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Abstract—Systems engineering tools are used to organize
development activities of a wide variety of engineers, many of
whom develop discipline-specific simulation models. To increase
the efficiency of this process, systems modeling tools have been
extended to represent physical interactions and signal flows that can
be translated to simulation tools and executed. Sometimes these
simulation models fail to execute or they produce unexpected
execution results. It is helpful to identify causes of these problems
in earlier stages of system model development, before they
propagate to fully-developed simulation models. Debugging
physical interaction models is difficult because their execution is
bidirectional between system components. This paper gives an
overview of debugging procedures for physical interactions and
(unidirectional) signal flows in platform-independent system
models that integrate with domain-specific simulation models.
These procedures identify system model causes of simulation
execution failure or incorrect simulation results.

Keywords—SysML, debugging, modeling, simulation, lumped
parameter, equation-based languages

I. INTRODUCTION

The increasing complexity of modern engineered systems
and products requires integrating systems modeling and
simulation tools to improve efficiency of design processes
[1]. These tools capture behavioral and structural aspects of
systems or products that are checked (analyzed) without
prototyping and experimenting on real systems [2]. Systems
engineers use systems modeling tools to organize and
coordinate analysis by a wide variety of engineers [3], many
of whom develop their own equation-based simulation
models [4].

Some simulations tools present graphical interfaces
showing interconnection of components, corresponding to
energy and information exchange between physical objects
in the real system [4, 5]. They are referred to as physical
interaction and signal flow models (also known as lumped
parameter, one-dimensional, or network models) [6]. These
models help manage system complexity by focusing on what
systems should accomplish, rather than zow [5]. Simulations
of these models are experiments that answer questions about
the systems being modeled without physically building them
[4, 5].

Many simulation tools incorporate equation-based
modeling languages for physical interaction and signal flow
[7, 8, 9, 10]. System component specifications include
ordinary and algebraic differential equations, while their
interconnections generate additional equations between
components. These models can represent a wide range of
discipline-specific physical interactions between components
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(mechanical, electrical, etc.) as well as communication of
numeric and Boolean information.

Systems modeling tools also focus on how components
are interconnected and broken down into subcomponents
(system structure) [11]. Interconnections between
components reflect physical interactions and information
exchanges. This organization enables systems engineers to
coordinate others in specialized engineering disciplines,
focusing on subsets of components and interconnections that
require their expertise [12]. However, unlike simulation
tools, system models are not strictly equation-based.

System models are often developed separately from
simulation, leading to inconsistent specifications of
overlapping aspects of the system [6]. To minimize these
inconsistencies and enhance model interoperability, we
developed a publicly-available extension to the Systems
Modeling Language (SysML) [13] (the most widely used
graphical modeling language for systems engineering) that
facilitates platform-independent integration of SysML with
physical interaction and signal flow simulation tools (SysML
Extension for Physical Interaction and Signal Flow
Simulation, SysPhS) [6, 14]. We developed software to
translate these extended SysML models into simulation files
that run on two widely-used simulation platforms [15].

Despite the increased ease of use, efficiency, and
integration provided by the extension and translator, it is
often hard to identify (debug) the cause of errors in the
models. Determining the cause of errors is a critical step in
correcting models. This paper is concerned with identifying
causes of failure to:

e Execute simulation models translated from system
models,

e Get expected results from simulation execution.

The debugging procedures presented' focus on system
models written in SysML that are translated to simulation,
rather than on particular kinds of simulation models. The
procedures are independent of simulation platform (language
or tool), aiming to fix errors in system models before they
spread to simulation models on multiple platforms. Failures
of translation from system models to simulation due to
incorrect usage of the SysPhS extension or errors in the
translator are not considered.

Integrating SysML models of physical interactions and
signal flows with simulation tools enables compilation,
simulation, and validation of the SysML model. System
models can be checked for failure to compile and simulate a
translated model or failure to generate expected results from
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the simulation run-time. Although the causes of these two
kinds of errors might be similar, debugging techniques in
system models differs from those used in equation-based
modeling languages.

