

Soft MUD

Implementing Manufacturer Usage Descriptions on OpenFlow SDN Switches

Abstract -- A Manufacturer Usage Description (MUD) is a
generalized network Access Control List that allows
manufacturers to declare intended communication patterns for
devices. Such devices are restricted to only communicate in the
manner intended by the manufacturer, thus reducing their
potential to launch Distributed Denial of Service attacks. We
present a scalable implementation of the MUD standard on
OpenFlow-enabled Software Defined Networking switches.

Keywords- IOT; MUD; Network Access Control.

I. INTRODUCTION

 Internet of Things (IOT) devices (henceforth called
“devices”) are special purpose devices that have dedicated
functions. Such devices typically have communication
requirements that are known to the device manufacturer. For
example, printer might have the following requirement:
Allow access for the printer (LPT) port, local access on port
80 (HTTP) and deny all other access. Thus, anyone can print
to the printer, but local access would be required for the
management interface which runs on port 80 as a web server.
All other access would be in violation of the intended use of
the device. The idea behind the Manufacturer Usage
Description (MUD) [1] is to declare the intended
communication pattern to the network infrastructure using a
generalized network Access Control List (ACL) which is
specified by the manufacturer, the integrator or the deployer
of the device. These are realized as network access controls,
by which the device can be constrained to the intended
communication patterns.
 MUD provides an effective defense against malicious
agents taking control of the device and subsequently using it
to launch attacks against the network infrastructure. It can
also prevent compromised devices from attacking other
devices on the network. Thus, MUD substantially reduces the
threat surface on a device to those communications intended
by the manufacturer.
 Because the manufacturer cannot know deployment
parameters of devices such as device IP addresses and IP
addresses of device controllers, MUD defines class

abstractions, using which, the MUD ACLs are defined. For
example, the manufacturer may state an intent that devices
can only communicate with other devices on the local
network, or may state an intent that devices may only
communicate with other devices made by the same
manufacturer, or that devices may communicate with other
devices made by a specific manufacturer on a defined port, or
that devices may communicate with specific internet hosts or
combinations of the behaviors above. To enable such
generality, ACLs are defined with placeholders known as
classes. These place holders are associated with Media
Access Control (MAC) or IP addresses when the ACL is
deployed on the switch.
 In brief, the system works as follows: A device is
associated with a MUD URL. The MUD URL is a locator for
the MUD ACL file. The MUD server fetches the MUD file
for the device from the manufacturer site, verifies its
signature and installs network access controls using whatever
mechanism the network switches and firewalls provide.
There are several mechanisms that may be available for
enforcing access control; for example, iptables could be used
or the switch may already support an implementation of
network ACLs.
 In this paper, we describe a scalable design and
implementation of the MUD standard on OpenFlow 1.5 [2]
capable Software Defined Network (SDN) switches. An
OpenFlow switch supports flow rules that are logically
arranged in one or more flow tables in the data plane. The
switch connects to one or more controllers that can install
flow rules in the switch either reactively, when a packet is
seen at the controller, or proactively when the switch
connects to the controller. Flow rules have a MATCH part
and an ACTION part. The MATCH part can match on
different parts of the IP and TCP headers. The ACTION part
forwards or drops the packet or sends it to the next table. As
packets hit flow rules, metadata can be associated with the
packet to provide a limited amount of state as packet
processing proceeds from one table to the next. More details
are found in [2].
 In related work, Hamza et al. [3] consider how MUD may
be used with real-world devices to build an Intrusion

Mudumbai Ranganathan
Doug Montgomery
Omar El Mimouni

Advanced Networking Technologies Division
National Institute of Standards and Technology

Gaithersburg, Maryland, USA
e-mail: mranga@nist.gov, dougm@nist.gov, omarilias.elmimouni@nist.gov

Detection System (IDS). They present a simulation based on
captured trace data. Details on how to organize flow tables to
implement MUD are not presented in their work. The focus
of our work is different; in our work, we describe how to
implement MUD and demonstrate that it can be done in a
scalable fashion.
 The rest of this paper is organized as follows: In Section II
we outline our design; Section III provides an analysis of our
design; Section IV describes our implementation; Section V
presents emulation results followed by Section VI which
gives measurement on a commercially available home/small
business router.
 Note that certain commercial equipment, instruments, or
materials are identified in this paper to foster understanding.
Such identification does not imply recommendation or
endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or equipment
identified are necessarily the best available for the purpose.

