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Superconducting quantum circuits are potential candidates to realize a large-scale quantum com-
puter. The envisioned large density of integrated components, however, requires a proper thermal
management and control of dissipation. To this end, it is advantageous to utilize tunable dissipation
channels and to exploit the optimized heat flow at exceptional points (EPs). Here, we experimen-
tally realize an EP in a superconducting microwave circuit consisting of two resonators. The EP is
a singularity point of the Hamiltonian, and corresponds to the most efficient heat transfer between
the resonators without oscillation of energy. We observe a crossover from underdamped to over-
damped coupling via the EP by utilizing photon-assisted tunneling as an in situ tunable dissipative
element in one of the resonators. The methods studied here can be applied to different circuits to
obtain fast dissipation, for example, for initializing qubits to their ground states. In addition, these
results pave the way towards thorough investigation of parity–time (PT ) symmetric systems and
the spontaneous symmetry breaking in superconducting microwave circuits operating at the level of
single energy quanta.

Systems with effective non-Hermitian Hamiltonians
have been actively studied in various setups in recent
years [1–7]. They show many intriguing properties such
as singularities in their energy spectra [8–13]. A square-
root singularity point in the parameter space of a non-
Hermitian matrix is called an exceptional point, EP, if the
eigenvalues coalesce [12, 13]. Previously, EPs have been
shown to emerge, for example, in non-superconducting
microwave circuits, laser physics, quantum phase tran-
sitions, and atomic and molecular physics [12, 13]. The
fascinating effects of EPs include the disappearance of the
beating Rabi oscillations [14], chiral states in microwave
systems [15], and spontaneous symmetry breaking in sys-
tems with parity- and time-reversal (PT ) symmetry [16–
19]. In the quantum regime, PT -symmetric systems may
show features that are different from the semiclassical
predictions, such as new phases owing to quantum fluc-
tuations [19, 20]. Despite the active research on EPs,
they have not been thoroughly investigated in supercon-
ducting microwave circuits to date [21].

Superconducting microwave circuits provide an ideal
platform to realize various quantum devices, such as
ultrasensitive photon detectors and counters [22–25], and
potentially even a large-scale quantum computer [26, 27],
or a quantum simulator [28] in the framework of cir-
cuit quantum electrodynamics [29, 30]. Notably, super-
conducting qubits have been shown to approach the re-
quired coherence times [31, 32] for quantum error correc-
tion [33, 34]. However, despite the tremendous interest in
superconducting microwave circuits in recent years [35–
37], there are still many issues to be solved before a fully
functional quantum computer is possible. For example,
the precise engineering of energy flows between different

parts of the circuit in scalable architectures is of utmost
importance since unwanted heat is a typical source of
decoherence in qubits [38, 39]. In many error correction
codes, qubits are repeatedly initialized, which requires
fast and efficient cooling schemes [40–42]. One promis-
ing method for absorbing energy and initializing qubits
to their ground state is based on resonators with tunable
dissipation [43].

The recently developed quantum-circuit refrigerator
(QCR) [44, 45] provides great potential for both qubit
initialization and thermal management since it enables
tunability of energy dissipation rates over several or-
ders of magnitude in a superconducting microwave res-
onator [46]. Operation of the QCR relies on in-
elastic tunneling of electrons through a normal-metal–
insulator–superconductor (NIS) junction [47]. The tun-
neling electrons can absorb or emit photons to a res-
onator which allows to control the coupling strength to
a low-temperature bath in situ. This tunable coupling
strength has also been shown to induce a broadband
Lamb shift [46]. Furthermore, elastic tunneling can be
utilized for temperature control of the normal-metal elec-
trons [48–50], and for precise thermometry down to mil-
likelvin temperatures [50, 51]. Recently, NIS junctions
have also been utilized in a realization of a quantum heat
valve [52], and phase-coherent caloritronics [53].

In this work, we combine the advantages of tunable
dissipation and EPs to optimize the heat flow in a su-
perconducting microwave circuit. To this end, we in-
vestigate a circuit consisting of two coupled resonators,
one of which is equipped with NIS junctions and a flux-
tunable resonance frequency (Fig. 1). We denote the
NIS junctions and the normal-metal island that is capac-
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itively coupled to the resonator as a QCR. Thanks to the
voltage-tunable dissipation within the QCR and the flux-
tunable resonance frequency, an EP arises in the Hamil-
tonian that describes the modes of the coupled resonator
system. We investigate the emergence of the EP using
frequency and dissipation as control parameters (Fig. 2)
and verify its properties experimentally by measuring the
microwave transmission coefficient (Fig. 3). The optimal
heat flow given by the coupling strength can be reached
at the EP (Fig. 4). Different types of tunable resonators
have been studied in recent years [42, 54–61] but not
with voltage-tunable dissipation. Our work demonstrates
a platform to control the local heat transport between
neighboring nodes in a quantum electrical circuit. In ad-
dition to thermal management within superconducting
multi-qubit systems, these methods may be applicable to
thermally assisted quantum annealing [62] and to studies
of the eigenstate thermalization hypothesis in many-body
quantum problems [63]. Furthermore, our work is an im-
portant step towards the investigation of PT -symmetric
systems at the quantum level that can be realized with
circuit quantum electrodynamics architectures [21, 64].