Section II categorizes errors and debugging techniques
for each kind of error. It also surveys literature on debugging
techniques for system models and simulation tools for
equation-based modeling. It describes SysML and SysPhS
features that are important to debugging physical interactions
and signal flows, using examples from a cruise control
system. Section IIl gives an overview of the proposed
debugging procedures. Section IV concludes with a
discussion of our findings, and an outlook for future work.

II. BACKGROUND

A. Types of Errors and Debugging Techniques in Physical
Interaction and Signal Flow Models

Several types of errors can cause failures in physical
interaction and signal flow models in systems and equation-
based modeling languages. This paper focuses on identifying
errors that cause simulation to fail or generate unexpected
results during execution. The type of failure influences the
debugging procedures required.

Errors that cause failure to simulate arise from model
structure. These show the modeler’s design does not properly
support simulation. The underlying system of equations is
inconsistent, including overconstrained (more equations than
variables) or underconstrained (fewer equations than
variables). It also includes equations that would divide by
zero, functions being called outside of their real domain (such
as the square root of a negative number), and other erroneous
symbolic transformations.

Errors that cause the simulation to produce unintended
results arise from the meaning of the model. These reflect
discrepancies between desired system behavior and
simulation execution. Although some errors can be identified
automatically (such as variable values outside bounds)
depending on the simulation tool being used, these errors can
also be found manually after trying to validate the simulation
results. These errors can come from incorrect equations,
incorrect parameter or initialization values, and incorrect
function calls from equations. Errors can also be due to
integration errors in the equation solvers being used [1],
which will not be discussed in this paper.

The difficulty in debugging these errors in physical
interactions is that observing ordered execution of command
sequences or operations do not work in models that include
bidirectional relationships. This fundamental difference
means that debuggers for errors in physical interactions need
to examine chains of variable transformations in the model.

Static debugging techniques identify errors that cause
failure to compile simulation models to executable code.
These techniques trace symbolic transformations through the
model to identify erroneous sections [1]. Dynamic debugging
techniques identify errors that cause simulation to produce
unexpected results. These techniques involve interactive
inspection of models during execution [1]. They must be used
after static debugging techniques ensure the model can be
compiled to executable code.
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B. State-of-the-art Debugging Techniques for Physical
Interaction and Signal Flow Models

Though methods for identifying errors in system
specifications share many similarities [5, 16], models that
include physical interaction require specialized debugging
strategies because these interactions affect all components
involved. This is in contrast to sequential execution of
operations in most other modeling languages, including
signal flow simulation, where each component only affects
the ones executing after it. Since models of physical
interaction always have two participants we call it
bidirectional (sometimes known as “acausal” even though
causality applies to all physics), while models of signal flow
are unidirectional.

Debugging in bidirectional and unidirectional modeling
requires different approaches [5]. In unidirectional models,
an error found at some point in the execution implies that the
cause of the error is in one of the components or operations
executed prior to that point. Errors in bidirectional models do
not come from a past sequence of executed operations or
components, because they are not executed in sequence.

Identifying errors in bidirectional (physical interaction)
models has received significant attention in the Modelica
language community [17]. In[1, 18, 19, 20, 21], authors look
at debugging models in equation-based languages, as well as
scalability of such techniques for larger models. Earlier work
focused on code instrumentation to provide traditional
debugging mechanisms such as breakpoints and single-
stepping [20], which are more useful for sequential
languages. There is also work focused on determining
whether a system of equations is balanced [18], as well as
techniques to semi-automatically isolate data flow slices to
find potential sources of failure [19].

In [1, 22, 23], authors integrate information from variable
(symbolic) transformations from static debugging into a
dynamic debugger at simulation run-time (transformations
are mathematical operations on variables to give values to
other variables). The debuggers have graphical interfaces for
exploring variable simulation and traditional debugging
techniques such as breakpoints and single-stepping.
Techniques for tracing symbolic transformation are critical to
debugging physical interaction and signal flow models,
including those translated from system models.

