A

calibrated optical system would enable measurement of resonator’s vibration amplitude and static

deflection, providing additional data for the assessment of material properties and loading condi-

tions.

Existing methods for calibrating deflections in MEMS/NEMS measurements involve either

measuring Brownian motion29,36–38 or measuring nonlinear behavior9,36, such as the critical vi-

bration amplitude at which a Duffing response becomes multistable. Both require extensive theo-

retical modeling, introducing sources of error, and both are highly dependent on device materials

and geometry. Furthermore, neither of these calibration methods provides information about the

static deflection of the MEMS/NEMS device. Nor do they address the issue of nonlinear optical

transduction. Utilizing the nonlinearity of an optical system’s transfer function, henceforth re-

ferred to as its interference pattern, to calibrate motion has been attempted, but typically under the

assumption that the interference pattern is sinusoidal32,36,39.

The calibration scheme we present here is independent of both MEMS/NEMS materials and

geometry and makes no assumptions regarding the system’s interference pattern. Our method al-

lows for a direct measurement of the interference pattern of an arbitrary MEMS/NEMS system by

simply measuring reflected laser power in the time domain and applying a mathematical transfor-

mation. If the device motion spans a full interference fringe, a calibration can then be obtained by

using the peak-to-peak width of this fringe as a reference for λ/2. Furthermore, our approach fully

compensates for nonlinear optical transduction, and allows for the direct comparison of large- and

small-amplitude data to discern changes in both vibration amplitude and static deflection.

II. EXPERIMENTAL SETUP

A diagram of our experimental setup is shown in Fig. 1(a). The essential components are the

laser source with a wavelength λ ≈ 640nm, a long-working-distance objective (LWDO), a beam

splitter (BS), a polarizing beam splitter (PBS), and a high-speed photodetector (PD). All of the

remaining optics serve to either improve the signal-to-noise ratio of the system or enable live

imaging of the MEMS/NEMS sample with a digital camera. A variable beam expander (VBE)

adjusts the beam diameter to match the objective aperture, minimizing the focused spot size. A
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λ/2 waveplate (WP) in the beam path ensures that the PBS transmits ≈ 100% of light from the

laser source. Upon exiting the PBS, this light encounters a λ/4 WP that circularly polarizes it

before entering the LWDO. After reflection from the MEMS/NEMS sample, a second pass through

the λ/4 WP reverts the light to a linear polarization, rotated 90◦ relative to the original polarization,

for≈ 100% reflection by the PBS into the PD. Compared to a 50/50 BS, the PBS therefore roughly

doubles the measured signal strength for a fixed laser power incident on the sample. The image

relayed to the digital camera is magnified by a zoom lens (ZL), and the MEMS/NEMS sample is

on a motorized translation stage (MTS), enabling computer control of the sample position. The

sample is situated inside a high-vacuum chamber (HVC) with optical access and mounted on a

piezoelectric disk to inertially drive the MEMS/NEMS motion. The piezoelectric drive signal is

provided by a lock-in amplifier (LIA), and the photodetector voltage is measured by the same

LIA or by an oscilloscope (OS). All experiments were performed at a pressure below 10−4 Pa to

minimize viscous drag.

Figure 1(b) demonstrates a typical interferometry measurement of a MEMS/NEMS resonator

in the large-amplitude regime, where peak-to-peak motion exceeds λ/4. In this case, the resonator

is a silicon nitride cantilever (Fig. 1(a) inset) being driven inertially. The laser was focused near

the cantilever free end, and the data was recorded using the LIA. The upper (lower) panel shows

the response of the cantilever to an upward (downward) sweep of the drive frequency, f . The can-

tilever response is plotted as V1, the voltage amplitude detected by the LIA at the drive frequency.

Both panels demonstrate several localized peaks of varying width and depth that originate from

the nonlinear optical transduction. The peak width, particularly in LIA measurements, has a non-

trivial relation to the MEMS/NEMS vibration amplitude, R, which will be discussed in Sec. V C.

These optical transduction effects obfuscate the MEMS/NEMS motion, and to an unsuspecting

experimenter could lead to a false notion of exotic device behavior. Figure 1(c) presents the same

data after processing via the calibration scheme described in Sec. V C, clearly showing that the

cantilever exhibits a standard Duffing-type mechanical response. Once the optical effects have

been accounted for, the data’s remaining asymmetry and hysteresis are consistent with a nonlinear

mechanical spring force.

Throughout this work we utilize cantilevers that are ≈ 50 µm in length to study peak-to-peak

motion that far surpasses λ . For all the results presented in the main text, the device is a monolithic

cantilever composed of low-pressure chemical vapor deposited (LPCVD) silicon nitride. The

width and thickness of this cantilever are approximately 10 µm and 200nm, respectively. This
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cantilever is separated from its underlying silicon substrate by a distance h≈ 2 µm, as determined

by the thickness of a layer of sacrificial silicon dioxide. In the Supplemental Sec. S1, we present

results for a monolithic silicon cantilever of similar dimensions, and for a second silicon cantilever

that is≈ 2.5 µm in width. These cantilevers are intended to typify a generic MEMS/NEMS device,

as optical interactions will be broadly similar for devices of different geometries.

III. CALIBRATION METHODS

The transduction in a MEMS/NEMS interferometry system can be described by

VPD(z) = GPin(z), where VPD(z) is the voltage generated by the photodetector, G is the optical-

power-to-voltage gain of the detector, and Pin(z) is the total power incident on the photodetec-

tor surface. Because this power is composed of reflections from each optical interface in the

MEMS/NEMS system, it is a function of the resonator’s out-of-plane displacement, z. Further-

more, because G is a fixed scalar dependent only on the efficiency of the detector at the given

wavelength and on the amplifier circuitry, we interchangeably refer to Pin(z) and VPD(z) as the

‘interference pattern’ of the MEMS/NEMS system.

In an ideal Fabry-Perot interferometer with parallel interfaces and optical plane waves, the

interference pattern can be calculated straightforwardly and is perfectly periodic with respect to

interface distance, with a period of λ/2. Under typical laboratory conditions, however, several

complicating factors arise as shown in Figs. 2(a)–2(d). These include: 1) divergence of the laser

beam on length scales comparable to the resonator-substrate gap, 2) the changing inclination angle

of the MEMS/NEMS resonator during its motion, 3) reflected light outside the acceptance cone of

the microscope objective, 4) optical diffraction around the lateral edges of the resonator, and 5) the

laser beam’s Gouy phase shift, which alters the apparent wavelength near the laser focus. Further-

more, VPD(z) depends on the distance between the substrate and the laser’s focal plane and on the

photodetector alignment. The resulting interference pattern is only quasiperiodic, as demonstrated

by the example in Fig. 2(e). Thus, there are many degrees of freedom in the optical system –

many of which are difficult to measure or reproduce accurately. For this reason, although several

previous studies have attempted to model the optical transduction of MEMS/NEMS systems using

numerical simulations35,40 or by assuming a perfectly sinusoidal interference pattern32,36,39, we

take the alternative approach of measuring VPD(z) directly.

To extract VPD(z), we measure the photodetector voltage as a function of time, t, and then map
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t to z. This process assumes the following relation between variables:

z(t) = z0 +Rcos(2π f (t− t0)). (1)

Here z0 is resonator’s static deflection, R is its vibration amplitude, and f is the drive frequency.

Maximum deflection occurs at time t = t0. Because the focused laser has a finite spot size

w≈ 5 µm on the MEMS/NEMS resonator, z should be thought of as the average deflection of

the illuminated area, rather than the deflection directly at the laser center. Additionally, as we

will discuss below, our technique can discern changes in z0 between measurements (e.g. due to a

change in loading conditions), but it cannot measure the total distance from the substrate. There-

fore, while relative shifts in z can be measured, the choice of origin z = 0 in our interference

patterns is arbitrary. Figure 2(e) demonstrates the relation between an interference pattern VPD(z)

and a simulated time-domain measurement VPD(t).

Figures 3(a)–3(d) demonstrate our method of extracting VPD(z) from a measured oscilloscope

trace VPD(t). This begins by mapping the time dimension onto a new dimensionless variable, u,

defined by:

u = cos(2π f (t− tTP)) . (2)

Here, the time tTP coincides with any turning point in the resonator’s oscillation cycle and is

determined by locating even symmetry points along the time axis (Fig. 3(a), arrows). Relative to

t0 in Eq. (1), these turning points all satisfy tTP = t0 + 1
2NT , where N is an integer and T = f−1 is

the period of oscillation. If N is even, u is related to z by u = (z− z0)/R. If N is odd, this relation

changes sign: u =−(z− z0)/R. In either case, u = 0 always signifies the resonator’s equilibrium

position z = z0, and u =±1 correspond to the extremes z = z0±R.

Data after mapping t to u is shown in Fig. 3(b). Because of the linear relation between u and z,

this mapped data VPD(u) is visually identical to the desired interference pattern VPD(z), as shown

in Fig. 3(c). Depending on the choice of turning point tTP in Eq. (2), the uncalibrated interference

pattern VPD(u) can be plotted as shown or mirrored along the u= 0 axis. By convention, throughout

this work we plot interference patterns VPD(u) and VPD(z) so that the fringe contrast – i.e. voltage

difference between neighboring peaks and valleys – decreases as u and z increase. This is because

we have chosen positive z to correspond to motion away from the silicon substrate, and we assume

that positive motion leads to a lower fringe contrast due to the beam divergence that occurs between

the optical interfaces. We calibrate interference patterns VPD(u) by one of two methods:
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1. ‘Peak-to-Peak’ Method: If the uncalibrated data VPD(u) displays at least two peaks or two

valleys, it is said to be in the large-amplitude regime (R > λ/4). Because of the quasiperi-

odic nature of the interference pattern, pairs of neighboring peaks (and pairs of valleys) are

separated by a distance≈ λ/2, where each λ/2 span is referred to as an interference fringe.

The dimensionless peak-to-peak distance ∆u is measured, and the vibration amplitude can

be determined from R≈ λ/(2∆u). In an example such as Fig. 3(b), where many peaks and

valleys are visible, the mean peak-peak and valley-valley distance is taken as ∆u. To monitor

changes in the static deflection z0 between measurements, a single peak (or valley) can be

chosen as reference, and its movement relative to the origin (u = 0) is monitored.

2. ‘Stretch’ Method: For small-amplitude data (R < λ/4), a full interference fringe is not

observed and λ/2 cannot be measured directly. In such a case, the uncalibrated data VPD(u)

is compared to a reference interference pattern Vref(z). This is shown in Fig. 3(c). The un-

calibrated data is shifted and scaled along the horizontal (u) axis until both curves overlap.