RESULTS

Experimental samples

Our samples consist of two coplanar waveguide res-
onators, R1 and R2, which are capacitively coupled to
each other, as depicted in Fig. 1(a), (b) (see also Supple-
mentary Fig. S1). The resonator R1 has a fixed funda-
mental frequency at 2.6 GHz. This mode does not couple
strongly to the resonator R2 owing to the voltage node in
the middle of the resonator R1 where the coupling capaci-
tor CC is located. Therefore, we focus on the first excited
mode of R1, with frequency f1 = ω1/(2π) = 5.2 GHz,
which has a voltage antinode at the coupling point of
the resonators. The resulting capacitive coupling be-
tween the resonators has a strength g/(2π) = 7.2 MHz.
In contrast to R1, the resonator R2 has a flux-tunable
resonance frequency ω2(Φ) owing to a superconducting
quantum interference device (SQUID), and a voltage tun-
able loss rate κ2(Vb) owing to the QCR. Here, Φ and Vb

are the magnetic flux applied to the SQUID loop and
the voltage bias of the QCR, respectively. The induc-
tance of the SQUID and, hence, also the resonance fre-
quency of R2 are periodic in flux with a period of the
flux quantum Φ0 = e/(2h). Consequently, due to the
coupling of the resonators, R1 also shows flux-dependent
features. We show the QCR in Fig. 1(c) and schemat-
ically present its operation principle in Fig. 1(d). The
difference in photon absorption and emission rates origi-
nates from the gap of 2∆ in the density of states of the
superconductor, and the difference can be utilized to cool
down quantum circuits [44, 47]. The sample fabrication
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Figure 1. Sample structure. (a) The sample consists of two
capacitively coupled resonators, R1 and R2, which are pre-
sented as analogous cavities with coupling strength g. The
primary resonator R1 has a fixed dissipation rate κ1 and an-
gular frequency ω1 whereas the dissipative resonator R2 has
a tunable dissipation κ2(Vb) controlled by a QCR, and an-
gular frequency ω2(Φ) tuned with a SQUID. The coupling
strength to external ports is denoted by κext. (b) Optical mi-
crograph of the sample. The transmission coefficient S21 is
measured from Port 1 to Port 2. (c) False-colour scanning
electron micrograph of the QCR together with a schematic
control circuit. The QCR consists of normal-metal (N) and
superconducting (S) electrodes separated by an insulator (I).
The QCR is operated with bias voltage Vb, and the electron
temperature of the normal metal is obtained from voltage Vth

and current Ith. The micrographs in (b) and (c) are from Sam-
ple B. (d) The operation principle of a SINIS junction. The
occupied states in the superconductor density of states are
shown in blue, the occupation of the normal metal is given
by the Fermi distribution shown in orange, and the empty
states are shown in gray with energy E on the vertical axis.
The Fermi levels of the superconducting electrodes (dashed
lines) are shifted by applying a voltage Vb. The black arrows
indicate elastic tunneling, and blue arrows inelastic tunneling
with photon absorption. The red dashed arrows show photon
emission that is suppressed due to lack of available unoccu-
pied states on the other side of the tunneling barrier.

is described in Methods. We study two samples with
different R2 resonator lengths, Sample A (12 mm) and
Sample B (13 mm). The R1 resonator has a length of
24 mm in both samples. Sample parameters are summa-
rized in Supplementary Table S1.

Exceptional points

To study exceptional points, we utilize two control
parameters in the effective Hamiltonian of the system:
we use the voltage-tunable dissipation rate κ2(Vb) and
the flux-tunable detuning between the resonators δ =
ω2(Φ) − ω1. We study the system consisting of the two
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Figure 2. Eigenvalues of the effective Hamiltonian and the ex-
ceptional point. Calculated (a) mode frequency shifts Re(λ)
with respect to the uncoupled mode frequency of R1, and
(b) negative mode decay rates Im(λ) as functions of the de-
cay rate κ2 and frequency detuning δ. The figure shows both
λ+ and λ− calculated according to Eq. (2) with the experi-
mental coupling strength g/(2π) = 7.2 MHz and decay rate
κ1/(2π) = 260 kHz. The EP is located approximately at
κ2 = 4g, and δ = 0 as indicated with the red circle. The
matching between the panels (a) and (b) can be seen from
the colors which denote Im(λ) in (a) and Re(λ) in (b).

resonators in a rotating frame with a frequency corre-
sponding to the uncoupled mode frequency of R1, simi-
larly as in Ref. [3]. Thus, the excitations of the system
can be described with the effective non-Hermitian Hamil-
tonian in matrix form in the basis ψ = (A,B)T where A
and B are field amplitudes in R1 and R2, respectively,
(see Methods and Ref. [60])

H =

(
−iκ1

2 g
g δ − iκ2

2

)
, (1)

where κ1 is the decay rate of the resonator R1. The
eigenvalues of H can be written as

λ± =
1

4
(2δ − iκ1 − iκ2 ± s) , (2)

and the corresponding eigenvectors are

ψ± =

(
−2δ − iκ1 + iκ2 ± s

4g
, 1

)T

, (3)

where

s =
√

4δ2 + 16g2 − (κ2 − κ1)2 − i4δ(κ2 − κ1). (4)

Thus, the eigenvalues and eigenvectors coalesce when the
square-root term s vanishes resulting in an EP. Conse-
quently, there is only a single eigenvalue and, impor-
tantly, there is also only a single eigenvector. The EP
occurs at |κ2 − κ1| = 4g, and δ = 0. In the following, we
assume that κ1 � κ2, which is valid for our samples, as
discussed below. Consequently, the condition for the EP
simplifies to κ2 = 4g.

To visualize the system singularity, i.e., the EP, we
show the real and imaginary parts of λ± in Fig. 2. The
eigenvalues form a self-intersecting Riemann surface in
the parameter space of κ2 and δ. The imaginary part
corresponds to mode decay, and real part to mode fre-
quency deviation from the uncoupled mode frequency of
R1. Our system consisting of the resonators R1 and R2
can be considered as a single damped harmonic oscil-
lator, where the energy oscillates between the two res-
onators. In the underdamped case, κ2 < 4g, the modes
have an equal decay rate at zero detuning, and there is
an anti-crossing of the mode frequencies. In contrast, in
the overdamped case, κ2 > 4g, there is an anticrossing in
the mode decay rates as a function of the detuning, and
the mode frequencies are equal at zero detuning. Con-
sequently, one of the modes remains lossy whereas the
other one has a low decay rate at different detunings.