II. DESIGN SKETCH

 MUD Access Control Entries (ACEs) can be divided into
two categories – those that define intent for communication
between a device and a named host, and those that define
intent for communication between a device and other classes
of devices. The former kind presents no scalability challenges
and can be easily implemented using MAC and destination
IP address match rules. The main challenge with MUD arises
when implementing ACEs that define intent for
communication between classes of devices or between the
device and hosts on the local network.
 Figure 1 shows an example “same-manufacturer” ACE.
This indicates the intent that the device may communicate
with other devices made by the same manufacturer.

Figure 1. Example of a “same-manufacturer” ACE.

 Similarly, an ACE can be set up that indicates that the
device may communicate with other devices on the local
network on a specific port. Such ACEs present scalability
problems when naively implemented. For example, if the
Same Manufacturer ACE were implemented as MAC to
MAC flow rules, there can be 𝑂(𝑁) rules in the flow table
(where N is the number of devices belonging to the

manufacturer that are associated with the switch). This is
unfeasible as an implementation strategy because switches
may be limited in ternary content-addressable memory.
Similarly, an explosion of rules will result if the Local
Networks ACE were implemented in a single table using
MAC address to destination IP match flow rules. We seek a
solution that is memory scalable and operator friendly. We
make the following assumptions:

 Device Identification: Devices are identified using
their MAC addresses on the local network and are
dynamically associated with MUD URLs at run-
time.

 Flexibility: MAC addresses of devices that will be
managed at a switch are not known to the network
administrator a priori.

 Network Administration: The network
administrator configures information about the
network - such as the range of local addresses and
the controller classes for the Domain Name System
(DNS), Network Time Protocol (NTP) and
Dynamic Host Configuration Protocol (DHCP) and
device controller.

 To achieve scalability and flexibility, ACEs are
implemented using SDN flow rules in three flow tables. The
source and destination MAC address are classified in the first
two flow tables and metadata is associated with the packet.
The third table implements the MUD ACEs with rules that
stated in terms of the packet classification metadata that is
assigned in the first two tables.
 The flow pipeline is as shown in Figure 2, with the packet
being finally sent to a table that implements L2Switch flow
rules which is provided by another application.

Figure 2. Flow Pipeline structure

Figure 3. Source and destination metadata assignment.

 The OpenFlow metadata field consists of 64 bits. We
organize this as two 32-bit segments. Each 32-bit segment
encodes a triple <manufacturer, model, local-networks flag
(L) > as shown in Figure 3. The manufacturer and model are