This transformation takes the form VPD(Ru+∆z0) =Vref(z) and directly yields both R and

∆z0, the change in equilibrium position between the new data and reference data. If the un-

calibrated data displays a significant portion of an interference fringe, it is said to be in the

intermediate-amplitude regime (λ/8 . R < λ/4). In this case, shifting and scaling along

the vertical (voltage) axis is also permitted, which allows some tolerance for slight changes

in laser power or optical alignment. To determine whether the data is in the intermediate-

amplitude regime, VPD(u) is tested for linearity by fitting to a third-order polynomial. If

either the quadratic or cubic coefficients exceed a predetermined fraction of the linear coef-

ficient (in absolute value), the data is of intermediate amplitude. For most measurements,

we use a 50% threshold.

Given that we use the widths of optical fringes in VPD(u) as our primary means of calibrating

distances, the question arises as to how consistent these fringe widths are within a single data set.

Figures 3(e) and 3(f) demonstrate this consistency in uncalibrated data with 7 fringes, measured

using the silicon nitride cantilever. These results are typical of our measurements and reveal a

monotonic trend in the fringe width across the range of u (and therefore z) values. This mono-

tonic behavior is not altogether surprising, as VPD(u) is far from an ideal interference pattern with

perfectly periodic fringes. From the left-most fringe to the right-most fringe, the data shows an

overall change of≈ 10% in fringe width ∆u, suggesting that our deflection estimates R can vary by
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≈ 10% depending on which fringe is chosen as a reference for λ/2. We emphasize that any error

this causes in our estimation of R is identical between measurements, and can be considered as a

linear scaling factor. Although the measured R may differ from its true value by ≈ 10%, repeated

R measurements can have a standard deviation better than≈ 0.01%, as evidenced by the low noise

level in Fig. 1(c). Therefore, changes in R and z0 can still be discerned with high precision.

In the peak-to-peak method, peaks are first located roughly by finding VPD(u) data points that

correspond to local maxima with prominence above the noise level, followed by fine tuning using a

quadratic fit in the neighborhood of each peak. These quadratic fits provide the peak locations and

uncertainties, from which the uncertainty in ∆u, R, and ∆z0 are calculated by error propagation.

In the stretch method, we implement a least-squares minimization routine to numerically align

the uncalibrated data VPD(u) to the reference data Vref(z). Linear interpolation is used to compare

these two data sets along the same data points in z. If the uncalibrated data partially extends past

the edges of the reference data, only data points in the overlapping region are used in the sum of

squared residuals. The sum is then normalized by P2, where P is the number of overlapping data

points. Uncertainties in R and ∆z0 are then evaluated by adding small perturbations to the best-fit

parameters, and thereby estimating the Jacobian matrix and covariance matrix of the system.

IV. VALIDITY OF THE MODEL

A key concern that must be addressed is whether the assumption of sinusoidal motion (in

Eqs. (1) and (2)) accurately describes MEMS/NEMS behavior. This is especially important

because the large vibration amplitudes needed to span interference fringes are likely to induce

mechanical nonlinearities, such as nonlinear restoring forces. The equation of motion for an

inertially-driven, damped mechanical resonator with nonlinear stiffening is given by:

d2z
dt2 +

2π f0

Q
dz
dt

+(2π f0)
2z+α2z2 +α3z3 =−(2π f )2Zb cos(2π f t). (3)

Here f0 is the undamped resonant frequency, Q is the quality factor, α2 and α3 are the nonlinear

coefficients, f is the drive frequency, Zb is the vibration amplitude of the resonator’s base, and z

is the relative motion between the resonator and its base. For simplicity, mechanical losses are

modeled by dz/dt viscous damping; however, approximations made in the derivation that follows

(Q� 1, f ≈ f0) ensure that our results are generalizable to systems with other forms of damping,

including internal friction. The equation above can be modified to describe a resonator driven by
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an external force by substituting −(2π f )2Zb with F/m, where F is the force amplitude and m is

the resonator mass. A derivation of this equation is provided in the Supplemental Sec. S3.

While most previous work focuses solely on a cubic restoring force, we have also included a z2

force for increased generality. This even-exponent term breaks the symmetry between positive and

negative deflections of z, which means that the resonator may experience a stronger restoring force

when it is deflected up rather than down. In our cantilevers, this could be caused by the asymmetric

clamping conditions at the cantilever base (sacrificial layer below and free space above) or by a

vertical stress gradient within the cantilever from fabrication.

While Eq. (3) cannot be solved exactly, a solution can be obtained to arbitrary precision using

perturbation theory41,42. The key results are presented below, but a full derivation is provided in

the Supplemental Secs. S4 and S5. The derivation assumes that the MEMS/NEMS resonator has

Q� 1, weak drive forces, and a drive frequency near resonance, otherwise stated as | f − f0| �
f0. All these assumptions are consistent with typical MEMS/NEMS experiments. Under these

conditions, the steady-state solution is

z(t) = z0 +
∞

∑
n=1

Rn cos(2πn f t +θn) (4)

where Rn and θn are the amplitude and phase of the nth Fourier component of z. The validity

of our calibration technique thus depends on the relative magnitudes of R2,R3, . . . ,Rn to R1. To

lowest-order in perturbation theory, the first Fourier component is given by

R1 =
f0Zb

2
√
( f − fNL)

2 + f 2
0 /(2Q)2

, (5)

where we have introduced the nonlinear resonant frequency, fNL = f0 +
3
8αR2

1(4π2 f0)
−1, and the

combined nonlinear coefficient α = α3− 10
9 α2

2 (2π f0)
−2. These equations for R1( f ) and fNL(R1)

are plotted in Fig. 4. The function fNL(R1) is often referred to as the ‘backbone curve’ of a

nonlinear resonance peak. For a mechanical system with fixed f0, Q, and α , the backbone curve

follows the resonance peak maximum as the drive amplitude Zb increases. The resonance peak

R1( f ) itself is symmetric for small drive amplitudes Zb→ 0 or if α = 0. For sufficiently large drive

amplitudes (and α 6= 0) the resonance peak leans asymmetrically to one side, eventually leading

to a multi-valued region of R1( f ). This causes hysteresis in experimental frequency sweeps as

observed in Fig. 1(c). The resulting asymmetry can be characterized by the resonant frequency

shift ∆ f0 = fNL− f0, given by

∆ f0 =
3αR2

1
32π2 f0

. (6)
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The nonlinear resonator experiences a shift from its equilibrium position characterized by

z0 ≈−1
2α2R2

1(2π f0)
−2. This result shows that z0 is due entirely to the symmetry breaking of the

α2 nonlinearity. Perturbation theory shows that the leading terms in the second and third Fourier

components of z(t) are given by:

R2

R1
=

1
3
|z0|
R1

(7)

R3

R1
=

∣∣∣∣
1

12
∆ f0

f0
+

2
9
|z0|2
R2

1

∣∣∣∣ . (8)

Higher-order Fourier components Rn become exponentially smaller for increasing n based on the

dimensionless ratios |z0|/R1 and (∆ f0)/ f0. Therefore, knowing these two ratios will allow us to

determine whether higher-order components are negligible, as required by Eq. (1) in our optical

calibration scheme.

V. RESULTS AND DISCUSSION

A. A Sample Frequency Sweep

To demonstrate the capabilities of our calibration scheme, Fig. 5 shows a Duffing resonance

of the silicon nitride cantilever measured entirely in the time domain. The measurement was

accomplished by collecting consecutive oscilloscope traces while sweeping the drive frequency

upward from f ≈ 34.5kHz to f ≈ 35.2kHz with the laser spot focused near the cantilever free

end. Oscilloscope data is shown at three stages of data processing in Fig. 5(a). First, raw data

is mapped from the t domain to the u domain. Then, vibration amplitudes are extracted from the

u-mapped data via the peak-to-peak method (for large amplitudes) or the stretch method (for small

amplitudes). Multiplying the u axis by R allows us to plot the data versus displacement, since by

definition uR = z− z0. The calibrated data (Fig. 5(a) right panels) reveal nearly vertical optical

fringes that maintain constant width as f varies. The slight tilt of these fringes away from vertical

reveals the trend in z0. The extracted values of R and z0 are shown in Fig. 5(b). Since the choice

of origin z0 = 0 is arbitrary, here the value is chosen to correspond to the value far away from

resonance.

We can now use Eqs. (7) and (8) to evaluate the validity of our model for u. Based on the

results in Fig. 5(b), the maximum vibration amplitude is R1 ≈ 1.75λ ; relative to a point far from
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resonance this corresponds to an equilibrium shift z0 ≈ 0.1λ . Therefore, by Eq. (7), the second

Fourier component of z has a maximum relative amplitude of R2/R1 ≈ 0.02. If we estimate the

intrinsic resonant frequency to be f0 ≈ 34.7kHz, the nonlinear frequency shift at maximum R1 is

∆ f0 ≈ 0.3kHz. Thus, the third Fourier component has a maximum amplitude of R3/R1 ≈ 0.002.

With relative amplitudes of ≈ 2% and ≈ 0.2% for R2 and R3, respectively, we infer that R1 alone

is indeed sufficient to model the motion of z.

Figures 5(c) and 5(d) show measurements of the same cantilever under the same optical condi-

tions, but while sweeping f under varying conditions. In Fig. 5(c), the same inertial drive voltage

was used as in Fig. 5(a), but this time f was swept downward. Comparing these two results thus

demonstrates how the hysteresis of the mechanical resonator affects the observed optical fringes.

Similarly, Fig. 5(d) shows repeated upward sweeps of f , but for three different drive voltages.

These plots reveal an increasing number of optical fringes as the Duffing resonance peak grows

and becomes more asymmetric.

B. Spatial Mapping of MEMS/NEMS Motion

To demonstrate how the laser’s lateral position on the MEMS/NEMS device can affect VPD(z),

we have performed measurements while scanning the laser spot across a cantilever’s long axis, x.

This was accomplished by keeping the laser fixed while translating the cantilever laterally using

motorized stages. The laser was a diode laser with λ ≈ 640nm and 1/e2 diameter w≈ 4 µm.

Figure 6 presents data for two different modes of cantilever motion. Position-dependent data was

first taken while driving the fundamental mode with f ≈ 34.85kHz (Figs. 6(a)–6(c)), and then

again while driving the second mode with f ≈ 217.7kHz (Figs. 6(d)–6(f)).

The transformed data (Figs. 6(a) and 6(d) middle panels) reveal nearly horizontal interference

fringes due to a large static deflection of the cantilever. This upward deflection originated during

device fabrication due to stress gradients in the LPCVD silicon nitride layer and can be seen in the

electron micrograph of Fig. 1(a). The cantilever’s large intrinsic deflection suggests a new method

of extracting z0 and R values based on counting optical fringes in vertical slices of the transformed

data. Unlike horizontal data slices, which correspond to individual oscilloscope traces, vertical

slices – shown in Figs. 6(b) and 6(e) – correspond to stroboscopic measurements of the cantilever

during a fixed phase of its motion. Therefore, a vertical slice of Fig. 6(a) at u = 0 reveals the

cantilever profile while it is at equilibrium z(x) = z0(x), and the vertical slices at u =±1 reveal
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the profiles at the extremes z(x) = z0(x)±R(x). Similar to an interference pattern from a single

oscilloscope trace, each peak in this data is separated from its neighboring valleys by a distance

of ≈ λ/4. Therefore plotting the x coordinates of the local extrema, as is done in the Figs. 6(b)

and 6(e) upper panels, reveals the deflection profile z(x) of the cantilever. This is only possible if

several fringes are traversed, as provided here by the cantilever’s large intrinsic deflection.

