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Abstract 

Hardware/Server virtualization is a key feature of data centers used for cloud 

computing services and enterprise computing that enables ubiquitous access to 

shared system resources. Server virtualization is typically performed by a hy-

pervisor, which provides mechanisms to abstract hardware and system resources 

from an operating system. However, hypervisors are complex software systems 

with many lines of code and known to have vulnerabilities. This paper analyzes 

the recent vulnerabilities associated with two open-source hypervisors—Xen 

and KVM—as reported by the National Institute of Standards and Technol-

ogy’s (NIST) National Vulnerability Database (NVD), and develops a profile of 

those vulnerabilities in terms of hypervisor functionality, attack type, and at-

tack source. Based on the predominant number of vulnerabilities in a hypervisor 
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functionality (attack vector), two sample attacks using those attack vectors were 

launched to exploit those vulnerabilities, with the objective of determining the 

evidence coverage for detecting those attacks and identifying techniques required 

to gather missing evidence to reconstruct the attacks. 

Keywords: cloud computing, forensic analysis, hypervisors, Xen, KVM, 

vulnerabilities 
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1 Introduction 

Most cloud services are provided using virtualized environments. Virtualization is a 

key feature of cloud computing that enables ubiquitous access to shared pools of system 

resources and high-level services provisioned with minimal management effort [1, 2]. 

Although Operating Systems (OS) directly control hardware resources, virtualization, 

typically provided using a hypervisor (a.k.a. a virtual machine monitor (VMM)) [3] 

within a cloud environment, provides an abstraction of hardware and system resources. 

As a software layer that lies between the physical hardware and the Virtual Machines 

(VMs or guest machines), a hypervisor supports the guest virtual machines by pre-

senting the guest OSs with a virtual operating platform and managing their execution. 

However, hypervisors are complex software systems with many lines of code and known 

vulnerabilities [4]. By exploiting these vulnerabilities, attackers can possess the ac-

cessibility and authorization over the hypervisors, and subsequently attack all VMs 

running under the compromised hypervisor. 

Many researchers have characterized hypervisor vulnerabilities, assessed them, cre-

ated tools to detect them, or identified evidence for attack forensic analysis [4–8, 30]. 

Hypervisor forensics aims at extracting left over post-attack artifacts in order to in-

vestigate and analyze attacks at the hypervisor level. Though work such as inspecting 

the physical memory to find evidence has been broadly explored [7], there isn’t much 

work that analyzes the recent hypervisor vulnerabilities to derive a profile of hyper-

visor vulnerabilities and uses them to discover forensic evidence that can reconstruct 

hypervisor attacks. Motivated by the work presented in [4] that characterized hyper-

visor vulnerabilities as of July 2012 with the objective of preventing their exploitation, 

in this work, we analyzed the recent vulnerability reports associated with two pop-

ular open-source hypervisors, Xen and KVM in the National Institute of Standards 

and Technology’s National Vulnerability Database (NIST-NVD), with the objective 

of discovering recent trends in hypervisor attacks, deriving a profile of recent hyper-

visor attacks, determining the forensic evidence coverage and identifying techniques 

to collect supporting evidence in order to reconstruct hypervisor attacks. The main 
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contributions of this paper are as follows: (1) Analyzing and classifying recently re-

ported hypervisor vulnerabilities of Xen and KVM (between 2016 and 2017) in the 

NIST-NVD database, and deriving a profile of recent hypervisor vulnerabilities based 

on hypervisor functionalities, attack types and sources of attacks; (2) Simulating some 

sample attacks representing the attack trends, ascertaining their forensic data cover-

age and exploring methods that can identify the evidence to reconstruct hypervisor 

attacks. 

The rest of this paper is organized as follows. Section 2 presents the background of 

hypervisors and discusses related work. Section 3 lists typical hypervisor functionalities 

and shows analysis of the recent two-year hypervisor vulnerabilities of Xen and KVM 

listed in NIST-NVD. Section 4 describes the sample attacks and the forensic evidence 

used for reconstructing the sample attacks. Section 5 provides conclusions. 