Implementing these debugging techniques in system
models is more difficult than in simulation because of the
higher level of abstraction preferred in early stages of systems
engineering processes. Unlike equation-based modeling
languages, system models specify multi-disciplinary,
conceptual models of a system and its components. Tracing
symbolic transformations requires a more diagram-based
procedure in these models. The authors in [24] describe the
structure of a functional, system model debugger that
integrates system models with an equation-based modeling
language through a mapping between them. The debugger
focuses on visualizing variables running through a
simulation, and much less on symbolic transformations. This
paper argues that some tracing of symbolic transformations
is necessary in system models.

It is burdensome to coordinate changes between system
models and equation-based simulation models. One way to
coordinate changes is to fix errors in simulation tools and
feed the corrections back into system models. Another way is



to debug system models before generating and experimenting
with simulation models. This paper focuses on the latter
approach. Although both are useful, applying equation-based
model debugging techniques to system models at earlier
development stages can verify and increase understanding of
the relationships captured in system models before
discipline-specific experts focus on parts of the systems in
their own models and tools. It also helps fix errors in
functional, higher abstraction, platform-independent system
models before they spread to behavioral, lower abstraction,
domain-specific simulation models.

Next, we give some background information about
modeling physical interactions and signal flows in SysML
that is essential for tracing symbolic transformations. In the
subsequent section, we describe the the debugging techniques
applied to SysML system models.

C. Modeling Physical Interactions and Signal Flows with
SysPhS

The SysML extension and simulation translator we
developed [14, 15] integrates SysML with physical
interaction and signal flow modeling simulation by
identifying modeling capabilities in common between
simulation platforms, comparing those with SysML, and
extending SysML with only those modeling capabilities that
SysML does not have [6]. Development starts with system
models in extended SysML, then translates them into
simulation platforms. This means that any errors not due to
usage of the extension, translator, or simulator’s execution
engine will be in the SysML model.

Static debugging requires tracing through variable
transformations in the model, and dynamic debugging uses
bookkeeping of values over simulated time to pinpoint errors.
Tracing physical interactions and signal flows in

SysML system models extended with SysPhS [14] is done
through connectors. The role of connectors in modeling
physical interactions and signal flows is briefly discussed in
this section; more can be found in [6, 12, 14].

Modeling in SysML starts with system components and
their interactions in an internal block diagram (IBD), as in
Figure 1. It shows physical interaction and signal flows
involved in automatic control of a vehicle’s speed, between
the vehicle, its components, the cruise controller, and the
operating environment. Interactions are represented by
SysML connectors, which show exchanges of physical
substances or signals occurring between the ends of each
connector. The ends are either parts, or ports (smaller
rectangles appearing on rectangles) that are placed on parts,
on connector properties, or on other ports. Part names appear
in titles of the rectangles in IBDs, before the colons. Each part
is arole in the model (such as driver in Figure 1) and is played
(typed) by a kind of thing (such as Person), appearing in the
title after a colon and represented by a SysML block. Ports
are essentially parts of parts, playing roles of roles in a model.
They are also typed by blocks to show the kind of thing
playing each role.

Item flows on connectors are optional, but useful to
represent the type of signal or conserved physical substance
flowing between parts or ports. They appear in Figure 1 as
labels of filled triangles on connector lines, such as the
LinearMomentum label between the parts gravVehicleLink
and controlledVehicle. One filled triangle on a connector
indicates signal flow in the direction of the triangle is
pointing, while two pointing in opposite directions indicate
physical interaction.

Blocks that type parts or ports at the ends of connectors
must have flow properties typed by the kind of signals or
physical substances flowing. Flow properties or
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Fig. 1. Internal Block Diagram for a vehicle cruise control system, defined in SysML extended by SysPhS for physical

interaction and signal flow
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their types represent variables (either conserved or non-
conserved, see below). Flow properties for signal flows are
in or out (unidirectional) variables, typed by the kind of signal
flowing. Flow properties for physical interactions are inout
(bidirectional), typed by the physical substances flowing.
These substances have variables for the substance’s flow rate
and potential to flow (one variable for each). Blocks that type
parts or ports at the ends of connectors can be selected from
libraries of reusable component interaction blocks or be
specified by modelers. They can include more properties
besides the flow properties, as well as multiple flow
properties if the part or port typed by that block is involved
with multiple types of signal flows or physical interactions.

