
 

Soft MUD 

Implementing Manufacturer Usage Descriptions on OpenFlow SDN Switches 

 
Abstract -- A Manufacturer Usage Description (MUD) is a 
generalized network Access Control List that allows 
manufacturers to declare intended communication patterns for 
devices. Such devices are restricted to only communicate in the 
manner intended by the manufacturer, thus reducing their 
potential to launch Distributed Denial of Service attacks. We 
present a scalable implementation of the MUD standard on 
OpenFlow-enabled Software Defined Networking switches. 

Keywords- IOT; MUD; Network Access Control. 

I.  INTRODUCTION 

      Internet of Things (IOT) devices (henceforth called 
“devices”) are special purpose devices that have dedicated 
functions. Such devices typically have communication 
requirements that are known to the device manufacturer. For 
example, printer might have the following requirement: 
Allow access for the printer (LPT) port, local access on port 
80 (HTTP) and deny all other access. Thus, anyone can print 
to the printer, but local access would be required for the 
management interface which runs on port 80 as a web server. 
All other access would be in violation of the intended use of 
the device. The idea behind the Manufacturer Usage 
Description (MUD) [1] is to declare the intended 
communication pattern to the network infrastructure using a 
generalized network Access Control List (ACL) which is 
specified by the manufacturer, the integrator or the deployer 
of the device. These are realized as network access controls, 
by which the device can be constrained to the intended 
communication patterns.  
    MUD provides an effective defense against malicious 
agents taking control of the device and subsequently using it 
to launch attacks against the network infrastructure. It can 
also prevent compromised devices from attacking other 
devices on the network. Thus, MUD substantially reduces the 
threat surface on a device to those communications intended 
by the manufacturer.  
    Because the manufacturer cannot know deployment 
parameters of devices such as device IP addresses and IP 
addresses of device controllers, MUD defines class 

abstractions, using which, the MUD ACLs are defined.  For 
example, the manufacturer may state an intent that devices  
can only communicate with other devices on the local 
network, or may state an intent that devices may only 
communicate with other devices made by the same 
manufacturer, or that devices may communicate with other 
devices made by a specific manufacturer on a defined port, or 
that devices may communicate with specific internet hosts or 
combinations of the behaviors above. To enable such 
generality, ACLs are defined with placeholders known as 
classes. These place holders are associated with Media 
Access Control (MAC) or IP addresses when the ACL is 
deployed on the switch.  
    In brief, the system works as follows: A device is 
associated with a MUD URL. The MUD URL is a locator for 
the MUD ACL file. The MUD server fetches the MUD file 
for the device from the manufacturer site, verifies its 
signature and installs network access controls using whatever 
mechanism the network switches and firewalls provide. 
There are several mechanisms that may be available for 
enforcing access control; for example, iptables could be used 
or the switch may already support an implementation of 
network ACLs. 
    In this paper, we describe a scalable design and 
implementation of the MUD standard on OpenFlow 1.5 [2] 
capable Software Defined Network (SDN) switches. An 
OpenFlow switch supports flow rules that are logically 
arranged in one or more flow tables in the data plane. The 
switch connects to one or more controllers that can install 
flow rules in the switch either reactively, when a packet is 
seen at the controller, or proactively when the switch 
connects to the controller. Flow rules have a MATCH part 
and an ACTION part.  The MATCH part can match on 
different parts of the IP and TCP headers. The ACTION part 
forwards or drops the packet or sends it to the next table. As 
packets hit flow rules, metadata can be associated with the 
packet to provide a limited amount of state as packet 
processing proceeds from one table to the next. More details 
are found in [2].  
    In related work, Hamza et al. [3]  consider how MUD may 
be used with real-world devices to build an Intrusion 
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Detection System (IDS).  They present a simulation based on 
captured trace data. Details on how to organize flow tables to 
implement MUD are not presented in their work. The focus 
of our work is different; in our work, we describe how to 
implement MUD and demonstrate that it can be done in a 
scalable fashion.  
    The rest of this paper is organized as follows: In Section II 
we outline our design; Section III provides an analysis of our 
design; Section IV describes our implementation; Section V 
presents emulation results followed by Section VI which 
gives measurement on a commercially available home/small 
business router.   
    Note that certain commercial equipment, instruments, or 
materials are identified in this paper to foster understanding. 
Such identification does not imply recommendation or 
endorsement by the National Institute of Standards and 
Technology, nor does it imply that the materials or equipment 
identified are necessarily the best available for the purpose. 
 