Let us connect the meaning of this critical point to the
efficiency of energy transfer between the two resonators.
In terms of coupled dissipative systems, the EP separates
the system between the overdamped and underdamped
regime being the point of critical coupling. It follows from
the dynamics of the coupled system that at this point the
energy is transfered between the two resonators optimally
fast without back and forth oscillation [42, 60]. In partic-
ular, the rate of heat transfer at zero detuning is given by
κeff = −2Im(λ±) ≈ κ2[1 ∓ Re(

√
1− (4g/κ2)2)]/2. Here,

the branch with the upper signs corresponds to a mode
located predominantly in the primary resonator R1, and
the branch with the lower ones in the dissipative res-
onator R2 (Supplementary Fig. S2). Consequently, by
reaching the EP at κ2 = 4g, we operate our sample at a
point of optimally efficient and nonreciprocal heat trans-
fer out of R1.

Experimental observations

To explore the dissipative dynamics of the two cou-
pled resonators, we measure the flux- and frequency-
dependent scattering parameter S21 describing the trans-
mission from Port 1 to Port 2 for different bias voltages
using a vector network analyzer. We tune the magnetic
flux in a range where the frequency of R2 crosses that
of R1. As shown in Fig. 3(a), we observe a transition
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Figure 3. Scattering parameter of Sample A. (a) Experimen-
tal and (b) simulated transmission amplitudes as functions of
frequency and magnetic flux through the SQUID. The pan-
els show the crossing of the second mode of R1 and the first
mode of R2 at different bias voltages as indicated in the fig-
ure. The EP is obtained at eVb/(2∆) ≈ 1, which approxi-
mately corresponds to the second panel from the top. The
maximum in each panel is normalized to unity, and the mea-
sured frequencies of R1 are shifted by the resonance frequency
f1 = 5.223 GHz, which is in good agreement with the simu-
lated frequency f1 = 5.2 GHz. The input power at Port 1 is
approximately −100 dBm.

from anticrossing to a single mode already indicating the
presence of an EP in-between. A broader range of bias
voltages is shown in Supplementary Figs. S4 and S5. To
generate a quantitative description of our system, which
is required for the investigation of EPs, we numerically
simulate the scattering coefficient as shown in Fig. 3(b).
Here, we model the SQUID as a flux-tunable inductor,
and the QCR as an effective resistance Reff (see Methods
and Supplementary Fig. S3). We extract Reff by fitting
the circuit model to the experimental results, and use Reff

to obtain the damping rates of the dissipative resonator
R2 as a function of the bias voltage (Methods). The ex-
tracted resistances are given in Supplementary Fig. S6.
The model in Fig. 3 is in very good agreement with the
experimental results. In addition to Reff, we also ex-
tract the coupling capacitance and the critical current
of the SQUID from the simulation. The coupling ca-
pacitance is found to be 3.8 fF which agrees well with
the finite-element-method simulation that yields approx-
imately 5 fF.

In Fig. 3(a) the crossing of the modes as a function of
the flux shifts slightly towards lower flux values. We at-
tribute this shift to heating of the SQUID, which results
in a reduced critical current of the SQUID, and hence a
larger inductance and lower resonance frequency of R2.
In principle, we vary also the Lamb shift [46], which, how-
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Figure 4. Transition rates. (a) Extracted decay rates of the
bare resonator R2, κ2, for Samples A and B as functions of
the bias voltage together with the full model (see Methods).
The EP is obtained at the intersection of κ2 and the crit-
ical coupling 4g. Furthermore, the figure shows the theo-
retical coupling strength of the QCR, κQCR, without taking
dephasing and other voltage-dependent losses into account.
The uncertainty of the data points is of the same order as the
marker size. (b) Effective decay rates of the coupled system
κeff = −2Im(λ±) calculated from κ2 at zero detuning using
Eq. (2). The two branches at high voltages correspond to λ+

and λ− with the modes located predominantly in one of the
resonators as indicated. The maximum decay rate for R1 is
obtained at the EP. The damping rates of the modes are equal
at eVb/(2∆) < 1 due to hybridization.

ever, causes only a minor effect since the resonance of R2
is very broad, and therefore, we neglect it in our model.
To verify our above assumption κ1 � κ2, we measure
the internal quality factor of the primary resonator R1
with R2 far detuned at Φ = Φ0/2. From the quality fac-
tor, we extract a loss rate κ1/(2π) . 260 kHz for both
samples which is substantially lower than the extracted
value of κ2. We measure a slight temperature and power
dependence of the quality factor of R1 as expected in the
case of two-level fluctuators dominating the losses [65]
(Supplementary Fig. S8).

To demonstrate the presence of an EP, we show the ex-
tracted damping rates (Methods) of the bare resonator
R2 in the absence of R1 in Fig. 4(a) as functions of the
bias voltage for Samples A and B. Both samples have
similar damping rates κ1 and κ2. The value of κ2 can
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be tuned by approximately two orders of magnitude. At
low bias voltages eVb/(2∆) < 1, the rate κ2 is below 4g,
and at eVb/(2∆) > 1 the damping rate exceeds 4g. We
describe the origin of the tunable damping rates using
a model that contains the photon absorption and emis-
sion at the QCR given by the rate κQCR, as well as con-
stant internal losses κint,2, and voltage-dependent resid-
ual losses κr,2. We have designed our sample in such a
way that κQCR covers the critical damping rate, and thus
the losses originating from the QCR are sufficient to re-
alize the EP. The damping rate κQCR shown in Fig. 4 is
calculated using the measured electron temperatures of
the normal-metal island (see Methods and Supplemen-
tary Fig. S7). At higher voltages, the major contribution
in κ2 is given by the residual damping coefficient, as dis-
cussed in Methods. This damping coefficient includes
dephasing, quasiparticle losses, and resistive losses, and
we extract its value based on the experimental rates. The
dephasing has a similar effect on the measured coherent
photon population as photon absorption due to other loss
mechanisms although pure dephasing does not reduce the
total photon number in the resonators.

In Fig. 4(b) we show the damping rates of the cou-
pled circuit calculated from κ2 using Eq. (2) as κeff =
−2Im(λ±). The maximum energy decay rate for the
mode in R1 is obtained at the EP as discussed above,
and it is given by κmax,1 = max[−2Im(λ+)] ≈ κ2/2 = 2g.
Thus, in the optimal case, the decay rate is limited by
the coupling strength between the resonators.