Figures 6(c) and 6(f) show comparisons of R and z0 obtained from horizontal slices (HS) and

vertical slices (VS) of the transformed data for the two cantilever vibrational modes. For the fun-

damental mode, HS and VS provide nearly identical values for both z0 and R, with deviations

primarily near the cantilever base and free end. Within ≈ 2 µm of the cantilever free end, the

HS peak-to-peak method shows a sudden downward trend in both R and z0. This occurs as the

incident laser steps off the cantilever, partially diffracting around the tip. This region is observ-

able in Figs. 6(a) and 6(d) as a narrow band of distorted interference fringes around x≈ 50 µm.

Deviations between HS and VS methods near the cantilever base arise from small vibration am-

plitudes. Consequently, oscilloscope traces (horizontal slices) recorded bellow x . 17 µm do not

span a full λ/2 fringe, and must be compared using the stretch method. In comparison to the fixed-

laser measurements of Fig. 5, the stretch method is inherently less reliable in these scanned-laser

measurements because different cantilever coordinates x generally produce dissimilar interference

patterns. These interference patterns may have differing fringe contrasts (peak or valley heights),

due to the simple geometric effect that points nearer to the cantilever base must traverse a larger

range of inclination angles to span the same vertical distance ∆z. This is partially compensated by

allowing vertical stretches when comparing interference patterns, but this extra degree of freedom

is not available near the cantilever base where amplitudes are small and interference patterns are

linear.

The accuracy of our HS and VS calibration methods can be assessed by comparing z0 values to

measurements from a commercial optical profilometer, also shown in Figs. 6(c) and 6(f). Our VS

results, particularly near the cantilever base, are in better agreement with the optical profilometer

than the HS results. The VS method and optical profilometry produce base-to-free-end deflections

of ∆z0 ≈ 3.89 µm and ∆z0 ≈ 3.79 µm, respectively. Compared to our laser wavelength, this is a

disagreement of ≈ 0.15λ . However, as shown in Fig. 5(b) using the same cantilever and laser, a

vibration amplitude of R≈ 1.75λ (consistent with the free-end value in Fig. 6(c)) induces a static

deflection of ∆z0 ≈ 0.1λ . Accounting for this effect thus brings the disagreement between the VS

method and optical profilometry down to ≈ 0.05λ , or ≈ 30nm.
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When measuring the cantilever’s second vibrational mode (Figs. 6(d)–6(f)), vibration ampli-

tudes were not large enough to apply the HS peak-to-peak method. The VS method produced

nearly identical z0 values to those measured using the cantilever’s fundamental mode, as well as

a vibration profile R(x) that closely matches expectations from Euler-Bernoulli beam theory. The

HS stretch method yields unreliable results for both R and z0 (Fig. 6(f)) due to the variations in

cantilever inclination angle discussed earlier. This problem is highlighted by the vibrational node

at x≈ 39 µm, at which point our oscilloscope still measures a sinusoidal signal spanning roughly

25mV due entirely to the time-varying cantilever angle.

C. Calibrating Lock-In Amplifier Measurements

As we have shown in the above sections, MEMS/NEMS interferometry measurements made

in the time domain provide a direct means of extracting the system’s interference pattern VPD(z).

While this technique is powerful, it is slower than more conventional lock-in amplifier (or spectrum

analyzer) MEMS/NEMS measurements made in the frequency domain. This is because time-

domain measurements, such as oscilloscope traces, require substantial averaging to achieve an

acceptable signal-to-noise ratio. For instance, the frequency sweep shown in Fig. 5, which contains

an oscilloscope trace for every f value, required 100 averages per oscilloscope trace, and thereby

spanned ≈ 4 seconds per trace. A lock-in amplifier performing a similar measurement with a

comparable voltage noise level would require a fraction of a second – albeit without providing the

rich harmonic content seen in the oscilloscope traces. This disparity in noise level and averaging

time is due to the high bandwidth (& 100MHz) that an oscilloscope requires to measure arbitrary

waveforms. Such a high bandwidth permits far more noise into the measurement than the 1Hz to

1kHz operating bandwidths typical of lock-in amplifiers.

To understand the relationship between MEMS/NEMS interferometry measurements in the

time and frequency domains, we must consider the Fourier transform of a typical time-dependent

measurement VPD(t) such as Fig. 3(a). Because the waveform has a period T = f−1, it can be

described by the Fourier series:

VPD(t) =V0 +
∞

∑
n=1

Vn cos(2πn f t +φn) . (9)

Therefore, by measuring a sufficiently large number of the Fourier components Vn (and corre-

sponding phases φn) with a lock-in amplifier, the waveform VPD(t) can be approximately recon-
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structed. To this end, we employ a digital lock-in amplifier capable of measuring eight distinct

frequency bands simultaneously.

Figure 7 displays lock-in amplifier measurements of the silicon nitride cantilever and our ap-

proach to calibrating these measurements. These measurements were performed using a helium-

neon laser with λ ≈ 633nm and w≈ 7 µm. The lock-in amplifier provided the inertial drive signal

at frequency f , and detected the resulting photodetector voltage at frequencies f , 2 f , . . . , 8 f . In or-

der to calibrate the lock-in data, a reference oscilloscope measurement Vref(t) was first performed

and calibrated using the peak-to-peak method described in the previous sections. The resulting

interference pattern Vref(z), shown in Fig. 7(a), was then used as a reference for all subsequent

lock-in measurements. With this reference data, lock-in measurements were fitted to a numerical

model to determine the mechanical parameters z0 and R. This fit was performed by substitut-

ing into Vref(z) the expression z(t) = z0 +Rcos(2π f (t− t0)), and then numerically calculating the

complex Fourier coefficients according to

Ṽn =
1
T

∫ T

0
Vref(z(t))e−i2πnt/T dt. (10)

These coefficients were compared to the lock-in measurements, expressed in phasor form as Vneiφn ,

using a nonlinear least squares fit in which z0 and R are the only free parameters. In these fits, the

time of maximum deflection t0 is determined from φ1, the measured phase of the lowest Fourier

component, as described below.

Lock-in data obtained at a fixed drive frequency f ≈ 35.01kHz is shown in Fig. 7(b), along with

fit results based on Vref(z) and Eq. (10). The eight frequency components were measured in paral-

lel, each with a bandwidth of ≈ 2Hz. All lock-in amplitudes are reported in peak voltages. A fit is

generated using the numerical model described above and yields values of z0/λ = 0.023±0.004

and R/λ = 1.997±0.004, where the fit uncertainties signify one standard deviation. Also shown

in Fig. 7(b) are the simulated time-trace Vref(z(t)) based on this fit and a polar plot of the lock-in

data after rotating each phasor Vneiφn by−nφ1. Such a rotation is equivalent to shifting the t axis in

Eq. (9) by an amount ∆t =−φ1/(2π f ). The plot of rotated data in Fig. 7(b) shows that all Fourier

components Vn lie along the horizontal axis. This implies that the Fourier series given by Eq. (9)

reduces to a Fourier cosine series, which has even symmetry at t = 0. Therefore, ∆t defines one

of the turning points tTP = t0 + 1
2NT described in Sec. III. In order to unambiguously determine

t0 and perform the fits described by Eq. (10), two separate fits were performed: one assuming

t0 = ∆t, and another assuming t0 = ∆t + 1
2T . With R constrained to positive values, the better of
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these two fits determined the “correct” value of t0.

A complete frequency sweep through a resonance of the cantilever, as measured by the lock-

in amplifier, is displayed in Fig. 7(c). Amplitudes for the lowest Fourier component, V1, bear

some resemblance to a Duffing resonance, with a sudden drop at f ≈ 35.07kHz suggestive of

a right-leaning frequency peak, but with vertical undulations caused by the optical transduction.

MEMS/NEMS motion is so large throughout this sweep that all of the measured Fourier com-

ponents, from V2 to V8, are significantly larger than the RMS voltage noise level (≈ 2 µV) and

display similar vertical trends to V1, indicating motion much larger than λ/2. At each drive fre-

quency a numerical fit of the eight Fourier components was conducted similar to that shown in

Fig. 7(b) to determine z0 and R. In this case, z0 represents the shift in equilibrium position relative

to Vref(z). The mechanical parameters arising from these fits are shown in Fig. 7(d). As suspected,

the vibration amplitudes R reveal a right-leaning Duffing peak.

In an effort to determine how many Fourier components must be measured to accurately de-

termine R and z0, we have repeated the fitting procedure for this frequency sweep using various

subsets of the data. Because there are two free fit parameters, at least two Fourier components are

needed. Figure 7(d) reveals that fits using only V1 and V2 are highly erratic, while those that use

three or four Fourier components do not differ greatly from fits using all eight components. For

each subset of data, the first fit was performed at f ≈ 35.07kHz, where the largest amplitude was

expected, with guess parameters of R/λ = 2.1 and z0/λ = 0. Subsequent fits used guess parame-

ters based on the fit result at the previous drive frequency, with R/λ and z0/λ values constrained

within windows of width 0.5 and 0.1, respectively. To ensure that the fit routine did not settle on a

false optimum, multiple fits were performed with guess R and z0 values distributed evenly within

these windows. In the range of f ≈ 34.6kHz to f ≈ 35.07kHz, where the uncertainties in the fits

were largest, the typical uncertainty in z0/λ for the different data subsets (in order of 2, 3, 4, and 8

Fourier components) were approximately 0.2, 0.005, 0.004, and 0.003. These uncertainties were

derived from the covariance matrix of each fit. The mean uncertainties in R were nearly identical

to those in z0.

A downward sweep of the drive frequency was also performed with this cantilever, mapping

the lower branch of the hysteretic Duffing response. Measurements of V1 and the fitted R values

were presented in Figs. 1(b) and 1(c) as examples of MEMS/NEMS interferometry measurements.

Here, all eight Fourier components were used for data fitting.

The calibration scheme presented in this section assumes that the interference pattern VPD(z)
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remains constant between lock-in measurements. This assumes that the laser power and align-

ment of the entire optical system remains constant throughout the experiment, beginning with

the reference oscilloscope trace. Furthermore, this calibration technique is only helpful if the

MEMS/NEMS deflection z remains within the range spanned by Vref(z). Hence, the oscilloscope

trace should be recorded using a MEMS/NEMS vibration amplitude at least as large as the largest

amplitude in the lock-in measurements.