II. DESIGN SKETCH 

    MUD Access Control Entries (ACEs) can be divided into 
two categories – those that define intent for communication 
between a device and a named host, and those that define 
intent for communication between a device and other classes 
of devices. The former kind presents no scalability challenges 
and can be easily implemented using MAC and destination 
IP address match rules. The main challenge with MUD arises 
when implementing ACEs that define intent for 
communication between classes of devices or between the 
device and hosts on the local network.  
    Figure 1 shows an example “same-manufacturer” ACE. 
This indicates the intent that the device may communicate 
with other devices made by the same manufacturer. 
 

 
 

Figure 1.  Example of a “same-manufacturer” ACE. 

    Similarly, an ACE can be set up that indicates that the 
device may communicate with other devices on the local 
network on a specific port. Such ACEs present scalability 
problems when naively implemented. For example, if the 
Same Manufacturer ACE were implemented as MAC to 
MAC flow rules, there can be 𝑂(𝑁 ) rules in the flow table 
(where N is the number of devices belonging to the 

manufacturer that are associated with the switch). This is 
unfeasible as an implementation strategy because switches 
may be limited in ternary content-addressable memory. 
Similarly, an explosion of rules will result if the Local 
Networks ACE were implemented in a single table using 
MAC address to destination IP match flow rules. We seek a 
solution that is memory scalable and operator friendly. We 
make the following assumptions: 
 

 Device Identification: Devices are identified using 
their MAC addresses on the local network and are 
dynamically associated with MUD URLs at run-
time. 

 Flexibility: MAC addresses of devices that will be 
managed at a switch are not known to the network 
administrator a priori.  

 Network Administration: The network 
administrator configures information about the 
network - such as the range of local addresses and 
the controller classes for the Domain Name System 
(DNS), Network Time Protocol (NTP) and 
Dynamic Host Configuration Protocol (DHCP) and 
device controller.   

 
    To achieve scalability and flexibility, ACEs are 
implemented using SDN flow rules in three flow tables. The 
source and destination MAC address are classified in the first 
two flow tables and metadata is associated with the packet. 
The third table implements the MUD ACEs with rules that 
stated in terms of the packet classification metadata that is 
assigned in the first two tables. 
    The flow pipeline is as shown in Figure 2, with the packet 
being finally sent to a table that implements L2Switch flow 
rules which is provided by another application.  

 
Figure 2.   Flow Pipeline structure 

Figure 3.  Source and destination metadata assignment. 

 
    The OpenFlow metadata field consists of 64 bits. We 
organize this as two 32-bit segments. Each 32-bit segment 
encodes a triple <manufacturer, model, local-networks flag 
(L) > as shown in Figure 3. The manufacturer and model are 

 

 



 