2 Background and Related Work 

This section provides an outline of the architectures of the two open-source hypervisors 

and discusses related work in the area of cloud forensic analysis. 

2.1 Hypervisors 

Hypervisors are software and/or firmware modules that virtualize system resources 

such as CPU, memory, and devices. In [9], Popek and Goldberg classify hypervisors 

as Type 1 hypervisor and Type 2 hypervisor. Type 1 hypervisors run directly on the 

host’s hardware to control the hardware and manage guest OSs. For this reason, Type 

1 hypervisors are sometimes called bare metal hypervisors and include Xen, Microsoft 

Hyper-V, and VMware ESX/ESXi. Type 2 hypervisors are similar to other computer 

programs that run on an OS as a process. VMware Player, VirtualBox, Parallels 

Desktop for Mac, and QEMU are Type 2 hypervisors. Some systems have features of 

both. For example, Linux’s Kernel-based Virtual Machine (KVM) is a kernel module 

that effectively converts the host OS to a Type 1 hypervisor but is also categorized 
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as a Type 2 hypervisor because Linux distributions are still general-purpose OSs with 

other applications competing for VM resources [10]. 

According to the 2015 State of Hyperconverged Infrastructure Market Report 

by ActualTech media [23], there are four popular hypervisors: Microsoft Hyper-V, 

VMware VSphere/ESX, Citrix XenServer/Xen, and KVM. Since Microsoft Hyper-V 

and VMware VSphere/ESX are commercial products, this paper and research focus on 

the vulnerabilities on two widely used open-source hypervisors, Xen and KVM. Their 

architectures are briefly discussed below. 

2.1.1 Xen 

Figure 1 shows the architecture of Xen. In this design, the Xen hypervisor man-

ages three kinds of VMs including the control domain (also called Dom0) and guest 

domains (also called DomU) that support two different virtualization modes: Par-

avirtualization (PV) and Hardware-assisted Virtualization (HVM) [11]. Dom0 is the 

initial domain started by the Xen hypervisor on booting up a privileged domain that 

plays the administrator role and supplies services for DomU VMs. For the two kinds 

of DomU guests, PV is a highly efficient and lightweight virtualization technology in-

troduced by XEN in which Xen PV does not require virtualization extensions from 

the host hardware. Thus, PV enables virtualization on hardware architectures that 

do not support HVM, but it requires PV-enabled kernels and PV drivers to power a 

high performance virtual server. HVM requires hardware extensions, and Xen typi-

cally uses QEMU (Quick Emulator), a generic hardware emulator [15], for simulating 

PC hardware (e.g., CPU, BIOS, IDE, VGA, network cards, and USBs). Because of 

the use of simulation technologies, HVM VMs’ performance is inferior to PV VMs. 

Xen 4.4 provides a new virtualization mode named PVH. PVH guests are lightweight 

HVM-like guests that use virtualization extensions in the host hardware. Unlike HVM 

guests, instead of using QEMU to emulate devices, PVH guests use PV drivers for 

I/O and native OS interfaces for virtualized timers, virtualized interrupts, and a boot. 

PVH guests require PVH-enabled guest OS [11]. 
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Figure 1: The Xen architecture 

2.1.2 KVM 

KVM was first introduced in 2006 and soon merged into the Linux kernel (2.6.20) 

among open-source hypervisor projects. KVM is a full virtualization solution for 

Linux on x86 hardware containing virtualization extensions (Intel VT or AMD-V) 

where VMs run as normal Linux processes [12]. Figure 2 shows the KVM architecture 

in which the KVM module uses QEMU to create guest VMs running as separate user 

processes. Because KVM is installed on top of the host OS, it is considered a Type 

2 hypervisor. However, KVM kernel module turns Linux kernel into a Type 1 bare-

metal hypervisor, providing the power and functionality of even the most complex and 

powerful Type 1 hypervisors. 