D. Measurements of Silicon Cantilevers

To demonstrate the general applicability of our technique regardless of MEMS/NEMS mate-

rials and dimensions, Supplemental Sec. S1 provides measurements of two monolithic, single-

crystal silicon cantilevers. The first of these has dimensions (length×width×thickness) of

≈ 50 µm×10 µm×250nm, roughly matching the silicon nitride cantilever presented in this main

text. However, the dynamics of these two materials differ greatly as a result of silicon’s op-

tical absorption. The silicon cantilever absorbs ≈ 10% of impinging laser power43, leading to

photothermal feedback31,32,44 and self-oscillation31,45–48 of the cantilever. We investigated this

behavior through lock-in amplifier and oscilloscope measurements and present vibration profiles,

R(x), measured with and without self-oscillation.

The second silicon cantilever studied in Supplemental Sec. S1 has a similar length and thickness

to the first, but a width of ≈ 2.5 µm. This is substantially smaller than the laser spot diameter

of w≈ 7 µm. The cantilever-substrate gap is h≈ 2 µm, leaving room for optical diffraction to

influence our measurements. Despite this, a scanned-laser measurement reveals a vibration profile

R(x) and equilibrium profile z0(x) closely matching results for the wider silicon cantilever.

VI. CONCLUSION

We have demonstrated a general procedure for calibrating distances in laser interferometry

measurements of MEMS/NEMS motion. This procedure is devised primarily for interferometry

systems that utilize the MEMS/NEMS substrate as a static reference mirror, and exploits large-

amplitude MEMS/NEMS motion to observe a full interference fringe (length ≈ λ/2). Unlike

existing calibration methods, our approach is independent of device materials and geometry, and

it makes no a priori assumptions of the system’s interference pattern. For interferometry data
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recorded in the time domain, the transformation we have described from time t to the dimension-

less variable u provides a robust and succinct means to extract the interference pattern of a general

MEMS/NEMS system. In addition to providing motion calibration, this transformation enables

the observation of linear changes in MEMS/NEMS vibration amplitude and equilibrium position

even when the optical transduction is extremely nonlinear. Using this technique allows access to

larger vibration amplitudes than previously possible, which can translate to improved signal-to-

noise ratios in applications such as sensing. We have briefly investigated the impact of optical

diffraction on our technique using a MEMS device narrower than the probing laser spot and found

that the trends in vibration amplitude and static deflection are nearly identical to those observed

with wider cantilevers. This suggests that our technique may be compatible with MEMS/NEMS

devices narrower than the laser wavelength, provided that sufficient interference or diffraction

occur to yield power variations above the baseline photodetector noise.

SUPPLEMENTARY MATERIALS

The supplementary material includes further demonstrations of our calibration technique using

experimental measurements of monolithic silicon cantilevers. It also includes a brief discussion

regarding the impact of substrate surface roughness on interferometry, a mathematical derivation

of the inertially driven MEMS/NEMS equation of motion, and a derivation of Eqs. 4–8 using

perturbation theory.
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FIG. 1. The experimental setup and typical measurements. (a) Schematic of the experimental setup. The

system consists of a laser source (λ ≈ 640nm), a long-working-distance objective (LWDO), a 50/50 beam

splitter (BS), a polarizing beam splitter (PBS), a high-speed photodetector (PD), waveplates (WP), a vari-

able beam expander (VBE), a zoom lens (ZL), a camera, motorized translation stages (MTS), a high-vacuum

chamber (HVC), a lock-in ampplifier (LIA), and an oscilloscope (OS). Inset: tilted view electron micro-

graph of the ≈ 50 µm-long silicon nitride cantilever used in our experiments. The scale bar is ≈ 10 µm.

(b) Optically measured response of the cantilever to inertial forcing near its resonant frequency. As the

drive frequency, f , is swept upward (top) or downward (bottom), a lock-in amplifier measures the response

amplitude, V1, in a narrow frequency band around f . Based on repeated sweeps, the noise level is≈ 100 µV,

which is smaller than the marker size. The prominent undulations are artifacts of the nonlinear optical read-

out; the dependence on sweep direction is due to a mechanical (Duffing) nonlinearity of the cantilever.

(c) Cantilever vibration amplitudes, R, extracted from the data in (b) and from additional data (shown in

Fig. 7), as described in Sec. V C. In this view, the data reveals a well understood Duffing resonance.
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FIG. 2. Origin of the interference pattern and its influence on measurements. (a)–(d) Cartoon schematics

of laser interferometry using a MEMS/NEMS cantilever. (a) and (b) An incident Gaussian beam is focused

near the cantilever tip at lateral position x. The laser beam has a focused spot diameter w, and diverges on

length scales comparable to h, the sacrificial layer thickness. (c) Reflections are generated at each optical

interface. Reflected light may be off-axis with the original laser beam, complicating the total power col-

lected by the photodetector. (d) Other optical non-idealities: Differing laser spot sizes in the device plane

(top panel) and the changing device angle during motion (bottom panel). (e) Main panel: A sample inter-

ference pattern measured using a silicon nitride cantilever. Projections upward and rightward demonstrate

the action of this interference pattern, VPD(z), as a transfer function that relates the input device motion,

z(t), to the output detected signal, VPD(t). In this example, the motion is centered about z0 =−0.5λ with

amplitude R = 1.0λ .
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FIG. 3. Motion calibration using time-domain measurements of a silicon nitride cantilever. (a) An oscil-

loscope trace of large-amplitude MEMS/NEMS motion, R > λ/4. Data shown has been averaged from a

longer oscilloscope trace consisting of 10 periods of oscillation. Based on variations between the measured

periods, the noise level is ≈ 3mV. Arrows indicate points of even symmetry, corresponding to extremes

of motion; these map to u =±1. (b) The same data as (a), after mapping time t to normalized deflection

u (see Eq. (2)). This plot contains four overlapping, nearly indistinguishable curves, because (a) spans two

full periods of motion. Vertical arrows correspond to the symmetry points noted in (a). Neighboring pairs

of peaks or valleys (marked with open circles) are separated by gaps of width ≈ λ/2 that serve as reference

lengths. We refer to this as the peak-to-peak method of calibration. Movement of one particular peak along

the u axis can be monitored between measurements to track changes in z0, the static deflection. (c) For

smaller MEMS/NEMS motion (R < λ/4), a pre-calibrated data set (dashed curve) is used as reference.

New data (solid red line and inset) is shifted and scaled until it overlaps with the reference data; we refer to

this as the stretch method. Shifts and scaling along the u-axis provide the change in equilibrium position,

∆z0, and the vibration amplitude, R, respectively. If the new data displays a significant portion of an optical

fringe, vertical adjustments are also permitted to allow some tolerance for changes in laser power or optical

alignment. (d) For very-small-amplitude MEMS/NEMS motion (R� λ/8), the data appears sinusoidal in

the time domain (inset) and linear in the u domain (solid red diagonal line); vertical adjustments are not per-

mitted. (e) and (f) An example of the typical consistency of peak-to-peak and valley-to-valley gap widths

in large-amplitude data. Inset in (e): Raw data before the t→ u mapping.
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FIG. 4. Theoretical resonance peaks for a system with nonlinear stiffening, produced using Eq. (5). All

curves assume parameter values of f0 = 100kHz, Q = 100, and α = 1kHz2 ·nm−2; curves vary only in

inertial drive amplitude Zb. (a) A resonance peak in the linear regime, displaying the definition of the quality

factor Q. The drive amplitude is Zb = 0.25nm. (b) Transition into the nonlinear regime. Solid curves, from

bottom to top, have Zb values of 0.25nm, 0.75nm, and 1.25nm. The nonlinear resonant frequency fNL

(dashed curve) is plotted as a function of R1; this is often referred to as the “backbone curve”.
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FIG. 5. Measurements of a Duffing resonance in a silicon nitride cantilever. All measurements were per-

formed with the detection laser focused near the cantilever free end. (a) and (b) Data recorded during an

incremental upward sweep of the drive frequency from f ≈ 34.5kHz to f ≈ 35.2kHz with a drive volt-

age of ≈ 5mV. (a) Oscilloscope data at several stages of data processing. Left panels: Raw oscilloscope

data plotted versus normalized time, t/T , where T = f−1. Middle panels: The same data after the t → u

transformation. Right panels: The same data after calibration, plotted versus displacement uR = z− z0.

Upper panels display individual oscilloscope traces taken from the lower panels at the f values indicated

by arrows A through D. Data in the upper panels are shifted vertically for clarity. Data in the lower panels

use the same color scale. (b) The vibration amplitudes R and equilibrium positions z0 obtained by applying

the peak-to-peak and stretch calibration methods to the transformed data VPD(u). Uncertainties in R and z0

from these techniques are smaller than the line width. The evolving z0 values can be seen in the bottom

right panel of (a) as a slight tilt of the optical fringes away from vertical. (c) A downward frequency sweep

using the same drive voltage as (a), showing hysteresis. (d) Upward frequency sweeps at drive voltages of

approximately 1mV, 2mV, and 3mV. All panels use the same color scale.
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FIG. 6. Spatial vibration mapping of a silicon nitride cantilever. (a)–(c) Data taken while exciting the fun-

damental cantilever mode with f ≈ 34.85kHz. (a) Left panels: Raw oscilloscope data recorded during an

incremental upward sweep of the laser position, x, in steps of ≈ 0.25 µm. The cantilever base and free end

correspond to x≈ 0 µm and x≈ 50 µm, respectively. Middle panels: The same data after the t → u trans-

formation. Right panels: The same data after distance calibration using the vertical slices method. Upper

panels display individual oscilloscope traces taken from the lower panels at the x coordinates indicated by

arrows labeled A through E. Data in the upper panels are shifted vertically for clarity. Data in the lower

panels use the same color scale. Open circles in the bottom right panel are the vibration amplitudes R de-

termined using the vertical slices method. (b) Lower three panels: Vertical slices through the Transformed

Data in (a) at u = 0 and u = ±1. Local extrema are marked by black points. Uppermost panel: Deflection

profiles z(x) obtained from the vertical slices by assuming local extrema are spaced every ∆z = λ/4. These

show the cantilever profile while it is at equilibrium (u = 0), and while it is at the outer limits of its motion

(u =±1). (c) Vibration amplitudes R and equilibrium positions z0 extracted from (a), using the vertical

slices method, horizontal slice (HS) peak-to-peak method, and HS stretch method. Vertical slices data use a

3 point moving average. Also shown are the static deflection measured by a commercial optical profilometer

and a fit of the vibration profile to Euler-Bernoulli (EB) beam theory. Inset: The laser starting position as

viewed by the camera in our setup. (d)–(f) Similar data to (a)–(c), but taken during excitation of the second

cantilever mode with f ≈ 217.7kHz. Inset in (f): Optical profilometry image of the cantilever.
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FIG. 7. Using an oscilloscope trace as a calibration tool for lock-in measurements. (a) The interference

pattern of a silicon nitride cantilever, measured by an oscilloscope and calibrated using the peak-to-peak

method. This curve, Vref(z), is then used as a reference by which to calibrate lock-in measurements. (b) Up-

per left panel: Lock-in measurements recorded while driving the cantilever motion at f ≈ 35.01kHz. The

lock-in measures the amplitudes Vn and phases φn of various Fourier components of the photodetector volt-

age at frequencies f ,2 f , . . . ,8 f , shown as open circles. Black dots represent fit results based on the reference

data in (a), as described by Eq. (10). Bottom left panel: a simulated time-trace Vref(z(t)) based on the fit

results. Bottom right panel: the lock-in data, after rotating each Fourier component Vn by −nφ1. Perfect

alignment along the horizontal axis proves that the photodetector voltage VPD(t) has the even symmetry we

expect at time tTP = −φ1/(2π f ), corresponding to a mechanical turning point. (c) A sweep of the drive

frequency f , as measured by the lock-in amplifier at the eight frequencies f , . . . ,8 f , each with a bandwidth

of ≈ 2Hz (solid lines). The measurement error is smaller than the line width. Although only amplitudes