determined from the MUD URL and the local-network flag 
is determined from Source / Destination IP address and 
network configuration.       
    The packet classification metadata rules are reactively 
inserted when packets arrive at the switch as follows: When 
the switch connects to the controller, the source and 
destination classification tables are initialized with low 
priority rules that unconditionally send IP packets up to the 
controller. This generates a PacketIn event at the controller 
which then inserts Source (or destination) MAC match rules 
that assign metadata to the packet and forward to the next 
table at a higher priority. Subsequent packets that match on 
the same MAC will have metadata associated with it and be 
forwarded to the next table without controller intervention. 
The next stage is to do the same for the destination MAC 
match rule. 
     The controller maintains a table associating MAC address 
with a MUD URI. This mapping is learned dynamically 
during DHCP processing, i.e., when the device sends out its 
own MUD URL when requesting an address (using the newly 
defined DHCP options 161) or it can be configured by the 
administrator for the device if DHCP support has not been 
implemented on the device. Each manufacturer (i.e., the 
“authority” portion of the MUD URL) and model (i.e., the 
entire MUD URL) is assigned a unique integer, which is 
placed in the metadata as shown in Figure 3. The controller 
also has knowledge of what constitutes a ”local network” 
(typically the local subnet) which is assigned a bit in the 
metadata. If a MAC address does not have a MUD URL 
associated with it (e.g., a laptop) then it is assigned an 
implementation reserved metadata classification of 
UNCLASSIFIED that cannot be assigned to any real MUD 
URL.The next table implements the MUD ACEs. Note that 
at this stage of the pipeline, metadata has already been 
associated with the packet. MUD rules are implemented as 
ACCEPT rules. That is, if the metadata assigned to a packet 
matches the match part of the mud rule, it is sent to the next 
table.  
    Default unconditional high priority rules are initially 
inserted that allow interaction of the device with the reserved 
ports for DHCP and NTP. These are inserted into the MUD 
rule table on switch connect with the controller. The DHCP 
match rule has a “send to controller” Action part so that the 
controller may extract the MUD URL from the DHCP request 
if it exists. This enables the controller to associate a MUD 
URL with the source MAC address based on the DHCP 
request. 
    After the MUD URL is associated with the device, the 
MUD profile is retrieved by the SDN controller and flow 
rules that implement the MUD ACEs are inserted into the 
MUD table in the following order: 
 

 High priority source (or destination) metadata and 
TCP Syn. flag match drop action rule to enforce 
TCP connection directionality. MUD ACEs can 
specify which end of a TCP connection is the 

initiator. For such MUD ACEs, we insert rules that 
drop packets where the connection is initiated from 
the wrong direction. 

 Lower priority Rules that match on source metadata 
and destination IP addresses for access to specific 
named hosts or classes of hosts (e.g. Controller or 
my-controller) as specified by the MUD ACEs. 

 Rules that match on source IP address and 
destination metadata for inbound packets to the IOT 
device as specified by the MUD ACEs. 

 Rules that match on source and destination metadata 
for allowing access to manufacturer or model or 
local network classes as specified by the MUD 
ACEs. 

 Lower priority Drop rule for packets that match on 
Source Model metadata but do not match on one of 
the rules above. 

 Lower priority Drop rule for packets that match on 
Destination Model metadata but do not match on 
one of the higher priority rules above. 

 Lower priority default UNCLASSIFIED packet 
pass through rule. The default MUD behavior 
allows all packets that are metadata tagged as 
UNCLASSIFIED to pass through the pipeline.  

Figure 4.  Detailed Flow Pipeline structure. The first two tables are 
classification tables which assign metadata. The third table is the MUD rules 
table. Drop rules are color coded Red. 

III. ANALYSIS 
 
    The scheme we have described above is dynamic and 
memory scalable with O(N) rules for N distinct MAC 
addresses at switch. By dividing the rules into packet 
classification rules and MUD rules which are dependent on 
the metadata assigned on the first two tables, MUD rules can 
be installed independently of packet classification. The 
devices may appear at the switch prior to the MUD rules 
being installed or vice versa. This allows for dynamic 
configuration i.e. the MUD ACL table can be changed 
dynamically at run time without needing to re-configure the 
rules in the first two tables that classify the packets and vice 

 