2.2 Related Work 

Hypervisor attacks are categorized as external attacks and defined as exploits of the 

hypervisor’s vulnerabilities that enable attackers to gain accessibility to and authoriza-

tion over hypervisors [13]. In support of hypervisor defense, Perez-Botero et al. char-

acterized Xen and KVM vulnerabilities based on hypervisor functionalities in 2012 [4]. 

However, these cannot be used to predict recent attack trends. To assess the weakness, 
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Figure 2: The KVM architecture 

severity scores, and attack impacts, Thongthua et al. assessed the vulnerabilities of 

widely used hypervisors, including VMware ESXi, Citrix XenServer and KVM, us-

ing the NIST 800-115 security testing framework and performed some sample experi-

ments [5]. In an effort to develop hypervisor forensic methods, researchers discussed 

the attacks on hypervisors, their forensic mechanisms and challenges [8], proposed or 

developed tools using VM introspection from the hypervisor level to detect attacks in 

VMs [26, 30], and leveraged existing memory forensic techniques to explore the tech-

nique that detects the existence and the characteristics of any hypervisor in a host 

memory dump [7]. 

3 Deriving a Profile of Hypervisor Vulnerabilities 

We use the following criteria to derive a profile of recent hypervisor vulnerabilities as 

a prelude for determining forensic data requirements for detecting hypervisor attacks: 

• Hypervisor Functionality where the vulnerability exists (attack vector), 

• Attack Type (impact of the attack by exploiting the vulnerability), 

• Attack Source (the component in the hypervisor platform from which the attack 

is launched). 
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The approach used for deriving the vulnerability profile involved obtaining all vul-

nerabilities (tagged with CVE numbers) in two open-source hypervisors (Xen and 

KVM) from the NIST-NVD for years 2016 and 2017. The hypervisor functionality 

(attack vector) was then associated with the attack type (impact) that resulted from 

exploiting each vulnerability and the attack source based on the description of vul-

nerabilities in that database. The total number of vulnerabilities for the two chosen 

open-source hypervisors in each of the three categories (attack vector, attack type, 

and attack source) thus provided a recent vulnerability profile for those hypervisor 

offerings. A brief description of the information sources that were used and the steps 

adopted as part of the approach for deriving the vulnerability profile is provided. 

3.1 The Vulnerabilities in the NIST-NVD 

The NIST-NVD is the U.S. government repository of standards-based vulnerability 

management data and includes databases of security checklist references, security-

related software flaws, misconfigurations, product names, and impact metrics [14]. 

A search of the NIST-NVD for the vulnerabilities posted during the years 2016 and 

2017 revealed 83 Xen hypervisor vulnerabilities and 20 KVM hypervisor vulnerabili-

ties. These vulnerabilities were then associated with the three classification criteria: 

hypervisor functionality, attack type and attack source. 

3.2 Hypervisor Functionality 

To better understand different hypervisor vulnerabilities, Perez-Botero et al. consid-

ered 11 functionalities that a traditional hypervisor provides and mapped vulnerabili-

ties to them [4]: (1) Virtual CPUs (vCPU); (2) Symmetric Multiprocessing (VSMP); 

(3) Soft Memory Management Unit (MMU); (4) I/O and Networking; (5) Paravirtu-

alized I/O; (6) Interrupt and Timer mechanisms; (7) Hypercalls; (8) VMExit; (9) VM 

Management; (10) Remote Management Software; (11) Hypervisor Add-ons. Based 

on the common function provided by numbers 4 and 5 above, these were merged into 

a single functionality. A detailed description of all these functionalities is as follows. 
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Virtual CPUs (vCPU): A vCPU, also known as a virtual processor, abstracts 

a portion or share of a physical CPU that is assigned to a VM. The hypervisor uses a 

portion of the physical CPU cycle and allocates it to a vCPU assigned to a VM. The 

hypervisor schedules vCPU tasks to the physical CPUs. 