Vn are shown, phases were also collected. For each f value, a fit is performed (black dots) using all eight

Fourier components and the reference data in (a). A vertical dashed line denotes f ≈ 35.01kHz, from which

the data in (b) is taken. (d) Mechanical parameters R and z0 resulting from the fits in (c). For fitted values,

error bars are comparable to or smaller than the marker size. The fits were repeated multiple times using

different subsets of the data, from only the lowest two Fourier components to all eight components. Results

are vertically offset for clarity, with the eight-component curves having no offset. In all cases, the first fit

was performed at the f value indicated, and fits progressed in the direction indicated. Further details on the

fitting procedure and the resulting uncertainties in R and z0 are provided in the text.
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S1. MEASUREMENTS OF SILICON MEMS CANTILEVERS

In order to demonstrate the general applicability of our technique regardless of

MEMS/NEMS materials and dimensions, we have performed measurements with single-

crystal silicon cantilevers fabricated from a commercial silicon-on-insulator (SOI) wafer.

Results from two such cantilevers are provided here. Section S1 A presents results for a

≈ 10µm-wide cantilever, and Sec. S1 B presents results for a ≈ 2.5µm-wide cantilever. In

both cases, the cantilever lengths and thicknesses are ≈ 50µm and ≈ 250 nm, respectively.

All results were collected using a helium-neon laser with wavelength λ ≈ 633 nm and 1/e2

diameter w ≈ 7µm at its focus. The cantilevers are separated from their silicon substrate

by a gap of ≈ 2µm.

Unlike the silicon nitride cantilever studied in the main text, which has negligible

optical absorption throughout the visible spectrum [1], optical absorption in the crys-

talline silicon cantilevers studied here can greatly impact device mechanics. With an

extinction coefficient of k ≈ 0.02 at λ ≈ 633 nm, a 250 nm silicon layer absorbs roughly

(1− exp(−4πk 250/633)) ≈ 9.4% of incoming laser power [2]. This absorption can influence

the dynamics of our resonators via the photothermal effect [3–5], which couples absorption

to cantilever deflection via thermal expansion. This effect can cause feedback that amplifies

or suppresses resonant motion depending on where the cantilever resides within the optical

standing wave formed by the incident laser.

In this section, we demonstrate photothermal feedback in both of the silicon cantilevers

under study. In both devices, the most striking consequence of this effect is entrained

self-oscillation, i.e. synchronization between the photothermally-driven oscillations of the

cantilever and the applied inertial drive [4, 6–9]. This is characterized by a flat amplitude-

frequency relation over a range of drive frequencies near the cantilever resonance. This

behavior is sustainable so long as the incident laser power and inertial drive strength are

sufficiently high. The vibrational amplitude is self-limited by the laser wavelength in the

sense that beyond a certain deflection the gain provided by photothermal feedback is no

longer positive and amplification stops. With sufficient laser power the cantilever oscillates

even in the absence of an inertial drive signal, with a frequency and phase randomly fluctu-

ating near the resonance. With a drive signal applied, however, the cantilever oscillations

become entrained to the drive frequency. All measurements shown in this section were per-
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formed using ≈ 20µW of incident laser power, with varying inertial drive strengths. This

laser power was chosen as a compromise between adequate signal-to-noise ratio and modest

photothermal effects. Because of the flat amplitude-frequency relation during entrainment,

we will henceforth refer to the range of frequencies that exhibit entrainment as the ‘flat-top.’

A. Measurements of a ≈ 10µm wide cantilever

Measurements on the ≈ 10µm-wide silicon cantilever are shown in Figs. S1–S5. Images of

the cantilever and of the incident laser profile, as viewed by the camera in our experimental

setup, are shown in Fig. S1(a). This cantilever demonstrated hysteresis during sweeps of

the drive frequency, as shown in Figs. S1(b)–S1(d). The flat-top response was observed only

during down-sweeps of the drive frequency, over a frequency range determined by the drive

strength. The flat-top itself, which ordinarily resembles a rectangle function when plotted

as amplitude versus frequency, is obscured by the nonlinear optical transduction. However,

the flat amplitude response is easily distinguishable as a narrow frequency range in which

all of the measured lock-in harmonics, i.e. the Fourier components of the photodetector

voltage, have constant amplitude.

Figures S2 and S3 display measurements taken while scanning the laser along the can-

tilever length and across its width. In both cases a drive frequency of f ≈ 124.2 kHz was

applied. This is outside the flat-top region and was intended to provide data of linear

cantilever behavior in which photothermal effects are minimal. Diffraction effects occur as

the laser approaches cantilever edges, distorting the measured z0 values near x ≈ 50µm in

Fig. S2(c) and y ≈ ±5µm in Fig. S3(c). The vibration amplitudes in Fig. S2(c) are roughly

consistent with an Euler-Bernoulli fundamental mode, with peak amplitudes that increase

approximately linearly with increasing drive strength. R values measured across the can-

tilever width (Fig. S3(c)) are roughly constant despite laser diffraction at the cantilever

edges. The oscilloscope traces showed sufficient signal-to-noise ratios and fringe contrast to

provide R measurements even at y ≈ ±8.5µm, which corresponds to a laser spot centered

≈ 3.5µm off of the cantilever. This distance corresponds to w/2, i.e. the laser spot radius.

The R values measured within the entire measurable range of y ≈ −8.5µm to y ≈ 8.5µm

have an arithmetic mean and standard deviation of R = (0.97± 0.01)λ. In the raw data

shown in Figs. S2(d) and S3(d), decreasing drive strength results in lower vibration am-
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plitudes which is immediately discernable as a decrease in the number of observed optical

fringes.

Figures S4 and S5 display measurements of strong photothermal effects in the silicon

cantilever. In the case of Fig. S4, this was performed with a constant drive frequency

f ≈ 124.28 kHz, which is on the edge of flat-top response. Although the laser power used was

identical to those in Figs. S1–S3, a lock-in frequency sweep immediately preceding Fig. S4

measurements showed a flat-top response in the range f ≈ 124.2 kHz to f ≈ 124.28 kHz. The

shift in this flat-top frequency range was likely due to a change in laser focal plane between

Fig. S4 and Figs. S1–S3, which would impact the total absorbed laser power. Figure S4(c)

shows that R values are roughly constant all along the cantilever length. The equilibrium

profile z0 is nearly identical to those in Fig. S2(c).

Figure S5 shows oscilloscope measurements of the cantilever response during upward and

downward sweeps of the drive frequency. The laser was focused near the cantilever free end.

The flat-top response is observed only during the downward sweep, and saturated with an

amplitude of R ≈ 2.6λ.
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FIG. S1. (a) The silicon cantilever under test and a measurement of the laser spot diameter. Left

panels: Images of the silicon cantilever and laser as viewed by the camera in our setup. Images

are shown with white light illumination turned on (top) and turned off (bottom). Right panel: A

surface plot showing 8-bit values of the red pixels in the left-bottom image. A Gaussian fit gives a

1/e2 diameter of ≈ 26 pixels, which corresponds to ≈ 7µm. (b)–(d) Lock-in measurements of the

silicon cantilever showing hysteresis and optomechanical self-oscillation. All measurements were

made with the laser focused near the cantilever tip and ≈ 20µW laser power. In all plots, upward

and downward frequency sweeps are measured by the lock-in at integer harmonics of the drive

frequency, f . Only the amplitudes, Vn, of these harmonics are shown, although phases were also

collected. All downward sweeps contain a narrow frequency range in which all four harmonics have

a flat amplitude response. This is the region of optomechanical self-oscillation with entrainment

to the inertial drive. Vertical dashed lines show the frequency at which data in Figs. S2 and S3

was taken. Excitation voltages are (b) 20 mV, (c) 40 mV, and (d) 60 mV.
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FIG. S2. Measurements taken while scanning the detection laser along the length of a silicon

cantilever. These results were recorded using ≈ 20µW laser power. (a) Laser starting position

as viewed by the camera in our setup (top) and a schematic of the cantilever vibrational mode

and laser scan direction (bottom). (b)–(d) Data taken while exciting the cantilever fundamental

mode with f ≈ 124.2 kHz and scanning the laser position x in ≈ 1µm steps. The cantilever base

and free end are at located at x ≈ 0µm and x ≈ 50µm, respectively. (b) Data taken with a drive

voltage of ≈ 600 mV applied to the piezoelectric disk. Left panels: Raw oscilloscope data plotted

versus normalized time, t/T , where T = f−1. Middle panels: The same data after the t → u

transformation. Right panels: The same data after distance calibration. Upper panels display

individual oscilloscope traces taken from the lower panels at the x coordinates indicated by arrows

labeled A through E. The data in the upper panels are shifted vertically for clarity. The data in

the lower panels use the same color scale. (c) Vibration amplitudes R and equilibrium positions

z0 determined by applying the horizontal slice (HS) peak-to-peak and stretch methods to the data

in (b) and (d). (d) Raw oscilloscope data for drive voltages of ≈ 500 mV to ≈ 100 mV. All panels

use the same color scale.
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FIG. S3. Measurements taken while scanning the detection laser across the width of a silicon

cantilever. These results were recorded using ≈ 20µW laser power. (a) Laser starting position as

viewed by the camera in our setup (top) and a schematic of the cantilever vibrational mode and

laser scan direction (bottom). (b)–(d) Data taken while exciting the cantilever fundamental mode

with f ≈ 124.2 kHz and scanning the laser position y in ≈ 0.5µm steps. The cantilever edges are

located at y ≈ ±5µm. (b) Data taken with a drive voltage of ≈ 600 mV. The data is presented in

a similar format to Fig. S2(b). (c) R and z0 values determined by applying the HS peak-to-peak

method to the data in (b). Consistent R values are measured even when the laser center is off of

the cantilever. Using all of the R values shown, the arithmetic mean (dashed line) and standard

deviation (shaded horizontal band) are R = (0.97± 0.01)λ. (d) Raw oscilloscope data for drive

voltages of ≈ 500 mV to ≈ 100 mV. All panels use the same color scale.
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FIG. S4. Entrained self-oscillation of a silicon cantilever measured while scanning the laser along the

cantilever length. These results were recorded using a laser power of ≈ 20µW and a drive frequency

near the threshold for self-oscillation. (a) Laser starting position as viewed by the camera in our

setup (top), and schematic of the cantilever vibrational mode and laser scan direction (bottom).