DISCUSSION

We have experimentally realized an exceptional point,
EP, in a superconducting microwave circuit. We study
the presence of the EP by observing a transition from
an avoided crossing to single modulating resonance fre-
quency. At this point, we achieve a maximum heat trans-
fer between the two resonators without back and forth
oscillation of the energy. The effective dissipation rate of
the resonator R1 is bounded from above by the coupling
strength in the optimal case, κmax,1 = 2g = 14 MHz.
In the far detuned case with zero bias voltage, the effec-
tive rate of R1 is reduced down to κmin,1 = κ1 = 260 kHz.
Thus, the effective damping rate can be tuned by a factor
of approximately 50 in our samples. Larger tuning can
be obtained by minimizing the internal losses [66]. The
measurement results are in very good agreement with our
model. The circuit is based on a QCR, which enables
the investigation of the crossover from an underdamped
to critically damped and further to overdamped circuit.
In addition to the realization of an EP, the circuit also
behaves as a frequency- and voltage-tunable heat sink for
quantum electric circuits that can be applied, for exam-
ple, in quantum information processing for initializing
qubits to their ground state by absorbing energy [43].

The tunability of the damping rate enables one to obtain
the fastest possible photon absorption allowed by a given
coupling coefficient.

In the future, it is interesting to further investigate the
EP by modifying the circuit design. By introducing tun-
nel junctions to both resonators, one obtains a continuous
line of EPs instead of an isolated singularity point. Incor-
porating qubits also enables the investigation and utiliza-
tion of the EP with single energy quanta. Furthermore,
one can investigate a circuit consisting of resonators with
tunable damping realized with a QCR and a tunable cou-
pling realized with a SQUID or a qubit [56, 58]. The
use of several microwave resonators will result in a more
versatile parameter space [67], and hence yields an inter-
esting platform for studying fundamental physics. Dy-
namic encircling of the EP with topological energy trans-
fer [3, 9] can be realized with superconducting resonators
in a straightforward manner using standard microwave
techniques. It requires fast tuning of the magnetic field,
which can be realized by fabricating a flux bias line on
the chip. Topological energy transfer with microwave
pulses may provide an asset for applications in quantum
information processing and other quantum technological
devices. In addition, EPs are suitable for investigating
PT symmetry on the level of single microwave photons.
Here, superconducting circuits provide an attractive ar-
chitecture owing to the ability to design system parame-
ters yielding, for example, ultra-strong- and deep-strong-
coupling regimes [21]. Furthermore, we see EPs as can-
didates to realize nonreciprocal signal routing beneficial
for active quantum circuits [64].
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METHODS

Quantum-circuit refrigerator

We use a QCR to absorb and emit photons in the res-
onator R2. The resonator transition rate from the occu-
pation number m to m′ can be written as [47]

Γm,m′(V ) = M2
mm′

2RK

RT

∑
τ=±1

→
F [τeV +~ω2(m−m′)], (5)

where V = Vb/2, RT is the tunneling resistance, Mmm′ is
the corresponding matrix element, RK = h/e2 ≈ 25.8 kΩ
is the von Klitzing constant, and the normalized rate for
forward tunneling is given by

→
F (E) =

1

h

∫ ∞
−∞

dE′nS(E′)[1− f(E′, TS)]f(E′ − E, TN),

(6)
where f(E, T ) = 1/{exp[E/(kBT )] + 1} is the Fermi–
Dirac distribution, kB is the Boltzmann constant, and
the density of states in a superconductor can be expressed
with the help of the Dynes parameter γD as

nS(E) =

∣∣∣∣∣Re

(
E/∆ + iγD√

(E/∆ + iγD)2 − 1

)∣∣∣∣∣ . (7)

The matrix element describing the transition can be writ-
ten in terms of the generalized Laguerre polynomials
Lln(ρ) as [47]

M2
m,m′ =

{
e−ρρm−m

′ m′!
m! [Lm−m

′

m′ (ρ)]2, m ≥ m′,
e−ρρm

′−m m!
m′! [L

m′−m
m′ (ρ)]2, m < m′,

(8)

where ρ = πα2/(ω2Clx2RK) is a environmental param-
eter, where Cl is the capacitance per unit length of the
coplanar waveguide, 2x2 is the length of the resonator
R2, and the capacitance fraction α is given in terms
of the capacitance between the normal-metal island and
the center conductor CN, and junction capacitance Cj

as α = CN/(CN + 4Cj). In the equations above, we
have neglected the effects owing to the charging of the
normal-metal island since the capacitance of the island is
relatively large. Furthermore, the rates for single-photon
transitions can be expressed as [47]

Γm,m−1 = κQCR(N + 1)m,

Γm,m+1 = κQCRN(m+ 1),
(9)

where κQCR denotes the coupling strength of the QCR,
and the Bose–Einstein distribution at the effective tem-
perature of the electron tunneling, TQCR, is given by

NQCR =
1

exp
(

~ω2

kBTQCR

)
− 1

, (10)
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where

TQCR =
~ω2

kB

ln

∑τ=±1

→
F (τeV + ~ω2)∑

τ=±1

→
F (τeV − ~ω2)


−1

. (11)

These equations are derived by defining

κQCR =
Γm,m−1

m
− Γm,m+1

m+ 1
. (12)

Elastic tunneling in
normal-metal–insulator–superconductor junctions

Typically, the elastic tunneling is the dominating tun-
neling process. The electric current through a single NIS
junction can be written as [50, 68]

I(V ) =
1

eRT

∫ ∞
0

nS(E)[f(E−eV, TN)−f(E+eV, TN)]dE,

(13)
where TN denotes the normal-metal temperature, and V
is the voltage across the junction. For a symmetric SINIS
structure, we apply a voltage Vb = 2V . Importantly, this
equation has a monotonic dependence on the tempera-
ture of the normal metal but only a very weak depen-
dence on the temperature of the superconductor. Thus,
we may use NIS junctions as thermometers measuring
the electron temperature of the normal metal.