 

versa. The packets may be initially marked as 
UNCLASSIFIED and later when they are associated with a 
MUD profile (using the DHCP or other mechanism outlined 
in the MUD specification), the appropriate metadata is 
assigned to them. 
    Because the MUD ACEs are expected to be relatively 
static and few, the flows in the MUD rule table have hard 
timeouts to match the cache timeout in the MUD file. This 
can be in the order of days. The packet classification flow 
rules have short (configurable) idle timeouts. This limits the 
size of the table and allows for dynamic adjustment of the 
table when MAC addresses appear and disappear at the 
switch. The shorter the idle timeout for the classification 
rules, the less time it takes for reconfiguration and the less 
time it takes to purge the table from unreferenced entries. 
However, the shorter the timeout, the more overhead by way 
of communication with the controller due to the increased 
number of PacketIn events at the controller. We present 
experimental results in section V. 
    Our scheme, as described thus far, requires that a packet 
must be processed at the controller and a rule installed before 
packet processing may proceed.  The initial rule in the MAC 
address classification stage that is installed when the switch 
connects, sends the packet to the controller but not to the next 
table.  Thus, a packet may not proceed in the pipeline before 
it can be classified. This may be necessary if strict ACL-
dictated behavior is required but there are some resultant 
performance consequences i.e., a disconnected or failed 
controller causes a switch failure because no packets from a 
newly arriving device can get through prior to the 
classification rule being installed.  
    To address this problem, we loosen up the interpretation of 
the ACE specification. We define a “relaxed” mode of 
operation where packets can proceed in the pipeline while 
classification flow rules are being installed. This may result 
in a few packets being allowed to proceed, in violation of the 
MUD ACEs with the condition that the system will become 
eventually compliant to the MUD ACEs. 
    To implement this behavior, the initial rule installed in the 
packet classification table with infinite timeout, allows the 
packet to proceed through the pipeline and delivers the packet 
to the controller simultaneously. If the controller is offline or 
fails during rule installation, the packet is sent to the next 
table with the initial rule and there is no disruption. When the 
controller comes online again, it will get a packet notification 
and install the appropriate rule – thus restoring MUD 
compliant behavior. Thus, the switch becomes resilient to 
controller failures, with the failure mode being to allow 
communication. 
    However, there is another source of potential disruption 
that must be addressed: Because the source and destination 
MAC addresses are classified using two tables, it is possible 
that the source MAC address classification rule exists in the 
table, while the destination MAC address classification rule 
has not yet been inserted into the next table.  If the MUD rules 
have been inserted already, this will result in dropped packets 

in the MUD rules table until the destination table is 
populated, because the fall through action for Source MAC -
classified packets that do not match a MUD ACE rule is to 
drop the packet.  
    We address this issue by defining reserved metadata 
classifications as follows: 
 

 UNCLASSIFIED: The MAC address does not 
belong to any known MUD URL. For example, if 
the packet is emitted with a source address 
belonging to a laptop, for which no MUD rules 
exist, then its source MAC address is 
UNCLASSIFIED. 

 UNKNOWN: The MAC address has been sent to 
the controller and is pending classification. The 
default rule that is installed when the switch 
connects to the controller sends the packet to the 
controller on IP match and stamps the packet with 
metadata of UNKNOWN. 

 
    The classification tables each have rules that send the 
packet up to the controller while setting the 
corresponding metadata (for source or destination MAC) 
to UNKNOWN and forwarding the packet to the next 
stage.  The MUD rules table has rules that permits 
packets that are UNKNOWN in source or destination 
MAC classification to proceed to the next stage. The 
scheme is as shown in Figure 5. 
 

 
Figure 5.  Temporary classifications label added  to prevent blocking of 
flow pipeline during configuration. 

    On PacketIn, the controller pushes flow rules to correctly 
classify the packet. Because these packet classification rules 
are pushed at a higher priority than the default send to 
controller rule in the classification tables, the metadata will 
change from UNKOWN to the actual classification 
determined by the controller when the flow rule is installed. 
In the meanwhile, the pipeline is not blocked.  
    This “eventually compliant” mode of operation avoids 
packet drops and provides controller failure resiliency; 

 



 

however, there some limitations:  (1) A few packets that 
violate the MUD rules could get through prior to the 
classification rule being installed at the switch. This could 
result in a temporary violation of the ACEs. (2) TCP direction 
enforcement for short flows, which depends upon detection 
of TCP SYN flags and correct classification of MAC 
addresses, is not possible to enforce at the switch until a flow 
rule that classifies the packet is installed. We quantify these 
limitations in the next sections. 