(b)–(d) Data taken while driving the cantilever with a voltage of ≈ 20 mV and scanning the laser

position x in ≈ 1µm steps. The cantilever base and free end are at located at x ≈ 0µm and

x ≈ 50µm, respectively. (b) Data taken with an drive frequency of ≈ 124.28 kHz. Immediately

preceding this scan, a lock-in sweep was performed to locate the onset of self-oscillation. Self-

oscillation occurred for frequencies below f ≈ 124.28 kHz. The data is presented in a similar format

to Fig. S2(b). (c) R and z0 values determined by applying the HS peak-to-peak and stretch methods

to the data in (b). The trend in R values is nearly flat all along the cantilever length, which

suggests that vibration amplitudes are amplified and self-limited by the laser wavelength. (d) Raw

oscilloscope data for drive frequencies gradually moving away from the cantilever resonance. All

panels use the same color scale.
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FIG. S5. Oscilloscope measurements of entrained self-oscillation in the silicon cantilever. These

results were recorded using a drive voltage of ≈ 40 mV and laser power of ≈ 20µW. (a) Measure-

ments during a downward sweep of the drive frequency presented in a similar format to Fig. S2(b).

(b) R and z0 values extracted from (a). Confidence intervals for R are smaller than the line width.

R shows a wide region of entrainment in which amplitudes are a constant ≈ 2.5λ. For z0 values,

confidence intervals (one standard deviation) resulting from the stretch method fits are shown.

Inset: Image of the laser position as viewed by the camera in our setup. (c) and (d) Similar results

to (a) and (b), but for an upward sweep of the drive frequency. In (d), the stretch method fitting is

initiated at the frequency marked by an open circle using a calibrated interference pattern VPD(z)

from the down sweep data as reference.
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B. Measurements of a ≈ 2.5µm wide cantilever

Measurements of a ≈ 2.5µm-wide silicon cantilever are shown in Fig. S6. As these results

show, R and z0 values can be reliably measured despite the fact that the cantilever width

is smaller than our w ≈ 7µm laser spot. Both lock-in and oscilloscope measurements are

slightly noisier than similar measurements of the ≈ 10µm-wide cantilever. Despite this, a

flat-top region is clearly discernable in Fig. S6(b), and uncertainties in R and z0 in Fig. S6(d)

are smaller than the line width. Perhaps the most noticeable consequence of the narrow beam

width is its impact on the observed interference patterns, as shown in the upper panels of

Fig. S6(c). The calibrated versions of oscilloscope traces B and C show distortions to some

of the interference peaks and valleys that was not observed in any of the ≈ 10µm-wide

cantilever measurements. Because of these distortions, we opted to use the horizontal slice

(HS) stretch method to determine R and z0 for most of the x coordinates in Fig. S6(d).

This reduced the risk of false peaks and valleys detected using the peak-to-peak method.

These results suggest that our calibration technique can be applied to MEMS/NEMS

cantilevers narrower than those we have tested. It is our suspicion that even cantilevers nar-

rower than λ are amenable to our technique. We suspect that the primary complications that

will arise as cantilever dimensions continue to shrink will be worsening signal-to-noise ratios

and increased diffraction effects leading to larger distortions of the observed interference

patterns. Despite these distortions, the stretch method will still enable direct comparison

between oscilloscope measurements, meaning that linear changes in R and z0 will remain

discernable.
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FIG. S6. Measurements taken while scanning the laser along the length of a narrow silicon can-

tilever. These results were recorded using ≈ 20µW laser power and ≈ 40 mV drive voltage. (a) The

cantilever and laser spot as viewed by the camera in our setup (top). (b) Lock-in measurements

of the cantilever during sweeps of the drive frequency as measured near the cantilever free end. In

the downward sweep, a region of entrained self-oscillation can be seen between f ≈ 131.65 kHz and

f ≈ 131.75 kHz. Vertical dashed lines denote the drive frequency used in (c). The drive frequency

in (c) was approached using an up sweep. (c) Data taken while exciting the cantilever fundamental

mode with f ≈ 131.75 kHz and scanning the laser position x in ≈ 1µm steps. The cantilever base

and free end are at located at x ≈ 0µm and x ≈ 50µm, respectively. The data is presented in a

similar format to Fig. S2(b). (d) R and z0 values determined by applying the HS peak-to-peak

and stretch methods to the data in (c). Uncertainties in R and z0 are smaller than the line width.
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S2. IMPACT OF SUBSTRATE ROUGHNESS ON THE INTERFEROMETRIC

SIGNAL STRENGTH

All devices studied in this work utilize silicon substrates. In each case, the sacrificial oxide

was removed by a highly selective hydrofluoric acid etch, leaving the underlying substrate

optically smooth. In designing MEMS/NEMS devices to be measured by Fabry-Perot inter-

ferometry, surface roughness must be considered. For example, increased surface roughness

randomly diffuses the reflected laser light, degrading the quality and the intensity of the

light directed back towards the photodetector.

To determine the effect of surface roughness on the interferometric signal strength, an

analytic expression first proposed by Mahajan [10] can be used to compute the Strehl ratio

of an optical image with random wavefront aberrations. In the present context of laser

interferometry, the Strehl ratio, S, is defined as the ratio of the on-axis intensity of a laser

beam reflected by a substrate with surface aberrations to the on-axis intensity of a laser

beam reflected by an ideally smooth substrate. For a substrate with a root-mean-square

surface roughness given by σ, Mahajan’s formula gives S ≈ exp (−(2πσ/λ)2).

Because our readout system combines light reflected from the MEMS/NEMS device (with

on-axis intensity I1) with light reflected by the substrate (with on-axis intensity I2), the on-

axis intensity of the interference signal measured by our photodetector is proportional to
√
I1I2. Therefore, Mahajan’s formula suggests that compared to an ideally smooth substrate,

our interferometric signal decreases by half (i.e. S ≈ 0.25) when the substrate roughness is

σ/λ ≈ 0.19. For red light (λ ≈ 640 nm), this corresponds to σ ≈ 120 nm.
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S3. IMPACT OF INERTIAL DRIVE ON THE NONLINEAR EQUATION OF MO-

TION

Because our experiment is performed using inertial drive rather than an external drive

force (e.g. electrostatic or magnetic drive), we must clarify how this inertial force enters the

equation of motion. A MEMS/NEMS resonator with an external drive can be modeled by

the single-degree-of-freedom system pictured in Fig. S7(a). Here, the mass m oscillates along

the x axis under the influence of a drive force FD = F cos(ωt). This drive force has amplitude

F and angular frequency ω. In relation to the drive frequency f used in our experiments,

the angular drive frequency is ω = 2πf . The mass is attached to an anchor by a spring

and damper, which account for the elasticity and internal friction of the MEMS/NEMS

resonator. The spring constant is given by k = m(ω2
0 + α2x+ α3x

2), where ω0 is the angular

resonant frequency and α2, α3 are the nonlinear stiffening coefficients from Eq. 3 of the main

text. The damping constant is c = mγ, where γ = ω0/Q and Q is the resonator’s quality

factor. In response to motion along the x axis, the resonator experiences a spring force

Fs = −kx and damping force Fc = −cẋ that counteract its motion. Here, ẋ = dx/dt is

the resonator velocity. Under the influence of drive, spring, and damping forces, Newton’s

second law reveals that the resonator obeys the following equation of motion:

ẍ+ γẋ+ ω2
0x+ α2x

2 + α3x
3 =

F

m
cosωt, (S1)

where ẍ = d2x/dt2 is the resonator acceleration.

The case of inertial driving is shown in Fig. S7(b). Here, the entire system is shaken so

that the spring’s base has position xb = Xb cosωt. The shaking is described by amplitude

Xb and angular frequency ω. In this case, the spring extension is no longer equal to x, but to

(x− xb). Therefore, the nonlinear spring constant is k = m(ω2
0 + α2(x− xb) + α3(x− xb)2).

The spring and damping forces become Fs = −k · (x− xb) and Fc = −c · (ẋ− ẋb), respec-

tively. Newton’s second law then gives

ẍ+ γ(ẋ− ẋb) + ω2
0(x− xb) + α2(x− xb)2 + α3(x− xb)3 = 0. (S2)

If we add −ẍb to both sides of this equation and define a new variable y = x − xb, this

becomes

ÿ + γẏ + ω2
0y + α2y

2 + α3y
3 = −ω2Xb cosωt. (S3)
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FIG. S7. Single-degree-of-freedom resonators with (a) external driving, and (b) inertial driving.

The above equation exactly resembles Eq. S1, except with the substitutions x→ y and

F/m→ −ω2Xb. Therefore, the inertially driven system behaves identically to the externally

driven system when viewed in terms of relative motion, y, between the mass and base. This

is fortuitous for MEMS/NEMS interferometry since our experimental setup directly detects

the relative motion between the resonator and bulk substrate, which is rigidly anchored to

the resonator base.
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S4. PERTURBATION THEORY, CUBIC NONLINEARITY

The equation of a damped, harmonically driven Duffing oscillator is

ẍ+ γẋ+ ω2
0x+ αx3 = κ cosωt, (S4)

where κ is a generic driving term. As described in Section S3, this equation is valid both

for external driving and inertial driving. In the case of external driving, x is motion in an

inertial reference frame, and κ = F/m. In the case of inertial driving, x is motion relative to

the resonator’s base, and κ = −ω2Xb. Following the work of other authors [11, 12], we will

solve this equation perturbatively by scaling γ, α, and κ by a small dimensionless parameter

ε and then solve for x as a power series in ε. At the end of our calculations, we will set

ε = 1. The essence of this approach is therefore to treat the damping, nonlinear force, and

excitation force as perturbations to a simple harmonic oscillator.

For convenience in the derivation that follows, we will rearrange Eq. S4 as

ẍ+ ω2x =
(
ω2 − ω2

0

)
x− γẋ− αx3 + κ cosωt, (S5)

where a factor of ω2x has been added to both sides of the equation. We will now treat

everything on the right hand side as a perturbation:

ẍ+ ω2x = ε
[(
ω2 − ω2

0

)
x− γẋ− αx3 + κ cosωt

]
. (S6)

Our solution for x will take the form:

x = x0 + ε1x1 + ε2x2 + . . . . (S7)

By treating the term (ω2 − ω2
0) in Eq. S6 as a small perturbation, we are implicity assuming

that the drive frequency ω is near the resonance ω0. If we define a detuning parameter as

σ = ω − ω0, this assumption becomes |σ/ω0| � 1/2. This is a slightly stricter restriction

than the derivations of Refs. 11, 12, which assume |σ/ω0| � 1. However, our approach will

benefit greatly from this assumption. Compared to the derivations in Refs. 11, 12, which

stop at order ε1 and use the method of multiple scales, our approach gives the steady state

behavior of x at higher orders of ε with far less algebra. This is because our derivation

assumes from the start that x is periodic with period ω−1, and is not concerned with any

time scales other than ωt, such as a “slow time” εt that describes the approach to periodic
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behavior. Because we exclude other time scales, our approach cannot be used to determine

whether a solution for x is stable or unstable. However, during our derivation, we will refer

to Refs. 11, 12 to determine which solutions are stable.