The tunneling electrons transfer heat through the in-
sulating barrier. The average power is given by [50]

P =
1

e2RT

∫ ∞
−∞

nS(E)(E−eV )[f(E−eV, TN)−f(E, TS)]dE.

(14)
Based on this equation, we can reduce and increase the
temperature of the normal metal. The applied voltage at
the SINIS junction produces a total Joule heating power
P = VbI, which is unequally divided between the N and
S electrodes.

Quantum mechanical model

We analyze the temporal evolution of the coupled res-
onators following Ref. [60]. The Hamiltonian can be writ-
ten in the rotating wave approximation as

ĤRWA = ~ω1â
†â+ ~ω2b̂

†b̂+ ~g(âb̂† + â†b̂). (15)

The first term describes the energy of the primary res-
onator R1 with annihilation operator â, the second term
the energy of R2 with annihilation operator b̂, and the
third term describes the coupling between the resonators.
Here, we have neglected driving. Furthermore, this equa-
tion is valid only for a linear resonator. The effects owing
to nonlinearity are discussed below. The dynamics of the

system can be obtained from the Lindblad master equa-
tion for the density matrix of the coupled system, ρ̂, as

dρ̂

dt
= − i

~
[ĤRWA, ρ̂] + κ1L[â]ρ̂+ κ2L[b̂]ρ̂, (16)

where the Lindblad superoperator is given by L[x̂]ρ̂ =
x̂ρ̂x̂† − 1

2{x̂
†x̂, ρ̂}. We can write the resulting equations

of motion as [60]

d〈â〉
dt

= −iω1〈â〉 − ig〈b̂〉 −
κ1

2
〈â〉, (17)

d〈b̂〉
dt

= −iω2〈b̂〉 − ig〈â〉 −
κ2

2
〈b̂〉. (18)

We define the resonator fields as 〈â〉 = A exp(−iω1t),

〈b̂〉 = B exp(−iω1t). Consequently, the equations assume
the form

dA

dt
= −igB − κ1

2
A, (19)

dB

dt
= −iδB − igA− κ2

2
B, (20)

where δ = ω2 − ω1. These equations can be written in a
matrix form as a time-dependent Schrödinger equation

d

dt
ψ = −iHψ, (21)

where ψ = (A,B)T, and

H =

(
−iκ1

2 g
g −iκ2

2 + δ

)
, (22)

as given in Eq. (1). Here, H is a non-Hermitian Hamil-
tonian scaled with ~. Equations (19) and (20) can also
be written as a second-order differential equation,

d2A

dt2
+

(
κ1+κ2

2
+ iδ

)
dA

dt
+
(
g2 + iδ

κ1

2
+
κ1κ2

4

)
A = 0.

(23)
When the resonators are tuned into resonance, δ = 0, we
can express Eq. (23) as

d2A

dt2
+
κ1 + κ2

2

dA

dt
+
(
g2 +

κ1κ2

4

)
A = 0. (24)

This equation describes a damped harmonic oscillator,
where the energy is transferred between the resonators
R1 and R2 at an angular frequency

√
g2 + κ1κ2/4. Due

to the asymmetric damping rates in the two resonators,
the total dissipation rate of the system is time-dependent
and reaches its maximum value when the excitations are
in R2. The damping ratio is given by

ξ =
κ1 + κ2

2
√

4g2 + κ1κ2

. (25)

Here, κ2 is a function of voltage Vb, which allows us
to examine the transition from an underdamped sys-
tem, ξ < 1, through critical damping, ξ = 1, to an
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overdamped system, ξ > 1. Critical damping is ob-
tained when |κ2 − κ1| = 4g. The total damping rate
of R1 is given by κ1 = κint,1 + κext, and of R2 by
κ2(Vb) = κint,2 + κQCR(Vb) + κr,2(Vb), where κint,1/2

denote the internal losses, κext the losses to the exter-
nal measurement circuit, κQCR(Vb) the photon-assisted
tunneling in Eq. (12), and κr,2(Vb) the residual voltage-
dependent losses in R2. In our samples κ2(Vb) � κ1,
and g � κint,1 � κext, as discussed below. Therefore, we
obtain an approximate condition for the critical damping
as

κ2 = 4g. (26)

The critical damping, which corresponds to the EP, is
obtained at eVb/(2∆) ≈ 1 where the photon number re-
mains low, and therefore, the slight nonlinearity caused
by the SQUID is of negligible importance. However, at
eVb/(2∆) > 1, the QCR generates thermal photons that
result in photon-number-dependent losses, as discussed
below.

Sample parameters

The main parameters for the samples are summa-
rized in Supplementary Table S1. The coupling strength
between the resonators can be estimated as [69] g =
CCV1V2/~ ≈ 2π × 7.2 MHz, where the voltages are given
by Vi =

√
~ω1/(2xiCl), i = 1, 2, the angular frequency

of the second mode of the resonator R1 is ω1/(2π) ≈
5.223 GHz for Samples A and B, and Cl is the capacitance
per unit length. Consequently, the critical damping is ob-
tained with κ2 = 4g ≈ 2π×29 MHz. The external quality
factor corresponding to the leakage from the resonator R1
to the transmission line through the capacitances CTL

is given by [70] Qext = 2x1Cl/(4ZLω1C
2
TL) ≈ 9 × 105.

Consequently, the corresponding damping rate is κext =
ω1/Qext ≈ 2π × 6 kHz. The loaded quality factor of the
second mode of R1 is approximately QL = 2× 104, when
the resonators are far detuned. Thus, the internal losses
in R1 dominate over the losses to the transmission line,
Qint ≈ QL. Furthermore, we obtain the damping rate
κ1 = ω1/QL ≈ 2π × 300 kHz. The real part of the com-
plex wave propagation coefficient, γ = α + iβ, describes
the damping in the waveguide, and it can be calculated
as [70] α = nmπ/(4x1Qint) ≈ 7× 10−3 m−1, where nm is
the mode number with nm = 2 denoting the first excited
mode. The internal losses without the photon-assisted
tunneling in the QCR are somewhat higher in the res-
onator R2 than in R1 since the design and fabrication of
the QCR and the SQUID have not been optimized for low
loss rates. The internal loss rate for R2 can be extracted
at zero detuning and zero bias voltage from the satura-
tion level of extracted κ2 values since κint,1 � κ2(0), and
hence the losses in R2 dominate over those in R1. We

obtain from the circuit model the internal loss rate for
R2 as κint,2 ≈ κ2(0) = 2π × 16 MHz.