Virtual Symmetric Multiprocessing (VSMP): VSMP is a method of sym-

metric multiprocessing (SMP) that enables multiple vCPUs belonging to the same 

VM to be scheduled on a physical CPU that has at least two logical processors. 

Soft Memory Management Unit (Soft MMU): The Memory Management 

Unit (MMU) is the hardware responsible for managing memory by translating the 

virtual addresses manipulated by the software into physical addresses. In a virtualized 

environment, the hypervisor emulates the MMU (therefore called the soft MMU) for 

the guest OS by mapping what the guest OS sees as physical memory (often called 

pseudo-physical/physical address in Xen) to the underlying memory of the machine 

(called machine addresses in Xen). The mapping table from the physical address to 

machine address (P2M) is typically maintained in the hypervisor and hidden from the 

guest OS by using a shadow page table for each guest VM. Each shadow page table 

mapping translates virtual addresses of programs in a guest VM to guest (pseudo) 

physical addresses and is placed in the guest OS [16, 17]. 

The Xen paravirtualized MMU model requires that the guest OS be directly aware 

of mapping between (pseudo) physical and machine addresses (the P2M table). Addi-

tionally, in order to read page table entries that contain machine addresses and convert 

them back into (pseudo) physical addresses, a translation from machine to (pseudo) 

physical addresses provided by the M2P table is required in Xen paravirtualized MMU 

model [17]. 

I/O and Networking: There are three common approaches that a hypervisor 

provides I/O services to guest VMs. In Xen, they are: (1) the hypervisor emulates 

a known I/O device in a fully virtualized system, and the guests use an unmodified 

driver (called a native driver) to interact with it; (2) a paravirtual driver (known 

as a front-end driver) in a paravirtualized system is installed in the modified guest 
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OS in DomU, which uses shared-memory—asynchronous buffer-descriptor rings—to 

communicate with the back-end I/O driver in the hypervisor; (3) the host assigns 

a device (known as a pass-through device) directly to the guest VM. In addition, in 

order to reduce I/O virtualization overhead and improve virtual machine performance, 

scalable self-virtualizing I/O devices that allow direct access interface to multiple VMs 

are also used. 

Though hypervisors enforce isolation across VMs residing within a single physical 

machine, the grant mechanism provides inter-domain communications in Xen, allow-

ing shared-memory communications between unprivileged domains by using grant ta-

bles [16]. Grant tables are used to protect the I/O buffers in a guest domain’s memory 

and share the I/O buffer with Dom0 properly, which allows the split device drivers 

with block and network I/O. Each domain has its own grant table that allows the do-

main to inform Xen with the kind of permissions other domains have on their pages. 

KVM typically uses Virtio, a virtualization standard for network and disk drivers that 

is architecturally similar to Xen paravirtualized device drivers composed of front-end 

drivers and back-end drivers. 

Interrupt/Timer: Hypervisors should be able to virtualize and manage inter-

rupts/timers [18], the interrupt/timer controller of the guest OS and the guest OS’ 

access to the controller. The interrupt/timer mechanism in a hypervisor includes a 

programmable interval timer (PIT), the advanced programmable interrupt controller 

(APIC), and the interrupt request (IRQ) mechanisms [4]. 

Hypercall: Hypercalls are similar to system calls (syscalls) that provide user-space 

applications with kernel-level operations. They are used similar to syscalls with up to 

six arguments passed in registers. A hypercall layer is commonly available and allows 

guest OSs to make requests of the host OS. Domains will use hypercalls to request 

privileged operations such as updating page tables from the hypervisors. Thus, an 

attacker can use hypercalls to attack the hypervisor from a guest VM. 

VMExit: According to Belay at el. [19], the mode change from VM non-root 

mode to VM root mode is called VMExit. VMExit is a response to some instructions 
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and events (e.g., page fault) from guest VMs and is the main cause of performance 

degradation in a virtualized system. These events could include external interrupts, 

triple faults, task switches, I/O operation instructions (e.g., INB, OUTB), and accesses 

to control registers. 