determined from the MUD URL and the local-network flag
is determined from Source / Destination IP address and
network configuration.
 The packet classification metadata rules are reactively
inserted when packets arrive at the switch as follows: When
the switch connects to the controller, the source and
destination classification tables are initialized with low
priority rules that unconditionally send IP packets up to the
controller. This generates a PacketIn event at the controller
which then inserts Source (or destination) MAC match rules
that assign metadata to the packet and forward to the next
table at a higher priority. Subsequent packets that match on
the same MAC will have metadata associated with it and be
forwarded to the next table without controller intervention.
The next stage is to do the same for the destination MAC
match rule.
 The controller maintains a table associating MAC address
with a MUD URI. This mapping is learned dynamically
during DHCP processing, i.e., when the device sends out its
own MUD URL when requesting an address (using the newly
defined DHCP options 161) or it can be configured by the
administrator for the device if DHCP support has not been
implemented on the device. Each manufacturer (i.e., the
“authority” portion of the MUD URL) and model (i.e., the
entire MUD URL) is assigned a unique integer, which is
placed in the metadata as shown in Figure 3. The controller
also has knowledge of what constitutes a ”local network”
(typically the local subnet) which is assigned a bit in the
metadata. If a MAC address does not have a MUD URL
associated with it (e.g., a laptop) then it is assigned an
implementation reserved metadata classification of
UNCLASSIFIED that cannot be assigned to any real MUD
URL.The next table implements the MUD ACEs. Note that
at this stage of the pipeline, metadata has already been
associated with the packet. MUD rules are implemented as
ACCEPT rules. That is, if the metadata assigned to a packet
matches the match part of the mud rule, it is sent to the next
table.
 Default unconditional high priority rules are initially
inserted that allow interaction of the device with the reserved
ports for DHCP and NTP. These are inserted into the MUD
rule table on switch connect with the controller. The DHCP
match rule has a “send to controller” Action part so that the
controller may extract the MUD URL from the DHCP request
if it exists. This enables the controller to associate a MUD
URL with the source MAC address based on the DHCP
request.
 After the MUD URL is associated with the device, the
MUD profile is retrieved by the SDN controller and flow
rules that implement the MUD ACEs are inserted into the
MUD table in the following order:

 High priority source (or destination) metadata and
TCP Syn. flag match drop action rule to enforce
TCP connection directionality. MUD ACEs can
specify which end of a TCP connection is the

initiator. For such MUD ACEs, we insert rules that
drop packets where the connection is initiated from
the wrong direction.

 Lower priority Rules that match on source metadata
and destination IP addresses for access to specific
named hosts or classes of hosts (e.g. Controller or
my-controller) as specified by the MUD ACEs.

 Rules that match on source IP address and
destination metadata for inbound packets to the IOT
device as specified by the MUD ACEs.

 Rules that match on source and destination metadata
for allowing access to manufacturer or model or
local network classes as specified by the MUD
ACEs.

 Lower priority Drop rule for packets that match on
Source Model metadata but do not match on one of
the rules above.

 Lower priority Drop rule for packets that match on
Destination Model metadata but do not match on
one of the higher priority rules above.

 Lower priority default UNCLASSIFIED packet
pass through rule. The default MUD behavior
allows all packets that are metadata tagged as
UNCLASSIFIED to pass through the pipeline.

Figure 4. Detailed Flow Pipeline structure. The first two tables are
classification tables which assign metadata. The third table is the MUD rules
table. Drop rules are color coded Red.

III. ANALYSIS

 The scheme we have described above is dynamic and
memory scalable with O(N) rules for N distinct MAC
addresses at switch. By dividing the rules into packet
classification rules and MUD rules which are dependent on
the metadata assigned on the first two tables, MUD rules can
be installed independently of packet classification. The
devices may appear at the switch prior to the MUD rules
being installed or vice versa. This allows for dynamic
configuration i.e. the MUD ACL table can be changed
dynamically at run time without needing to re-configure the
rules in the first two tables that classify the packets and vice