The photon number inside R1 when R2 is far de-
tuned can be estimated as [71] n = 4Ω2

d/κ
2
1 ≈ 10,

where the driving strength is given by Ωd = CTLVinV1/~,
the input voltage is obtained from the input power as
Vin =

√
PinZL, and the input power is Pin ≈ −115 dBm.

The input power is −100 dBm for Sample A in Fig. 3
and Supplementary Fig. S4, and −115 dBm for Sam-
ple B in Supplementary Fig. S5. We also measure the
resonators at different power levels. When R1 and R2
are in resonance at Vb = 0, the total photon number is
approximately equally divided between the resonators if
κ1 ≈ κ2. However, in our samples κ1 < κ2, especially at
Vb > 2∆/e, and therefore the number of coherent pho-
tons is lower in R2 than in R1. When the Q factor of
the resonator is reduced to 200, which is of the order of
the critical damping, photon numbers close to unity are
obtained with an input power Pin ≈ −85 dBm.

Residual losses in the resonator R2

We attribute the residual voltage-dependent losses to
dephasing, and to dissipation sources such as quasiparti-
cle generation in the superconductors and resistive losses
in the normal metal. Firstly, the resonator R2 is slightly
nonlinear owing to the SQUID, and hence, an increas-
ing incoherent photon number results in dephasing. De-
phasing can be added in Eq. (16) with a term κφL[b̂†b̂]ρ̂,
where the dephasing rate κφ depends on the number of
thermal photons in the resonator. Similarly, in the case
of superconducting qubits, the dephasing can be written
as κφL[σ̂z]ρ̂, where σ̂z is a Pauli operator. The factor κφ
causes a similar effect as κ2 in Eqs. (16)–(26) although
it does not decrease the total photon number in the res-
onators. The photon number variance for a thermal state
is of the form [38, 39] n(n + 1), and therefore, thermal
photons cause more dephasing than the coherent pho-
tons with a variance of n, where n is the average photon
number. Consequently, we assume that κφ = ωφn(n+1),
where ωφ is a proportionality coefficient. Furthermore,
as discussed above, the number of the coherent photons
is low in R2 due to the relatively high loss rate. The
steady-state photon number in the resonator can be es-
timated as [47]

n =
κQCRNQCR

κQCR + κint,2
, (27)

where we assume that the photon number of the effec-
tive bath, to which R2 is coupled through κint,2, vanishes
owing to the very low cryostat temperatures of approxi-
mately 10 mK. The photon number depends linearly on
the bias voltage at voltages above the superconductor
energy gap, as shown in Supplementary Fig. S6.
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Secondly, we take the quasiparticle losses into account.
The critical temperature of Nb is approximately 9 K, and
therefore, the quasiparticle density remains low in it.
However, the critical temperature of Al approximately
1.2 K, which enables higher quasiparticle density than
in Nb. We observe a decrease in the critical current
of the SQUID, which indicates increased temperature in
the Al leads of the SQUID, and hence heat dissipation.
The quasiparticle loss rate [72, 73] κqp ∝ nqp ∝

√
P ,

where P is the absorbed power. The Al leads at the
NIS junctions receive half of the Joule power P = IVb at
high voltages, whereas the other half is absorbed to the
normal metal. Thus, the power is quadratic in voltage,
which is linear in the estimated photon number. There-
fore, the expected quasiparticle losses are linear in pho-
ton number, κqp = ωqpn, where ωqp is a proportional-
ity coefficient. The dc power dissipated in the junctions
is substantially higher than the microwave input power.
At eVb/(2∆) = 2, the dc power is approximately 30 pW
compared to a microwave power of −100 dBm = 0.1 pW.
The normal metal in the QCR acts as an effective quasi-
particle trap [73] minimizing the quasiparticle losses.
Some fraction of the power dissipated at the QCR leaks
to the SQUID.

There is an approximately 10-µm-long section of nor-
mal metal between the actual Nb resonator and the NIS
junctions, which may cause some losses. The loss rate
at the resistor depends on the current profile of the mi-
crowave mode, which can depend on the voltage Vb.
Nevertheless, we assume these losses to be small due to
the QCR being at the end of the resonator. Further-
more, there is a layer of superconducting Al below the
normal metal due to the shadow evaporation technique,
which decreases the current in the resistor, and hence
also the resistive losses. The very weak resistive losses
are quadratic in the voltage amplitude of the microwave
resonator which is linear in photon number. Thus, it can
be approximated as κres = ωresn with a proportionality
coefficient ωres.

Consequently, the total voltage-dependent losses in R2
including the dephasing, quasiparticle losses in the super-
conductors and the resistive losses are given by

κr,2 = κφ+κqp +κres = κφn(n+1)+κqpn+κresn. (28)

The quasiparticle and resistive losses are expected to be
very weak, as described above, but a small contribution
cannot be excluded. Nevertheless, we expect the dephas-
ing to dominate over the quasiparticle and resistive losses.
Therefore, in the numerical analysis, we take the photon-
number-dependent losses into account as

κr,2 = ωr,totn(n+ 1), (29)

with only one fitting parameter ωr,tot effectively describ-
ing the different loss methods discussed above. From the
experimental damping rates of the dissipative resonator

R2, we extract the the coefficient ωr,tot ≈ 2π × 22 MHz.
The good agreement with the experimental damping rate
κ2 and the model with the quadratic residual losses κr,2

in Fig. 4(a) gives further support for the approximation
in Eq. (29). We do not take this loss rate into account
in Eq. (27) for simplicity, and also due to the fact that
pure dephasing does not decrease the photon number.