VM Management Functionality: Hypervisors support basic VM management 

functionality including starting, pausing, or stopping VMs and are implemented in 

Xen Dom0 and the KVM’s libvirt driver. 

Remote Management Software: Remote management software is used as an 

interface that connects directly to the hypervisor in order to provide additional man-

agement and monitoring tools. With an intuitive user interface that visualizes the 

status of a system, the remote management software allows administrators to change 

or manage the virtualized environment. 

Add-ons: The add-ons of hypervisors use modular designs to add extended func-

tions. By leveraging the interaction between the add-ons and hypervisors, an attacker 

can cause a host to crash (a DoS attack) or even compromise the host. 

3.3 Deriving a Vulnerability Profile 

Based on the description listed in NIST-NVD, the 83 Xen and 20 KVM vulnerabilities 

during the years 2016 and 2017 were mapped to the ten hypervisor functionalities. 

Furthermore, with the goal of deriving a hypervisor security vulnerability profile, they 

were analyzed and classified according to functionalities, attack types (impacts), and 

attack sources. 

Classifications based on the hypervisor functionalities are shown in Table 1. With 

the exception of Virtual Symmetric Multiprocessing and Remote Management Soft-

ware, all other functionalities were reported as having vulnerabilities. The number 

of vulnerabilities and the percentages within each hypervisor offering are listed. The 

table reveals that there are more reported Xen vulnerabilities than KVM, which can 

be attributed to the broader user base for Xen. Furthermore, approximately 69% of 

the vulnerabilities in Xen and 45% of the vulnerabilities in KVM are concentrated 
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Table 1: The vulnerabilities of Xen and KVM classified by functionalities 

Number Hypervisor Vulneraiblity Xen KVM 

1 vCPU 6(7%) 4(20%) 

2 VSMP 0(0%) 0(0%) 

3 Soft MMU 34(40%) 5(25%) 

4 I/O and Networking 24(29%) 

5 are fully-virtualized; 

19 are paravirtualized; 

none are direct access or self-virtualized. 

4(20%) 

All are fully-virtualized. 

5 Interrupt/Timer 7(8%) 3(15%) 

6 Hypercalls 3(4%) 1(5%) 

7 VMExit 1(1%) 2(10%) 

8 VM Management 8(10%) 0(0%) 

9 Remote Management Software 0(0%) 0(0%) 

10 Hypervisor Add-ons 0(0%) 1(5%) 

Table 2: The types of attacks caused by Xen and KVM vulnerabilities 

Type of Attack Xen KVM 

Denial-of-service (DoS) 48 (four have other impacts) (44%) 17 (three have other impacts) (63%) 

Privilege escalation 33 (16 have other impacts) (30%) 3 (two have other impacts) (11%) 

Information leakage 15 (five have other impacts) (14%) 5 (19%) 

Arbitrary code execution 8 (two have other impacts) (7%) 2 (all have other impacts) (7%) 

Reading/modifying/deleting a file 3 (3%) 0 (0%) 

Others including compromising a host, 

canceling other administrators’ 

operations and corrupting data 

3 (3%) 0 (0%) 

in two functionalities—Soft MMU, I/O and Networking. A detailed reading of CVE 

reports reveals that these vulnerabilities primarily originated in page tables and I/O 

grant table emulation. Additionally, we associated the vulnerabilities based on the I/O 

and Networking functionality with each of the four types of I/O virtualization: fully 

virtualized devices, paravirtualized devices, direct access devices, and self-virtualized 

devices, which shows that most of the I/O and Networking vulnerabilities in Xen came 

from paravirtualized devices, and all I/O and networking vulnerabilities in KVM came 

from fully-virtualized devices. Our analysis shows that this is caused by the fact that 

in most Xen deployments, I/O and Networking functionality is configured using a 

paravirtualized device, while this functionality in KVM is configured using a fully 

virtualized device. 
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Table 3: The attack sources and number of exploits 