versa. The packets may be initially marked as
UNCLASSIFIED and later when they are associated with a
MUD profile (using the DHCP or other mechanism outlined
in the MUD specification), the appropriate metadata is
assigned to them.
 Because the MUD ACEs are expected to be relatively
static and few, the flows in the MUD rule table have hard
timeouts to match the cache timeout in the MUD file. This
can be in the order of days. The packet classification flow
rules have short (configurable) idle timeouts. This limits the
size of the table and allows for dynamic adjustment of the
table when MAC addresses appear and disappear at the
switch. The shorter the idle timeout for the classification
rules, the less time it takes for reconfiguration and the less
time it takes to purge the table from unreferenced entries.
However, the shorter the timeout, the more overhead by way
of communication with the controller due to the increased
number of PacketIn events at the controller. We present
experimental results in section V.
 Our scheme, as described thus far, requires that a packet
must be processed at the controller and a rule installed before
packet processing may proceed. The initial rule in the MAC
address classification stage that is installed when the switch
connects, sends the packet to the controller but not to the next
table. Thus, a packet may not proceed in the pipeline before
it can be classified. This may be necessary if strict ACL-
dictated behavior is required but there are some resultant
performance consequences i.e., a disconnected or failed
controller causes a switch failure because no packets from a
newly arriving device can get through prior to the
classification rule being installed.
 To address this problem, we loosen up the interpretation of
the ACE specification. We define a “relaxed” mode of
operation where packets can proceed in the pipeline while
classification flow rules are being installed. This may result
in a few packets being allowed to proceed, in violation of the
MUD ACEs with the condition that the system will become
eventually compliant to the MUD ACEs.
 To implement this behavior, the initial rule installed in the
packet classification table with infinite timeout, allows the
packet to proceed through the pipeline and delivers the packet
to the controller simultaneously. If the controller is offline or
fails during rule installation, the packet is sent to the next
table with the initial rule and there is no disruption. When the
controller comes online again, it will get a packet notification
and install the appropriate rule – thus restoring MUD
compliant behavior. Thus, the switch becomes resilient to
controller failures, with the failure mode being to allow
communication.
 However, there is another source of potential disruption
that must be addressed: Because the source and destination
MAC addresses are classified using two tables, it is possible
that the source MAC address classification rule exists in the
table, while the destination MAC address classification rule
has not yet been inserted into the next table. If the MUD rules
have been inserted already, this will result in dropped packets

in the MUD rules table until the destination table is
populated, because the fall through action for Source MAC -
classified packets that do not match a MUD ACE rule is to
drop the packet.
 We address this issue by defining reserved metadata
classifications as follows:

 UNCLASSIFIED: The MAC address does not
belong to any known MUD URL. For example, if
the packet is emitted with a source address
belonging to a laptop, for which no MUD rules
exist, then its source MAC address is
UNCLASSIFIED.

 UNKNOWN: The MAC address has been sent to
the controller and is pending classification. The
default rule that is installed when the switch
connects to the controller sends the packet to the
controller on IP match and stamps the packet with
metadata of UNKNOWN.

 The classification tables each have rules that send the
packet up to the controller while setting the
corresponding metadata (for source or destination MAC)
to UNKNOWN and forwarding the packet to the next
stage. The MUD rules table has rules that permits
packets that are UNKNOWN in source or destination
MAC classification to proceed to the next stage. The
scheme is as shown in Figure 5.

Figure 5. Temporary classifications label added to prevent blocking of
flow pipeline during configuration.

 On PacketIn, the controller pushes flow rules to correctly
classify the packet. Because these packet classification rules
are pushed at a higher priority than the default send to
controller rule in the classification tables, the metadata will
change from UNKOWN to the actual classification
determined by the controller when the flow rule is installed.
In the meanwhile, the pipeline is not blocked.
 This “eventually compliant” mode of operation avoids
packet drops and provides controller failure resiliency;

however, there some limitations: (1) A few packets that
violate the MUD rules could get through prior to the
classification rule being installed at the switch. This could
result in a temporary violation of the ACEs. (2) TCP direction
enforcement for short flows, which depends upon detection
of TCP SYN flags and correct classification of MAC
addresses, is not possible to enforce at the switch until a flow
rule that classifies the packet is installed. We quantify these
limitations in the next sections.

IV. IMPLEMENTATION

 Our implementation [4] uses the OpenDaylight (ODL)
SDN controller [5]. The configuration information for the
system, which includes the MUD file and ACLs file are
presented as north-bound API, are generated using the ODL
YANG tools. The association between MUD URL and MAC
can be configured directly or inferred by the controller by
examining interactions between IOT devices and the DHCP
server. For the performance measurement experiments, we
directly configured the MAC to MUD URL association.