The SysPhS extension includes a PhSConstant stereotype
to specify that property values are to remain constant during
each simulation execution. It also includes a PhSVariable
stereotype to specify that they might vary during simulation.
Flow properties for physical interaction are typed by blocks
from a SysPhS library that have properties with PhSVariable
stereotypes applied. Flow properties for signal flows have
PhSVariable stereotypes applied as well. More details on
defining blocks and their properties can be found in the
SysPhS specification [14].

Connectors also imply a mathematical relationship
between variables of flow properties defined by the blocks
typing parts or ports at each end of a connector. After
connectors are translated to simulation, those tools generate
equations for them (differently for physical interaction and
signal flow, see below). Parts and ports may also perform
mathematical manipulations on flow property variables,
specified by the blocks that type them, using SysML’s
parametric diagrams. These diagrams equate (bind) variables
of their equations to flow properties and other properties from
their containing blocks. Equations in these diagrams are
called constraints and their variables are called constraint
parameters.

In physical interactions, when connected ports and parts
are typed by blocks that have the same inout flow property
(and no connector properties are involved, see below), the
values of conserved variables (flow rates of conserved
substances) for the same flow property must add to zero
during simulation, while their paired non-conserved variables
(potential to flow) must be the same. Connectors can be
augmented by a property of the containing block that

represents physical substances transferred between parts or
ports in the system and not at the boundary of any object. A
connector property can also represent transformation of one
type of physical substance — and equivalently one set of flow
property variables — to another. The transfers and
transformations represented by connector properties are
specified with equations in parametric diagrams. More about
connector properties can be found in [6, 12, 14].

In signal flows, when connected parts and ports are typed
by blocks with the same flow property but opposite directions
(one in, the other out), the flow properties (which are non-
conserved variables in this case) must have the same value
during simulation. Multiple connectors cannot have the same
in-flow property at their ends because signals flowing into it
would conflict.

Lastly, connectors linking to a port or part with no flow
properties, such as the one between parts gravVehicleLink
and operatingEnvironment in Figure 1, are structural
relationships that enable physical interaction, but across
which not physical substances flow. In Figure 1 these are the
connectors directly to the earth and road, which are necessary
for the car to store/consume potential energy and to propel
itself, respectively, but are assuming to be immovable
themselves.

III. DEBUGGING METHODS

The SysPhS extension enables translation from system
models to equation-based models. If an equation-based
model fails to compile or simulate correctly, the cause can be
identified by tracing through chains of connectors between
components. This is the basis for static debugging techniques
and facilitates dynamic debugging. Before overviewing the
techniques, we discuss a procedure to simplify system
models by distinguishing between physical interaction and
signal flow connectors. Simplifying models beforehand
makes debugging more straightforward and scalable.

A. Preprocessing: Simplifying Models

The system model is broken down into one for physical
interactions and another for signal flows. This enables
separate debugging of two simpler system models before
replicating the resulting fixes in the complete model, a
simpler task than debugging the entire model all at once.
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Fig. 2. Cruise control model with only physical interactions
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Fig. 3. Show two (2) parametric diagrams of the same system (before and after changes)

First, a model of physical interactions in the system is
derived by eliminating all connectors in the original model’s
IBDs that do not represent physical interactions (saving a
separate copy of the original model first). Any remaining
parts or ports that are not at the end of the remaining
connectors or do not possess a port that is at the end of a
remaining connector are also eliminated. Following the
example in Figure 1, Figure 2 presents an IBD with only the
physical interactions in the original cruise control system.

Next, in each parametric diagram for the remaining parts
or ports, eliminate equations (constraints) determining values
of variables (constraint parameters) that are bound to (signal
flow) out-flow properties. Eliminate part or port properties
that are bound to variables on these our-flow equations as
well. Replace any remaining equation variables bound to in-
flow properties on the parts or ports by constant values, either
by directly replacing the parameter with a constant value in
constraints or by introducing a binding to a PhSConstant-
stereotyped property that has a constant default value or
instance value (see [14] for value assignment examples).
Figure 3 depicts a parametric diagram for a component in
Figure 2, before and after these changes were made.