Source of Attack Xen KVM 

Administrator 2 (Management) (2%) 0 (0%) 

Guest OS administrator 17 (including HVM and PV administrators) 

(20%) 

1 (5%) 

Guest OS user 63 (including ARM, X86, HVM and PV users) 

(76%) 

17 (including KVM L1, L2, and privileged users) 

(85%) 

Remote attacker 1 (1%) 1 (authenticated remote guest user) 

(5%) 

Host OS user 0 (0%) 1 (5%) 

Classifications based on the attack types and the sources of attacks are listed in 

Table 2 and Table 3. Table 2 reveals that the most common attack was DoS (44% for 

Xen and 63% for KVM), indicating that attacking cloud services’ availability has been 

the most serious cloud security problem. The other top attacks were privilege escala-

tion (30% for Xen and 11% for KVM), information leakage (14% for Xen and 19% for 

KVM), and arbitrary code execution (7% for Xen and 7% for KVM). Although each of 

these three attacks occurs with less frequency than the DoS attack, they all result in 

more serious damage by allowing attackers to obtain sensitive user information or com-

promise the hosts or guest VMs. Table 3 shows that the greatest source of all attacks 

was guest OS users (76% for Xen and 85% for KVM), though other sources included 

cloud administrators, guest OS administrators, and remote users. This suggests that 

cloud providers must monitor guest users’ activities in order to reduce attack risks. 

4 Sample Attacks and Forensic Data 

Because the hypervisor vulnerability profile shows numerous vulnerabilities are re-

lated to Xen soft MMU functionality with the attack sources from the guest VMs, we 

launched two sample attacks, including those that exploit vulnerabilities CVE-2017-

7228 and CVE-2016-6258, to explore the evidence coverage and the methodologies 

used to identify evidence in order to reconstruct the hypervisor attacks. 
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4.1 The Two Sample Attacks 

As presented in Section 2.1.1, the Xen hypervisor manages three kinds of VMs, includ-

ing the control domain (also called Dom0), and guest domains (also called DomU) that 

support two different virtualization modes: Paravirtualization (PV) and Hardware-

assisted Virtualization (HVM). The PV module has been widely utilized for its higher 

performance, according to our analysis in Table 1 and in [25]. However, because the 

Xen PV model uses complex code to emulate the MMU, it introduces many vulnera-

bilities, including CVE-2017-7228 and CVE-2016-6258. 

CVE-2017-7228 was first reported by Horn of Google’s Project Zero in 2017 [20]. 

Horn discovered that this vulnerability in X86 64-bit Xen (including 4.8.x, 4.7.x, 

4.6.x, 4.5.x, and 4.4.x versions) was caused by an insufficient check on the function 

XENMEM exchange, which allows the PV guest user as the function caller to access 

hypervisor memory outside of the PV guest VM’s provisioned memory. Therefore, 

a malicious 64-bit PV guest who can make a hypercall HYPERVISOR memory op 

function to invoke the XENMEM exchange function may be able to access all of a 

system’s memory, allowing for VM escape (the process of breaking out of a guest VM 

and interacting with the hypervisor’s host operating system) from DomU to Dom0, 

hypervisor host crash, and information leakage. 

CVE-2016-6258 was reported by Boutoille from Quarklab in 2016 [21]. In the PV 

module, page tables are used to map pseudo-physical/physical addresses seen by the 

guest VM to the underlying memory of the machine. By exploiting a vulnerability in 

the XEN PV page tables that allows updates to be made to pre-existing page table 

entries, the malicious PV guests can access the page directory with an updated write 

privilege to execute the VM escape, breaking out of DomU to control Dom 0. 