V. EMULATION EXPERIMENTS

 To measure scalability of the implementation, our
experimental scenario on MiniNet [6] consisted of 100
devices on one switch all belonging to the same manufacturer
randomly exchanging messages. A device randomly picks
another device and sends 10 pings, then sleeps randomly with
an exponentially distributed average sleep time of 5 seconds.
Our goal is to measure the memory scaling as the idle timeout
of flow rules is altered. The following chart shows sum of the
maximum number of rules in the source and destination
classification tables for different values of the idle timeout.

Figure 6. Packet Classification tables size variation with idle timeout.
The MUD Rules table is a constant size and has infinite timeout.

 In all cases, it is possible to implement the system with just
a few rules in the classification table at the expense of an
increasing number of PacketIn events processed at the
controller.
 To quantify the overhead involved with PacketIn
processing under load, we measured the number of packets

seen at the controller per burst of packets sent by varying the
idle timeout settings for the packet classification rules. The
results are shown in Figure 7. The maximum number of
PacketIn events per burst of pings reaches a maximum of
about 6 packets with the classification flow idle timeout set
to 15 seconds – 6 packets are processed at the controller under
these load conditions before the flow is pushed to the switch.
The time it takes for the flow to appear at the switch is the
window within which ACE violations can occur in the
Relaxed ACL model and is hence significant. Measurements
on an actual switch are presented next.

Figure 7. Maximum Number of packetIn events (observed at the
controller) per burst of packets.

VI. MEASUREMENTS ON AN OMNIA TURRIS ROUTER

 To measure how well our implementation would perform
on commercially available hardware that may be a part of a
home or small business, we tested our implementation an
Omnia Turris [7] router that supports OpenVSwitch [8].
Raspberry Pi devices were used for load generation.
 We installed a MUD Profile using the DHCP mechanism
which allows the device to be accessed on port 80 from any
machine on the local network. The device can access
www.nist.gov on port 443. All other access is denied. The
baseline performance of the router was measured. Relaxed
ACLs were used to install the flow rules. Then, using iPerf
[9], we measured the bandwidth with the MUD rules installed
under different scenarios. This gives an indication of the
overhead involved with MUD rule processing. As previously
described, relaxed ACLs give us some advantages i.e.,
resilience to controller failures and reduced latency for
packets that do not violate ACLs. However, packets may get
through in violation of an ACL until the time a packet
classification rule is pushed to the switch and appears in the
switch table as a flow. How many packets get through before
further communication is blocked? We used iPerf to perform
an experiment where the device initiates an outbound
connection with a peer on the local network and sends
packets to it. As the “attempted bandwidth” is increased,
more packets make it through the pipeline before being
blocked, reaching a maximum of about 3 MB total leakage
before the flow rules are applied as shown in Figure 8.

0

50

100

150

200

250

30 60 120 240 480 960N
um

be
r o

f e
nt

rie
s

in

pa
ck

et
 c

la
ss

ifi
ca

tio
n

flo
w

 ru
le

s

idle timeout (s)

0

2

4

6

8

15 30 60 120 240 480 960N
um

be
r o

f P
ac

ke
tIn

Ev

en
ts

 p
er

 b
ur

st

Idle timeout (s)

Figure 8. Relaxed ACL TCP packet leakage before ACL application.
This is the amount of data that gets through before iperf stops.

 Thus, if devices are expected to communicate infrequently
and in short bursts, it is better to use the strict ACL model.
Otherwise, it is possible that the communication may
complete before the MUD ACE flow rules intervene.
 Finally, we measured the overhead of strict ACLs on
connection establishment. We initiate a connection from a
local network resident device to a server accepting
connections on port 80 on the MUD-compliant IOT device
and measure the overhead in TCP connection establishment
with and without relaxed ACL support over 100 attempts.
The results are summarized in Table 1.