A separate system model for signal flows is derived by
first eliminating all connectors in the original model’s IBDs
that do not represent signal flows (while saving a separate
copy of the original model). Also eliminate any remaining
parts or ports that are not at the end of the remaining
connectors or does not possess a port that is at the end of a
connector.

Next, in each parametric diagram for the remaining parts
or ports, eliminate equations that play no role in determining
values of variables bound to ouz-flow properties or equations
that do not have any bindings to in-flow properties are
eliminated. Part or port properties not bound to variables on
the remaining equations. Of the remaining equations, some
variables might be bound to physical interaction inout-flow
properties on the parts or ports. These flow properties are
replaced in simplification. If any equation variable bound to
these flow properties determine the value of a variable bound
to an out-flow property, then eliminate the inout-flow
property and give a new constant value to its variable by
binding to a PhSConstant-stereotyped property that has a
constant default value or instance value (see [14] for value
assignment examples). If any equation variable bound to
these flow properties is determined by a variable in the same
equation that is bound to an in-flow property, then eliminate
the inout-flow property and give its variable a new binding to
a new property with a PhSVariable (see [14] on applying
variable- and constant-value stereotypes to properties in
SysPhS).
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The remaining sections present the debugging techniques.
Static techniques find the cause of failures to compile and
simulate translated models. This type of failure prevents
generating a simulation run-time from the translated model.
Once compilation succeeds, dynamic debugging techniques
identify causes of failure to produce intended simulation
behavior. The underlying theme for static debugging is
tracing symbolic transformations in the model to find errors.
Transformation tracing is also useful for dynamic debugging
to better understand the model and sources of potential
simulation-related errors.

B. Static Debugging for Failure to Execute Simulation

The failure of an equation-based model (translated from a
system model) to compile and simulate in a simulation tool
indicates a static error. These errors can be identified with
static debugging techniques applied to the system model,
which trace chains of symbolic transformations in the model.
These transformations appear as mathematical relationships
in constraint equations or implied by connectors.
Specifically, tracing refers to tracking transformations of
known and unknown variables through a model. Known
variables are properties whose values are assigned a constant
value or determined through mathematical relationships.
Tracing is complemented by bookkeeping, which records the
known or unknown status of these variables when operations
apply to them in the model.

Static debugging can be performed on complete system
models, but is described here on simplified, complementary
models of a system’s physical interactions and signal flows.
For models with physical interactions, the first task is to
identify the part, port, or connector property in IBDs where
physical interaction will first occur or initiate other physical
interactions in the system. Multiple parts and ports where
physical interactions simultaneously occur can initiate further
interactions, but any one can be arbitrarily picked to begin
tracing. Tracing and bookkeeping of mathematical
transformations start with properties associated to this
selected part or port. Deciding which system component
commences the physical interactions is easy in many cases.
For example, the initiators of flow of electric charge in an
electric circuit are the voltage sources or current sources. In
the cruise control system represented in IBDs in Figures 1
and 2, the throttle in the engine physically initiates the car’s
interaction with the road and air (this happens on command
from the driver, but the command is signal flow, not physical
interaction).

When the initiator of physical interaction is not obvious,
it can help to inspect the parametric diagrams of parts or ports
in IBDs. Parametric diagrams contain bindings between



properties of the parts (or ports) to variables in the part’s
constraint equations. Look for parametric diagrams of parts
that have a higher number of PhSConstant-stereotyped
properties (with values given explicitly in the model) than
PhSVariable-stereotyped properties (with values determined
by mathematical relationships in the model), except for
PhSVariables that give simulation time. The equation
variables (constraint parameters) bound to PhSConstant or
time properties are used in the part’s equations (constraints)
to determine values of other variables, which are bound to
other properties used in the part’s equations. To find an
initiator, search for a part or port where most of its properties
or properties of its ports are bound to constants or time values
in its parametric diagram. The only properties without
constant or time values should be flow properties, which can
only have their values determined through connectors. Parts
or ports initiating physical interactions have the fewest of
these flow properties.