We launched both attacks on the PV module configured in Qubes 3.1 and Debian 

8 with Xen 4.6. Figure 3 illustrates the attack experiment of using CVE-2017-7228 

in Qubes 3.1, where the attacker impersonating the PV guest root user (the bottom 

green terminal is the attacker’s VM that is named as attacker) executed command 

qvm-run victim firefox that could only be executed by Dom0 to run the victim PV 
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Figure 3: The CVE-2017-7228 and CVE-2016-6258 attacks 

guest’s Firefox web browser, which opened a webpage in the victim’s VM( the webpage 

is shown as the upper blue window. In Qubes 3.1, qvm-run is the command that can 

only be executed by Dom0 to run an applications in a guess VM. victim is the name 

of the victim guest VM in our experiment). As illustrated in Figure 3, both attacks 

allowed the PV guest users to gain the control of Dom0. 

4.2 Identifying Evidence Coverage for Forensic Analysis 

Both attacks were launched from the guest VMs, which used vulnerabilities related 

to hypercalls and soft MMU in Xen. In addition to using Xen’s device activity logs, 

the affected processes’ runtime syscalls were logged to perform a forensic analysis. An 

Analysis of the device activity logs and runtime syscalls showed the relevant evidence 

originated from the syscalls obtained from the attackers’ VMs. Figure 4 illustrates 

13 



syscalls obtained from the attacking process in the attacker’s VM (we omit some of 

them due to space limitations), showing that (1) the attacker executed the attack 

program with arguments qvm-run victim firefox aimed at the victim guest’s VM (Line 

1); (2) the attack program and required Linux libraries have been loaded to the memory 

for the program execution (Line 2 to 4); (3) the memory pages of the attack program 

have been protected from being accessed by other processes (Line 5 to Line 8); and 

(4) the attack program injected a loadable Linux module named test.ko to the kernel 

space to exploit the vulnerability and deleted it afterwards (Line 9 to Line 15). Despite 

the noise among syscalls that can be found in most programs, other syscalls, such as 

Line 1, Line 9 to Line 15, revealed that the attack program injected a loadable kernel 

module into the kernel space which exploited the vulnerability to control the Dom0. 

This then opened the Firefox browser in the victim’s guest VM. 

The acquisition of relevant and admissible evidence plays an important role in 

forensic analysis by determining and reconstructing attacks. As presented in [24], rel-

evant evidence was identified and collected to reconstruct the corresponding attack 

path(s) representing the attack scenarios. During this process, an attack path with 

missing attack steps led to the collection of additional supporting evidence. An anal-

ysis of the syscalls captured for two sample attacks revealed that, while the syscalls 

obtained from the attacker’s VM were useful for forensic analysis, they lacked attack 

details and had the following deficiencies: (1) the syscalls did not provide details of 

how features of the loadable kernel module used Xen’s memory management to launch 

the attack; and (2) the syscalls were collected from the attacker’s guest VM, which 

can be easily compromised by the attacker. Thus, approaches that enable monitoring 

VMs from the hypervisor can get more supporting and admissible evidence. 

4.3 Using Virtual Machine Introspection (VMI) for Hypervi-

sor Forensics 

The VMI can be used to inspect the states of a VM from either a privileged VM or 

the hypervisor, for the purpose of analyzing the software running inside the VM [26]. 
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A brief description about these syscalls is provided below to help with under-
standing: 
execve() executes the program pointed by the first argument; 
brk() changes the location of the program break, which defines the end of the process’ data 
segment; 
mmap() creates a new mapping in the virtual address space of the calling process; 
mprotect() changes the access protections for the calling process’ memory pages; 
open() opens a file, test.ko in our case; 
finit module() loads a kernel module, test.ko in our case; 
fstat() gets the file status, and the first argument is the file descriptor; 
delete module() unloads the injected module; 
exit group() exits all threads in a process. 

Figure 4: The syscalls intercepted from the attacking program 

The states information includes CPU state (e.g., registers), all memory, and all I/O 

device states such as the contents of storage devices or register states of I/O controllers. 

VMI-based applications using this capability can be built for forensic analysis in the 

following ways: 

• The VMI-based application can capture the entire memory and I/O state of a 

VM that is suspected of being compromised or attacked by taking a snapshot. 