A. Solution at order ε0

Writing out Eq. S6 to order ε0 gives:

ẍ0 + ω2x0 = 0, (S8)

whose solution is

x0 =
1

2
A0e

iωt + c.c., (S9)

where “c.c.” represents the complex conjugate of the preceding terms. A0 is the complex

amplitude of the response. To determine the value of A0, we must proceed to the next order

in perturbation theory.

B. Solution at order ε1

We first note that x30 can be written as:

x30 =
1

8

(
A3

0e
i3ωt + 3|A0|2A0e

iωt
)

+ c.c., (S10)

where, again, “c.c.” represents the complex conjugate of the preceeding terms. Writing out

Eq. S6 to order ε1 then gives:

ẍ1 + ω2x1 =
1

2

{[
ω2 − ω2

0 − iωγ −
3

4
α|A0|2

]
A0 + κ

}
eiωt − 1

8
αA3

0e
i3ωt + c.c.. (S11)

In order for x1 not to grow infinitely large, the terms in curly brackets – known as “secular

terms” – must vanish. Thus we have

[
ω2 − ω2

0 − iωγ −
3

4
α|A0|2

]
A0 + κ = 0, (S12)

which, after rearranging, leads to

A0 =
−κ

ω2 − ω2
0 − 3

4
α|A0|2 − iωγ

. (S13)
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On its surface, this result differs slightly from the order ε1 solution in Ref. 11. However, to

within the accuracy provided by our original assumption of small detuning σ = (ω − ω0)� ω0,

the above result is equivalent to

A0 =
−κ/(2ω0)

ω − ω0 − (3α|A0|2)/(8ω0)− iγ/2
. (S14)

The equivalence of these two equations can be proven by substituting σ into Eq. S13 and care-

fully applying the approximation σ/ω0 ≈ 0. Equation S14 matches the results of Refs. 11, 12

in both amplitude and phase. This shows that as a function of ω, the lowest-order response

of the Duffing oscillator is functionally identical to the Lorentzian response of a linear har-

monic oscillator, but with one added term that couples the amplitude |A0| to the resonant

frequency. We can therefore define a nonlinear resonant frequency, ωNL, as

ωNL = ω0 +
3α|A0|2

8ω0

. (S15)

Equations S13 and S14 are implicit equations for A0. To solve for A0, one must first take the

absolute value (squared) of either of these equations, and then rearrange it as a polynomial in

|A0|2. In doing so, one will find that this is a third-order polynomial, and therefore there are

three complex solutions for |A0|2. For any set of parameters (ω, ω0, κ, γ, α), one will find that

either three real and positive solutions for |A0|2 exist, or only one such solution exists. This

is consistent with the plot of |A0| versus ω in Fig. 3b of the main text, where we see that this

function resembles a Lorentzian curve that has been tilted to one side. At any frequency

ω, the function is either single-valued or triple-valued. In terms of stability, Refs. 11, 12

prove that when the solution is single-valued it is stable, and when it is triple-valued the

only unstable solution is the median value.

The non-secular terms in Eq. S11 lead to

ẍ1 + ω2x1 = −1

8
αA3

0e
i3ωt + c.c.. (S16)

The general solution to this equation (homogenous solution plus particular solution) is

x1 =
1

2
A1e

iωt +
1

2
B1e

i3ωt + c.c., (S17)

where A1 can only be found by going to the next level of perturbation theory. Solving for

B1 gives

B1 =
αA3

0

32ω2
. (S18)
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C. Solution at order ε2

Before writing Eq. S6 to order ε2, we first note that x3 can be approximated (to order

ε1) by

x3 = (x0 + εx1)
3

≈ x30 + 3εx20x1.
(S19)

Plugging the functional forms of x0 and x1 into x20x1 gives

x20x1 =
1

8

(
2|A0|2A1 + A2

0A
∗
1 + A∗2

0 B1

)
eiωt

+
1

8

(
2|A0|2B1 + A2

0A1

)
ei3ωt +

1

8
A2

0B1e
i5ωt + c.c..

(S20)

Here A∗
n denotes the complex conjugate of An. Writing Eq. S6 to order ε2 thus gives:

ẍ2 + ω2x2 =
(
ω2 − ω2

0

)
x1 − γẋ1 − 3αx20x1

=
1

2

[(
ω2 − ω2

0 − iωγ
)
A1 −

3α

4

(
2|A0|2A1 + A2

0A
∗
1 + A∗2

0 B1

)]
eiωt

+
1

2

[(
ω2 − ω2

0 − i3ωγ
)
B1 −

3α

4

(
2|A0|2B1 + A2

0A1

)]
ei3ωt

− 3α

8
A2

0B1e
i5ωt + c.c..

(S21)

Removing secular terms leads to:
(
ω2 − ω2

0 −
3α

2
|A0|2 − iωγ

)
A1 =

3α

4

(
A2

0A
∗
1 + A∗2

0 B1

)
, (S22)

which can be solved for A1 (e.g. by complex conjugating the entire equation, then combining

both equations to eliminate A∗
1). The solution is

A1 =
3α2|A0|4A0

128ω2

ω2 − ω2
0 − 3

4
α|A0|2 + iωγ

(
ω2 − ω2

0 − 3
2
α|A0|2

)2
+ (ωγ)2 −

(
3
4
α|A0|2

)2 . (S23)

The full solution of Eq. S21 is then:

x2 =
1

2
A2e

iωt +
1

2
B2e

i3ωt +
1

2
C2e

i5ωt + c.c., (S24)

where

B2 = − 1

8ω2

[(
ω2 − ω2

0 − i3ωγ
)
B1 −

3α

4

(
2|A0|2B1 + A2

0A1

)]
, (S25)

C2 =
α

32ω2
A2

0B1

=
( α

32ω2

)2

A5
0, (S26)

and A2 can only be found by going to the next level of perturbation theory.
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D. Solution at order ε3

Here we’re only interested in removing secular terms, since they will give us an expression

for A2. We note that x3 is given (to second order in ε) by:

x3 = (x0 + εx1 + ε2x2)
3

= x30 + 3εx20x1 + 3ε2x0x
2
1 + 3ε2x20x2. (S27)

The first of these terms in ε2 can be expressed as

x0x
2
1 =

1

8

(
A∗

0A
2
1 + 2A∗

0A
∗
1B1 + 2A0|A1|2 + 2A0|B1|2

)
eiωt

+
1

8

(
2A∗

0A1B1 + A0A
2
1 + 2A0A

∗
1B1

)
ei3ωt

+
1

8

(
A∗

0B
2
1 + 2A0A1B1

)
ei5ωt +

1

8
A0B

2
1e
i7ωt + c.c.,

(S28)

and similarly for the second term in ε2

x20x2 =
1

8

(
2|A0|2A2 + A∗2

0 B2 + A2
0A

∗
2

)
eiωt +

1

8

(
2|A0|2B2 + A∗2

0 C2 + A2
0A2

)
ei3ωt

+
1

8

(
2|A0|2C2 + A2

0B2

)
ei5ωt +

1

8
A2

0C2e
i7ωt + c.c..

(S29)

Writing Eq. S6 to order ε3 then gives:

ẍ3 + ω2x3 =
(
ω2 − ω2

0

)
x2 − γẋ2 − 3α

(
x0x

2
1 + x20x2

)
. (S30)

The secular terms in this equation would then give

(
ω2 − ω2

0 − iωγ −
3α

2
|A0|2

)
A2 =

3α

4

(
A∗

0A
2
1 + 2A∗

0A
∗
1B1 + 2A0|A1|2 + 2A0|B1|2 + A∗2

0 B2 + A2
0A

∗
2

)
, (S31)

which can be solved numerically for A2.

If we wish to see the effect of the ei7ωt term on x3, we can start with the ansatz

x3 = 1
2
D3e

i7ωt + 1
2
C3e

i5ωt + 1
2
B3e

i3ωt + 1
2
A3e

iωt + c.c. to find

D3 =
α

64ω2
(A2

0C2 + A0B
2
1)

=
( α

32ω2

)3

A7
0. (S32)
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E. Summary

In summary, the solution to the driven, damped Duffing equation is:

x =
1

2
Aeiωt +

1

2
Bei3ωt +

1

2
Cei5ωt +

1

2
Dei7ωt + · · ·+ c.c., (S33)

with

A = A0 + A1 + A2 + . . . (S34)

B = B1 +B2 + . . . (S35)

C = C2 + . . . (S36)

D = D3 + . . . (S37)

Going to higher levels of perturbation theory will continue to add higher (odd integer)

frequency components to x. Furthermore, each new level will add slight corrections to the

existing frequency components.

It is instructive to examine at the leading terms in A, B, C, etc. If we wish to compare

the magnitudes of the higher harmonics (B, C, etc.) to A, we can get a good estimate by

looking at the leading terms. What we find is:

|B1|
|A0|

=

∣∣∣∣
αA3

0

32ω2

∣∣∣∣
1

|A0|
=
|α|

32ω2

|A0|3
|A0|

=
|α| |A0|2

32ω2
, (S38)

|C2|
|A0|

=
∣∣∣ α

32ω2

∣∣∣
2 |A0|5
|A0|

=

( |B1|
|A0|

)2

, (S39)

|D3|
|A0|

=
∣∣∣ α

32ω2

∣∣∣
3 |A0|7
|A0|

=

( |B1|
|A0|

)3

. (S40)

As we showed in Sec. S4 B, a Duffing nonlinearity shifts the resonant frequency of an

oscillator to ωNL = ω0 + (3α|A0|2)/(8ω0). The fractional shift in resonant frequency caused

by the Duffing nonlinearity is thus

∆ω

ω0

=
ωNL − ω0

ω0

=
3α|A0|2

8ω2
0

. (S41)

Therefore, the above expression for |B1|/|A0| becomes simply

|B1|
|A0|

=
1

12

∣∣∣∣
∆ω

ω0

∣∣∣∣
ω2
0

ω2
≈ 1

12

∣∣∣∣
∆ω

ω0

∣∣∣∣ , (S42)

where, again, the approximate sign above must be valid because we have assumed from the

outset that ω is near ω0, and therefore ω0/ω ≈ 1. While we have not strictly proven that
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the solutions we have obtained for B1, C2, and D3 are stable, we infer that they must be

stable. This is based on the fact that unlike A0, which can be multi-valued as discussed

in Sec. S4 B, our solutions for B1, C2, and D3 are strictly single-valued. In the case of A0,

initial conditions near the unstable solution will equilibrate to one of the stable solutions

over time. This is not possible with B1, C2, and D3. If any one of these is unstable, then x

itself is unstable, violating our original assumption of periodic motion.
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S5. PERTURBATION THEORY, QUADRATIC AND CUBIC NONLINEARITIES

In some circumstances, a MEMS/NEMS system can have a quadratic as well as cubic

nonlinearity. In fact, a change in the equilibrium position of an oscillator during driving (as

we have observed experimentally) can only be explained by an even-order nonlinearity. We

will consider the following equation of motion

ẍ+ γẋ+ ω2
0x+ α2x

2 + α3x
3 = κ cosωt, (S43)

which is identical to Eq. S4, with the addition of the α2x
2 term. As in the previous derivation,

we will rewrite this equation as

ẍ+ ω2x = (ω2 − ω2
0)x− γẋ− α2x

2 − α3x
3 + κ cosωt. (S44)

Following the lead of Ref. 11, this equation is easiest to solve perturbatively if the α2

term is scaled by ε and all other terms terms are scaled by ε2. Thus the equation to solve

becomes:

ẍ+ ω2x = −εα2x
2 + ε2

[(
ω2 − ω2

0

)
x− γẋ− α3x

3 + κ cosωt
]
. (S45)

We will now solve this equation to order ε2 with a solution of the form x = x0 + εx1 + ε2x2.