Tracing bindings and constraints in parametric diagrams
helps understand and keep track of (bookkeep) which
variables in the equations are known and unknown.
Constraint equations show mathematical transformations
between known variables, bound to properties with known
values, and unknown variables, bound to properties with
unknown values. Before simulation, the only known
variables are the ones bound to PhSConstant properties, the
variables bound to properties given (initial) values at the start
of simulation, and properties that give simulation time values.
These should lead to values assigned to all variables in the
parametrics diagram of physical interaction-initiating parts.
The status of these variables will change as tracing shows
their values being assigned through constraints or connectors,
which is recorded by bookkeeping.

Physical interaction flow properties on the current part in
the debugging process link to flow properties on parts or ports
at the other end of the linking connectors. Trace along these
connectors to find out whether values are assigned to these
flow properties leads to parametric diagrams of other parts,
ports, and connector properties linked to the current part.
Repeat the same methods of tracing and bookkeeping in these
other parametric diagrams to determine whether values are
assigned to unknown variables and to find flow properties
that lead to new connectors and parametric diagrams. The
trace must go through all connectors and

parametric diagrams of the system’s parts, ports, and
connector properties. Figure 4 shows an example of tracing
and bookkeeping value assignments between a physical
interaction-initiating part and another part. Bookkeeping of
the total trace would complete the tracking of value
assignments.

A system model will compile and simulate when
translated if it a) uses all the constraint equations and
connectors in the model for mathematical transformations
between known and unknown variables and b) has all its
property values determined by simulation of mathematical
transformations. If tracing and bookkeeping identifies a
constraint equation or connector that is not used, the system
is overconstrained. In this scenario, the modeler must choose
whether unused equations or connectors should be removed
or a new property should be included and related to them. If
an unknown property is not defined by any mathematical
constraint or connector, then the system is underconstrained.
In this scenario, the modeler must choose between using this
property in a new equation or eliminating the property.
Tracing and bookkeeping of equations also helps spot
constraint equations that involve a division by zero and
functions called outside their domains. Once corrections to
the model are made, they are replicated in the original system
model.

If there is a complementary model of signal flows, repeat
the process of tracing and bookkeeping in a similar fashion,
but start tracing from all parts that do not have in-flow
properties or do not own ports that have in-flow properties.
The in-flow property on these parts indicate that they receive
unidirectional signals from another part in the model, so they
cannot be the initiator of signal flows. Corrections in this
model should likewise be reproduced in the original,
complete model of the system. Translate the corrected
SysML model and test on simulation platforms to determine
if more debugging is needed.

C. Dynamic Debugging for Unexpected Simulation Results

Failure of an equation-based simulation model (translated
from a system model) to produce expected results when
executed indicates a dynamic error. The simulation model is
able to compile and simulate, but produces variable values
that deviate from modeler expectations. These errors can be
identified with dynamic debugging techniques applied to
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Fig. 5. Relationship between simulation variables and flow properties in the system IBD

the system model. These techniques examine executed
simulations to understand exactly when signals and
conserved substances flow through the system and what their
characteristics are. They focus on simulation results for
variables involved in the static traces of flow properties
linked by connectors in the previous section. This showed
how variables characterizing flow of physical substances and
signals during simulation are related via transformations in
the system model (mathematical operations via constraint
equations and connectors). Though dynamic debugging can
be performed without prior static debugging, fixing static
errors first ensures the simulation model will compile and
execute, and static tracing improves understanding of how
variables change during simulation.

Dynamic debugging can be performed on complete system
models, but is described here on simplified, complementary
models of a system’s physical interactions and signal flows.
Behavior of conserved substances in physical interactions is
characterized by their flow rate and potential to flow. Flow
rate and potential to flow appear in simulation as variables
translated from properties at the ends of connectors in the
system model. This enables modelers to track simulation
variables that correspond to properties in SysML system
models. The SysPhS translator uses the names of association
ends and constraint parameters in the resulting simulation
models to facilitate this, but tracking simulation variables
might require some familiarity with the equation-based
simulation language. Lastly, like static debugging, dynamic
debugging starts by tracing simulation variable
transformations at points in the model that initiate physical
interactions in the rest of the model. These points must be
identified before debugging.