ACL Model Max Connection

establishment time (s)
Standard

deviation (s)
Relaxed 0.002 .0003

Strict 2.0 .15

 Table 1: Max TCP connection establishment time for strict and relaxed
ACLs.

 Significantly worse performance for strict ACL is caused
by packets being dropped before flow rules are pushed.
Dropping packets when the TCP connection is being
established adversely impacts the connection establishment
time. Note that this phenomenon only occurs when the rule is
first installed because of the round trip to the controller before
the installation of the rule.

VII CONCLUSION

 In this paper we presented the design and implementation
of the MUD standard on OpenFlow switches, thereby
demonstrating its implementation feasibility – even on
limited memory devices. Our design is model driven, resilient
to controller failure and allows for dynamic re-configuration.
Our design uses 𝑂(𝑁) flow rules for N distinct MAC
addresses seen at the switch.

 An open question is how to set the idle timeout for the
flows. Our timeout policy for the experiments described in
this paper was to set the timeout the same for all devices –
which makes sense in this case given a homogenous
communication pattern with equal probability that a
randomly selected pair of MAC addresses will communicate.
In general, the communication between devices and between
devices and its controller or host is not likely to be uniform.
To achieve best utilization of the switch flow table memory,
the idle timeout should be set high for MAC addresses that
have a high probability of being referenced and set low for
MAC addresses that have a low probability of being
referenced [10]. It would be useful to extend the MUD
standard to provide hints for communication frequency and
length of communication burst for different MUD ACEs so
that the controller can use this information to optimize
timeouts and pick the appropriate management strategy on
the classification flow table.
 Our future work includes setting timeouts adaptively and
combining MUD with an IDS to develop a comprehensive
enterprise security architecture.

REFERENCES

[1] E. Lear, R. Droms, and D. Romascanu, “Manufacturer Usage
 Description Specification,” Internet Engineering Task Force
 Work in Progress, Jun. 2018.
 https://datatracker.ietf.org/doc/draft-ietf-opsawg-mud/
 [Accessed: March 2019]

[2] Open Networking Foundation, “OpenFlow Switch
 Specification, Version 1.5.1 (Protocol version 0x06)”,
 https://www.opennetworking.org/software-defined-
 standards/specifications/ [Accessed: March 2019]

[3] A. Hamza, H. H. Gharakheili, and V. Sivaraman,
 “Combining MUD Policies with SDN for IoT Intrusion
 Detection,” in Proceedings of the 2018 Workshop on IoT
 Security and Privacy, 2018, pp. 1–7.

[4] nist-mud - NIST SDN MUD implementation,
 https://github.com/usnistgov/nist-mud
 [Accessed: March 2019]

[5] OpenDaylight, SDN Controller
 https://www.opendaylight.org [Accessed March 2019 }

[6] MiniNet - An instant Virtual Network On Your
 Laptop. http://www.mininet.org [Accessed: March 2019]

[7] Omnia Turris https://omnia.turris.cz/ [Accssed: March 2019]

[8] OpenVSwitch: Production Quality Multilayer, Open Virtual
 Switch., https://openvswitch.org Sep-2018.
 [Accessed: March, 2019]

[9] J. Dugan, S. Elliott, B. Mah, J. Poskanzer, and K. Prabhu,
 “iPerf - The ultimate speed test tool for TCP, UDP and
 SCTP.” https://iperf.fr [Accessed: March 2019]

[10] A. Vishnoi, R. Poddar, V. Mann, and S. Bhattacharya,
 “Effective switch memory management in OpenFlow
 networks,” Proc. 8th ACM Int. Conf. Distributed Event-
 Based Systems, 2014, pp. 177-188.

0

1

2

3

4

5 10 20 30 40 50 60 70 80 90

M
by

te
s

be
fo

re
 M

U
D

Ru

le
 B

lo
ck

s
flo

w

IPerf attempted bandwidth