A. Solution at order ε0

As before, our governing equation to order ε0 is

ẍ0 + ω2x0 = 0, (S46)

with solution

x0 =
1

2
A0e

iωt + c.c., (S47)

where the complex amplitude A0 will be determined by subsequent levels of perturbation

theory.

B. Solution at order ε1

Equation S45 written to order ε1 is:

ẍ1 + ω2x1 = −α2x
2
0

= −α2

4

[
A2

0e
i2ωt + c.c.

]
− α2|A0|2

2
, (S48)
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where, again, c.c. is the conjugate of the preceding terms (in this case, c.c. = A∗2
0 e

−i2ωt).

The general solution of the above equation is

x1 =
1

2
A1e

iωt +
1

2
B1e

i2ωt + c.c. + δx1, (S49)

where δx1 is a constant. A1 cannot yet be determined, but the remaining terms are given by

substituting into Eq. S48:

B1 =
α2A

2
0

6ω2
(S50)

δx1 = −α2|A0|2
2ω2

. (S51)

Note that unlike the case of a purely cubic nonlinearity (considered in Section S4), when a

quadratic nonlinearity is introduced x undergoes a shift in equilibrium position (given by

δx1 above) and motion at even harmonics of the drive frequency (e.g. B1 above) as well as

odd harmonics.

C. Solution at order ε2

Equation S45 written at order ε2 is:

ẍ2 + ω2x2 = −2α2x0x1 +
(
ω2 − ω2

0

)
x0 − γẋ0 − α3x

3
0 + κ cosωt. (S52)

Upon substituting our solutions for x0 and x1, this becomes:

ẍ2 + ω2x2 =
1

2

{[
ω2 − ω2

0 − iωγ −
3

4
α3|A0|2

]
A0 − α2 (2A0δx1 + A∗

0B1) + κ

}
eiωt

− 1

2
α2A0A1e

i2ωt − 1

2

[
α2A0B1 +

1

4
α3A

3
0

]
ei3ωt − 1

2
α2A

∗
0A1 + c.c..

(S53)

Setting the secular terms (terms in curly brackets) to zero and substituting in the values of

δx1 and B1 leads to

[
ω2 − ω2

0 − iωγ −
3

4
α3|A0|2

]
A0 −

α2
2|A0|2A0

ω2

(
−1 +

1

6

)
+ κ = 0, (S54)

or [
ω2 − ω2

0 − iωγ −
3

4

(
α3 −

10α2
2

9ω2

)
|A0|2

]
A0 + κ = 0, (S55)
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which is identical to Equation S12 in Section S4, but with (α3 − (10α2
2)/(9ω

2)) replacing α.

Solving for A0 gives

A0 =
−κ

ω2 − ω2
0 − 3

4

(
α3 − 10α2

2

9ω2

)
|A0|2 − iωγ

. (S56)

As with Eq. S14, given our initial assumption of small detuning σ = (ω − ω0), this is equiv-

alent to

A0 =
−κ/(2ω0)

ω − ωNL − iγ/2
, (S57)

where

ωNL = ω0 +
3|A0|2
8ω0

(
α3 −

10α2
2

9ω2
0

)
(S58)

describes the nonlinear coupling between the resonant frequency and |A0|.
The solution to Eq. S53 is

x2 =
1

2
A2e

iωt +
1

2
B2e

i2ωt +
1

2
C2e

i3ωt + c.c. + δx2, (S59)

where

B2 =
α2

3ω2
A0A1 (S60)

C2 =
1

8ω2

[
α2A0B1 +

1

4
α3A

3
0

]
=

A3
0

32ω2

[
2α2

2

3ω2
+ α3

]
(S61)

δx2 = − α2

2ω2
(A∗

0A1 + A0A
∗
1) , (S62)

and A1, A2 are still undetermined.

D. Solution at order ε3

Equation S45 written at order ε3 is:

ẍ3 + ω2x3 = −α2(2x0x2 + x21) + (ω2 − ω2
0)x1 − γẋ1 − 3α3x

2
0x1. (S63)

Based on our results at order ε and ε2, We suspect that the highest frequency term of x3 will

oscillate at frequency 4ω. Therefore, we will concern ourselves primarily with evaluating x3

at this frequency. We will not be concerned with lower frequency terms (LFT), since they

will only add small corrections to the solutions we have already obtained in x0, x1, and x2.
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First, we will substitute Eqs. S47, S49, and S59 into the products x0x2, x
2
1, and x20x1 to give:

x0x2 =
1

4

(
A0C2e

i4ωt + c.c.
)

+ LFT (S64)

x21 =
1

4

(
B2

1e
i4ωt + c.c.

)
+ LFT (S65)

x20x1 =
1

8

(
A2

0B1e
i4ωt + c.c.

)
+ LFT. (S66)

Substituting these into Eq. S63 then results in:

ẍ3 + ω2x3 = −1

4

[
α2(2A0C2 +B2

1) + α3
3

2
A2

0B1

]
ei4ωt + c.c.+ LFT. (S67)

The general solution for x3 will be

x3 =
1

2
A3e

iωt +
1

2
B3e

i2ωt +
1

2
C3e

i3ωt +
1

2
D3e

i4ωt + c.c.+ δx3, (S68)

where

D3 =
1

30ω2

[
α2(2A0C2 +B2

1) + α3
3

2
A2

0B1

]

=
α2A

4
0

96ω4

[
2α2

2

9ω2
+ α3

]
, (S69)

which is found upon substituting Eq. S50 for B1 and Eq. S61 for C2.

E. Summary

In summary, the solution of the driven, damped oscillator with cubic and quadratic

nonlinearities is

x =
1

2
Aeiωt +

1

2
Bei2ωt +

1

2
Cei3ωt +

1

2
Dei4ωt + c.c + δx, (S70)

where

A = A0 + A1 + A2 + . . . (S71)

B = B1 +B2 + . . . (S72)

C = C2 + . . . (S73)

D = D3 + . . . (S74)

δx = δx1 + δx2 + . . . (S75)

Compared to the case of a driven oscillator with only a cubic nonlinearity (derived in Sec-

tion S4), adding a quadratic nonlinearity introduces the following complications:
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1. The oscillator experiences a shift δx to its equilibrium position.

2. The oscillator motion has frequency components at all integer harmonics of the drive

frequency ω, rather than only odd integers.

3. To lowest order, the observed frequency peak is qualitatively similar, but with a “non-

linear resonant frequency” ωNL given by Eq. S58. Note that α2 is squared in this

expression, meaning that no matter the sign of α2, it will always serve to soften the

nonlinear frequency peak (tilt the peak toward lower frequencies).

We infer that the solutions we have obtained for δx1, B1, and C2 are stable following a similar

argument to that used in Sec. S4.

To lowest order, the relative magnitudes of the first and second harmonics are given by

Equation S50:
|B1|
|A0|

=
|α2| |A0|

6ω2
. (S76)

Similarly, the relative magnitudes of the equilibrium shift δx and the first harmonic are given

by Equation S51:
|δx1|
|A0|

=
|α2| |A0|

2ω2
. (S77)

So the relative magnitude of the second harmonic can be estimated from:

|B1|
|A0|

=
1

3

|δx1|
|A0|

. (S78)

Therefore if δx and A are known, the second harmonic B can be estimated. With this in

hand, we can estimate the third harmonic C using the nonlinear resonant frequency shift

∆ω = ωNL − ω0. The normalized frequency shift is

∆ω

ω0

=
3|A0|2
8ω2

0

(
α3 −

10α2
2

9ω2
0

)
. (S79)

Meanwhile, C can be estimated using C2:

|C2|
|A0|

=
|A0|2
32ω2

∣∣∣∣
2α2

2

3ω2
+ α3

∣∣∣∣

≈ |A0|2
32ω2

0

∣∣∣∣
2α2

2

3ω2
0

+ α3

∣∣∣∣ , (S80)

where we have again made explicit use of the small detuning assumption. This equation can

be written in terms of ∆ω and δx1 by solving Eq. S77 for α2, solving Eq. S79 for α3, and

26



substituting these into Eq. S80. The result is:

|C2|
|A0|

≈
∣∣∣∣∣

1

12

∆ω

ω0

+
2

9

(
δx1
|A0|

)2
∣∣∣∣∣ . (S81)

When α2 = 0, we have δx1 = 0 and the above result reproduces Eq. S42. By repeating this

process with Eq. S69, one can show that the leading term at frequency 4ω has a relative

amplitude of:

|D3|
|A0|

≈ 1

18

|δx1|
|A0|

∣∣∣∣∣
∆ω

ω0

+ 2

(
δx1
|A0|

)2
∣∣∣∣∣ , (S82)

which equals zero when α2 = 0.

As a final note, we’ll comment on the phases of the harmonics B,C, and D relative to

the fundamental tone A. The lowest-order solutions for each of these harmonics gives

x =
1

2
A0e

iωt +
1

2
B1e

i2ωt +
1

2
C2e

i3ωt +
1

2
D3e

i4ωt + c.c. + δx1, (S83)

where δx1 is real and A0, B1, C2, D3 are complex. According to Eqs. S50, S61, and S69, we

have B1 ∝ A2
0, C2 ∝ A3

0, and D3 ∝ A4
0, where the proportionality constants are always real.

Thus if we express the fundamental as A0 = |A0|eiθ, the arguments of B1, C2, and D3 will

always be 2θ, 3θ, and 4θ, respectively. Therefore we can rewrite the above equation as:

x =
1

2
|A0|ei(ωt+θ) +

1

2
|B1|ei2(ωt+θ) +

1

2
|C2|ei3(ωt+θ) +

1

2
|D3|ei4(ωt+θ) + c.c. + δx1. (S84)

This shows the inherent relation between the phases of the harmonics of motion. If t = 0 is

redefined so that the fundamental harmonic is a pure cosine, the higher harmonics will also

be pure cosines. This assertion is valid to lowest order in B,C, and D.
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