The captured state of the running VM under observation can be compared to 

either: (a) a suspended VM in a known good state, or (b) the original VM image 

from which the running VM was instantiated [26]. 

• A VMI-based application can be built to analyze execution paths of the moni-

tored VM by tracing the sequence of VM activities and the corresponding com-
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plete VM state (e.g., memory map, IO access). This can be used to construct 

a detailed attack graph with the VM states as nodes and the VM activities as 

edges, thereby tracing the path through which the current compromised state 

was reached [31]. 

Though VMI addresses deficiencies in forensic analysis that simply uses the system 

calls from the compromised VM, VMI tools must reconstruct operational semantics 

of the guest operating system based on low-level sources such as physical memory 

and CPU registers [27]. Because LibVMI [28] provides VMI function on Xen and 

KVM, and bridges the semantic gap by reconstructing high-level state information 

from low-level physical memory data, we used LibVMI as the introspection tool to 

capture evidence from our two sample attacks. In order to use LibVMI on the two 

attacks, we installed Xen 4.6 in Debian 8 with the privileged Dom0 and both PV-

guests in DomU configured as Kernel 3.10.100 and Ubuntu 16.04.5 respectively. By 

running current LibVMI (release 0.12) [28] installed on Dom0, we captured all running 

processes and injected Linux modules of the guest attack VM. We illustrated the ones 

captured during the attack time of CVE-2017-7228 in Figure 5, in which Line 1 and 

Line 10 show the two programs vmi-process-list and vmi-module-list were executed 

to capture the running processes and modules of the attacker’s VM, pv-attacker in 

our experiment; Line 3 to 9 are the captured processes (each line is composed of the 

number of the process, the name of the process and the kernel task list’s address where 

the process name was retrieved); and Line 11 to 16 are the captured modules (each line 

shows the module name). By comparing the captured processes and modules during 

the attack time with those from some other time, it was easy to identify the attack 

process (named as attack in Line 9) and the injected attack module (named as test in 

Line 11. The extension .ko is omitted by the program.). 

While an introspection tool such as LibVMI provides an effective way to detect 

the hypervisor attacks, it has limitations. First, in order to access the consistent 

memory access, it pauses and resumes the guest VM. e.g., our experiment showed 

that the attacker’s VM was paused for about 0.035756 second and 0.036173 second for 
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Figure 5: The running processes and injected modules from the attacker’s VM 

capturing the running process and injected modules. Second, because the VMI tool is 

only effective during the attack time, an attacker can easily utilize an in-VM timing 

mechanism, such as kprobes(the tracing framework built into kernel), to evade a passive 

VMI system [29]. Third, storing the captured snapshots of the guest VMs for forensic 

analysis often requires a large portion of storage space. Our current work addresses 

constructing the detailed attack path by analyzing the attacker’s VM snapshots, and 

improving upon the timing and memory issues related to using introspection. 

5 Conclusion 

In this paper, we analyzed and classified all reported vulnerabilities on Xen and KVM 

in the last two years, which derived a profile of the recent hypervisor vulnerabilities 

in the two chosen hypervisors, showing that most attacks on the two hypervisors were 

caused by vulnerabilities that existed in soft MMU and I/O and Networking function-

alities; the two most common hypervisor attacks were DoS and privilege escalation 

attacks and most attackers are guest OS users. Based on the hypervisor vulnerability 

profile, we launched two sample attacks for forensic analysis. The collected data on 

the sample attacks showed that most valuable evidence remains in the run-time system 

memory. Therefore, in order to obtain valuable evidence with guaranteed integrity, 

VM introspection technique that inspects the state of the guest VMs from the hyper-

17 



visor level that provides strong isolation from the guest VM should be implemented 

and used. 

Disclaimer 

This paper is not subject to copyright in the United States. Commercial prod-

ucts are identified in order to adequately specify certain procedures. In no case does 

such an identification imply a recommendation or endorsement by the National Insti-

tute of Standards and Technology, nor does it imply that the identified products are 

necessarily the best available for the purpose. 
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