The odd modes of R1 do not show flux dependence as
expected due to the voltage node at the coupling capac-
itor. However, they do show some dependence on the
voltage Vb. Similar dependence can be observed also for
the even modes at Φ/Φ0 = 0.5 where the inductance of
the SQUID ideally vanishes and thus decouples the QCR
from the resonator R1. We attribute this observation to
unintentional asymmetry of the sample. Furthermore,
the QCR may be weakly coupled to the input and out-
put microwave fields through some spurious mode of the
sample holder. The very broad resonance at high bias
voltages enables the coupling to the spurious modes. We
note that the spurious modes may be partially responsi-
ble for the κr,2. However, we do not quantitatively model
these losses. Instead, they are effectively included in the
parameter ωr,tot in Eq. (29).

Full model for κ2 and κeff

The parameters κ2 and κeff are obtained as follows.
First, we extract the effective resistance corresponding
to the QCR by fitting the classical circuit model to the
experimentally obtained scattering parameter S21 using a
least-squares algorithm. Second, we calculate the quality
factor of the resonator R2, QR2, for the obtained effec-
tive resistance, as discussed below. The coupling rate is
related to the quality factor as κ2 = ω2/QR2. The full
model denoted by the line in Fig. 4(a) is obtained by
fitting

κ2(Vb) = κQCR(Vb) + κr,2(Vb) + κint,2 (30)

to the experimental transition rates according to
Eqs. (12), (27), and (29). Here, we use ωr,tot as the
only fitting parameter since we fix κint,2 to the saturation
value at zero bias, as discussed above.

Subsequently, we may proceed to the effective damping
rates κeff = −2Im(λ±), which can be obtained from κ2

with the help of Eq. (2). The damping rates above the
critical damping, κ2 > 4g, result in the two branches
at bias voltages Vb & 2∆/e. The lines in Fig. 4(b) are
obtained similarly from Eq. (2).

Classical circuit model

To simulate the scattering parameter S21, we use a
classical circuit model similar to the one presented in
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Ref. [61]. We analyze the samples using standard mi-
crowave circuit analysis [74]. The input impedance of
the resonator R2 is

ZR2 =ZC+
Z0

{
ZS + Z0 tanh(γx2)+ Z0[Reff+Z0 tanh(γx2)]

Z0+Reff tanh(γx2)

}
Z0 + tanh(γx2)

{
ZS + Z0[Reff+Z0 tanh(γx2)]

Z0+Reff tanh(γx2)

} ,

(31)
where the impedance of the SQUID and the capacitors
between the SQUID and the center conductor is given
by ZS = iωLS +2/(iωCS), the impedance of the coupling
capacitor between the resonators by ZC = 1/(iωCC), γ
is the complex propagation coefficient discussed above,
and the terminating impedance consisting of the effec-
tive resistance of the NIS junctions and the capacitor
between the normal-metal island and the center conduc-
tor is modeled as an effective resistor with resistance
Reff. The inductance of the SQUID is calculated as
LS(Φ) = Φ0/[2πI0| cos(πΦ/Φ0)|], where the maximum
supercurrent through the SQUID is I0, and the flux quan-
tum is Φ0 = h/(2e).

The scattering parameter S21 describing the voltage
transmission from Port 1 to Port 2 can be calculated
using the transmission matrix method as [74]

S21 =
2

Am +Bm/ZL + CmZL +Dm
, (32)

where ZL is the characteristic impedance of the external
measurement cables, and(

Am Bm

Cm Dm

)
= M1M2M3M2M1, (33)

with

M1 =

(
1 1

iωCTL

0 1

)
, (34)

M2 =

(
cosh(γx1) Z0 sinh(γx1)

1
Z0

sinh(γx1) cosh(γx1)

)
, (35)

M3 =

(
1 0
1
ZR2

1

)
. (36)

We analyze the losses in the resonator R2 also in the ab-
sence of coupling to R1. In particular, we omit matrices
M1 and M2 from Eq. (33). The resonator R2 causes a
dip in the amplitude of the transmission coefficient S21,
whereas R1 causes a peak. The quality factor can be
estimated directly from the ratio of the center frequency
and the width of the peak or dip. Alternatively, more
advanced methods can be used [75].

Sample fabrication

The samples are fabricated on a Si wafer with a thick-
ness of 500 µm and a diameter of 100 mm. First, a 300-
nm-thick layer of SiO2 is thermally grown on the wafer

with resistivity ρ > 10 kΩ cm. Subsequently, a 200-nm-
thick layer of Nb is sputtered on top of the oxide. The
resonators are patterned on the Nb layer with optical
lithography and reactive ion etching. We cover the com-
plete wafer with a 40-nm-thick layer of Al2O3 fabricated
using atomic layer deposition. This oxide layer serves as
an insulating barrier in the parallel plate capacitors and
separates the QCR lines from the ground plane. The
nanostructures are defined using electron beam lithog-
raphy and two-angle shadow evaporation followed by a
lift-off process. The SQUID consists of two Al layers
with thicknesses of 40 nm each. The first Al layer is oxi-
dized in situ in the evaporation chamber at 1.0 mbar for
5 min. The SINIS junctions consist of Al (40 nm) and
Cu (40 nm), and the Al layer is similarly oxidized as in
the SQUID. The shadow evaporation technique results in
overlapping metal layers.

Measurement setup

The measurement setup is schematically presented in
Fig. S3. The samples are measured in a commercial dry-
dilution refrigerator with a base temperature of approxi-
mately 10 mK. The scattering parameters are measured
with a vector network analyzer which contains both the
microwave source and the detector. The microwave sig-
nal is attenuated at different temperature stages to avoid
heat leakage from higher temperatures to the sample. We
employ amplifiers at 4 K and at room temperature. The
NIS junctions are controlled by applying a bias voltage
or current through continuous thermocoax cables from
room temperature down to the base temperature. Mag-
netic flux for the SQUID is produced using a supercon-
ducting coil with a bias current.