Physical interaction variables simulate flow of conserved
substances only at their corresponding connector endpoint
(part or port) in the system model. A more complete picture
of symbolic transformations of these variables is seen by
observing their values over simulated time and comparing
them to other physical interaction simulation variables in the
model. Graphical displays in simulation tools show these
values, enabling comparison of simulated values to their
intended mathematical relationships. The relationships are
defined, correctly or mnot, through transformations
(mathematical relationships between variables derived from
connectors and parametric diagrams in the system model) of
corresponding flow properties in the system model. To
visualize these transformations, observe variables when their
corresponding flow properties have not undergone more than
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one set of transformations (operations that occur on flow
properties in the constraints of one parametric diagram or in
the mathematical relationship implied by one connector).
Compare simulation values of these variables with those of
other physical interaction variables related to the same part or
port in the system model, as well as simulation variables
related to the other end of the variables’ associated
connectors.

Analysis of simulation variable results is performed in
simulation runs that are sufficiently long for their values to
reach a steady-state or a recognizable pattern of changes.
Check that changes follow the mathematical transformations
specified in corresponding constraint equations and
connector links in the system model, which can be modified
to produce better results. Figure 5 shows the relationship
between simulated variable values over time and flow
properties in the parametrics diagram and IBD.

Further simplification of system models can determine
whether simulation results are valid, especially when
physical interactions are highly complex. One way is to
temporarily remove parts, ports, and connectors until
modelers have high confidence in what they expect from
variable behavior. Once this core model produces correct
simulations, the removed parts and ports can be incrementally
restored, simulated, and checked [16].

Validity of simulation results might also be determined by
reaching consensus among modelers, users, and stakeholders
on whether the simulation model is producing the correct
results [25]. These techniques are out of the scope of this
paper, but they include qualitative and quantitative model
exploration, and comparison of simulation results to system
behavior or alternative validated simulation results [25].

If there exists a complementary model of signal flows,
repeat the process of inspecting simulation variables in a
similar fashion. However, start tracing with all parts that do
not have in-flow properties or do not own ports that have in-
flow properties, as chosen during static debugging. Replace
remaining parts in a complementary model of signal flows
that only have out-flow properties or only have ports with
out-flow properties have their flow properties by
PhSConstant-stereotyped  properties with pre-specified
values before debugging.

Errors that are found by debugging are corrected in the
system model, then tested by translating to simulation models
and executing them. Translating and testing system models
to multiple simulation platforms is more robust, because fixes



sometimes work for one simulation platform and not others.
For example, a function call in a parametric diagram is
domain-specific, and this might need to be replaced with a
more universal function call. It is also possible that some
modeling capabilities in SysML, such as state machines or
different ways of defining initial values, cannot be replicated
on some simulation platforms (see [14] for more specific
examples about translation differences between simulation
platforms).

IV. CONCLUSIONS & FUTURE WORK

This paper presents an overview of debugging procedures
for physical interaction and signal flow models translated
from system models to equation-based simulation languages.
The procedures identify errors causing compilation and
simulation of these models to fail, or to produce incorrect
simulation results. The integration of system models with
equation-based models facilitates interoperability between
developers of these types of models. This is done in SysML
extended by SysPhS [6, 12, 14, 15]. The debugging
procedures for platform-independent system models help
identify problems without debugging and correcting the
domain-specific simulation model and then transferring those
changes back into the system model. The procedures are
categorized as static and dynamic. Static debugging traces
symbolic transformations in the system model, and dynamic
debugging uses results of simulations to check changes in
variable values during simulation. These debugging
procedures are performed on system models and intend to
complement existing debugging techniques on simulation
platforms.

The authors plan to improve the debugging processes
with user-friendly interfaces to visualize aspects of model
translation, particularly the mapping between components in
system models (e.g. equations, parts, properties) and
structures in simulation models resulting from translation.
The interface can provide information to both system and
simulation modelers about the names, locations, and number
of times translated structures and variables appear in the
simulation model. This facilitates communication between
systems engineers and simulation tool experts, without being
concerned about details in one another’s models.
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