Normalization of scattering parameters

All measured scattering parameters S21 are normal-
ized. Initially, we normalize the phase winding origi-
nating from the electrical delay τ ≈ 50 ns in the mea-
surement setup outside the sample by multiplying with
exp(iωτ). Consequently, the resonance produces a circle
on the complex plane as the frequency is increased over
the resonance. We transform this circle to its canonical
position where max |S21| is on the positive real axis and
the circle intersects the origin. Finally, we normalize the
amplitude to unity by dividing with max |S21|.
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Supplementary Table S1. Parameters. The parameters for Sample B that differ from those for Sample A are given in parenthesis.
See Methods and Supplementary Fig. S3(b) for details. The resonance frequency of the first excited mode of the resonator
R1, f1, is a measured value, the characteristic impedances of the transmission lines in the resonator, Z0, and in the external
measurement circuit, ZL, are nominal values. The lengths of the resonator sections x1 and x2 are design values, and the
effective resistance is calculated as [70]

√
εeff = c/(2f1x1), where c is the speed of light in vacuum. We obtain the values for the

capacitance per unit length Cl, and the capacitance CTL from finite element method (FEM) simulations. The capacitance CC

is obtained by fitting the circuit model to the measured scattering parameter |S21| in good agreement with FEM simulations,
and the capacitances CN, CS and Cj are calculated using a parallel-plate model. The coupling strength g is obtained from
CC. The loaded quality factor of the first exited mode of R1 Qint,1 and the tunneling resistance RT are measured values, and
the Dynes parameter γD is estimated as the ratio of the asymptotic resistance and the resistance in the superconductor gap.
The critical current at zero-bias Ic,0 is given by the flux corresponding to the crossing of the modes in the circuit model in
good agreement with a control sample with slightly smaller junction area and a critical current of approximately 200 nA. The
damping rate κ1 is given by the ratio ω1/Qint,1, and the damping rate κint,2 is extracted from the saturation value of κ2 at zero
bias. The proportionality coefficient for the residual losses ωr,tot is a fitted value.

Parameter Value

f1 5.223 GHz
Z0 50 Ω
ZL 50 Ω
x1 12 mm
x2 6.0 (6.5) mm
εeff 5.73
Cl 155 pF/m
CTL 0.8 fF
CC 3.8 fF
CN 98 fF
CS 460 fF
Cj 6.2 fF

g/(2π) 7.2 MHz
Qint,1 2.7× 104 (2.0× 104)
RT 8.4 (9.5) kΩ
γD 1× 10−4

Ic,0 340 (300) nA
κ1/(2π) 190 (260) kHz
κint,2/(2π) 16 MHz
ωr,tot/(2π) 22 MHz

40 μm3 μm 5 μm5 μm

a b c d

Supplementary Figure S1. False-color scanning electron micrographs of the sample. (a) Normal-metal island with four NIS
junctions highlighted in purple. (b) SQUID with two Josephson junctions highlighted in purple. (c) Coupling capacitance
between R1 (light blue) and an external port (dark blue). (d) Coupling capacitance between R1 (light blue) and R2 (dark
blue).
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Supplementary Figure S2. Eigenvalues and eigenvectors of the effective Hamiltonian. (a) The real part of the eigenvalues
corresponding to the frequency shifts from the bare resonator R1 mode frequency as a function of the decay rate κ2 at zero
detuning. (b) The imaginary part of the eigenvalues corresponding to negative decay rates. (c) The squared absolute value
of the eigenvector component corresponding to the resonator R1. Here, the amplitude of the eigenvector Ψ± = (A±, B±)T is
normalized to unity. (d) As (c) but for the eigenvector component corresponding to R2.
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Supplementary Figure S3. Measurement setup and circuit diagram of the sample. (a) Simplified measurement setup showing
the attenuators, and amplifiers at different temperatures. We measure the sample response to microwave signal from Port 1
to Port 2. Magnetic field for the SQUID is generated using a coil with current Im. A bias voltage Vb, and bias current for
thermometry Ith are applied to the NIS junctions. The temperature of the normal metal is deduced from voltage Vth measured
with an applied bias current Ith. (b) Sample structure presented as an electrical circuit diagram. The transmission lines of
the resonators have characteristic impedances Z0, and the external transmission lines ZL. The sections of the resonators have
lengths x1 and x2. The capacitances at the external ports are denoted by CTL, between the resonators by CC, between the
SQUID with inductance LS and the center conductor of the transmission line by CS, and between the normal-metal island and
the center conductor by CN.
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Supplementary Figure S4. Measured and simulated scattering
parameter |S21| for Sample A as a function of frequency and
flux for different bias voltages. The bias voltages from top
to bottom are eVb/(2∆) = 0.0, 1.0, 1.1, 1.4, 1.7, 2.5, and
3.5. Maximum value in each panel is normalized separately to
unity. The input power at Port 1 is approximately −100 dBm.
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Supplementary Figure S5. Measured and simulated scattering
parameter |S21| for Sample B as a function of frequency and
flux for different bias voltages. The bias voltages from top to
bottom are eVb/(2∆) = 0.0, 0.6, 1.1, 1.6, 2.4, 3.7, and 6.2.
The maximum value in each panel is normalized to unity. The
input power at Port 1 is approximately −115 dBm.
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Supplementary Figure S7. Current–voltage characteristics and temperature for Sample B. (a) Electric current through a SINIS
junction as a function of bias voltage at different bath temperatures. (b) Measured thermometer voltage Vth as a function of
bath temperature T0 at fixed bias current Ith = 17 pA, and Vb = 0. The theoretical curve is calculated using Eq. (13). We
extract the electron temperatures of the normal-metal island using a linear voltage-to-temperature conversion below 300 mK,
and above that we extract the temperatures from the voltages corresponding to the different experimental bath temperature
points. At high temperatures, the low sensitivity reduces the reliability of the extracted island temperatures. (c) Electron
temperature of the normal-metal island as a function of bias voltage at different bath temperatures.
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Supplementary Figure S8. Measured quality factor of Sample B. (a) QL as a function of power at different bath temperatures
as indicated in mK. The flux is Φ0/2. (b) As (b) but the data is presented as a function of the bath temperature at different
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