IV. IMPLEMENTATION 

    Our implementation [4] uses the OpenDaylight (ODL) 
SDN controller [5]. The configuration information for the 
system, which includes the MUD file and ACLs file are 
presented as north-bound API, are generated using the ODL 
YANG tools.  The association between MUD URL and MAC 
can be configured directly or inferred by the controller by 
examining interactions between IOT devices and the DHCP 
server. For the performance measurement experiments, we 
directly configured the MAC to MUD URL association. 

V. EMULATION EXPERIMENTS 

    To measure scalability of the implementation, our 
experimental scenario on MiniNet [6] consisted of 100  
devices on one switch all belonging to the same manufacturer 
randomly exchanging messages. A device randomly picks 
another device and sends 10 pings, then sleeps randomly with 
an exponentially distributed average sleep time of 5 seconds. 
Our goal is to measure the memory scaling as the idle timeout 
of flow rules is altered. The following chart shows sum of the 
maximum number of rules in the source and destination 
classification tables for different values of the idle timeout.  
 
 

 
 
Figure 6.  Packet Classification tables  size variation with idle timeout. 
The MUD Rules table is a constant size and has infinite timeout. 

 
    In all cases, it is possible to implement the system with just 
a few rules in the classification table at the expense of an 
increasing number of PacketIn events processed at the 
controller. 
    To quantify the overhead involved with PacketIn 
processing under load, we measured the number of packets 

seen at the controller per burst of packets sent by varying the 
idle timeout settings for the packet classification rules. The 
results are shown in Figure 7. The maximum number of 
PacketIn events per burst of pings reaches a maximum of 
about 6 packets with the classification flow idle timeout set 
to 15 seconds – 6 packets are processed at the controller under 
these load conditions before the flow is pushed to the switch.  
The time it takes for the flow to appear at the switch is the 
window within which ACE violations can occur in the 
Relaxed ACL model and is hence significant. Measurements 
on an actual switch are presented next. 
 

 
 
Figure 7.  Maximum Number of packetIn events (observed at the 
controller) per burst of packets. 

VI. MEASUREMENTS ON AN OMNIA TURRIS ROUTER 

    To measure how well our implementation would perform 
on commercially available hardware that may be a part of a 
home or small business, we tested our implementation an 
Omnia Turris  [7]  router that supports OpenVSwitch [8].  
Raspberry Pi devices were used for load generation.  
    We installed a MUD Profile using the DHCP mechanism 
which allows the device to be accessed on port 80 from any 
machine on the local network. The device can access 
www.nist.gov on port 443. All other access is denied. The 
baseline performance of the router was measured.  Relaxed 
ACLs were used to install the flow rules. Then, using iPerf  
[9], we measured the bandwidth with the MUD rules installed 
under different scenarios. This gives an indication of the 
overhead involved with MUD rule processing. As previously 
described, relaxed ACLs give us some advantages i.e., 
resilience to controller failures and reduced latency for 
packets that do not violate ACLs. However, packets may get 
through in violation of an ACL until the time a packet 
classification rule is pushed to the switch and appears in the 
switch table as a flow. How many packets get through before 
further communication is blocked? We used iPerf to perform 
an experiment where the device initiates an outbound 
connection with a peer on the local network and sends 
packets to it.  As the “attempted bandwidth” is increased, 
more packets make it through the pipeline before being 
blocked, reaching a maximum of about 3 MB total leakage 
before the flow rules are applied as shown in Figure 8. 
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Figure 8.   Relaxed ACL TCP packet leakage before ACL application. 
This is the amount of data that gets through before iperf stops.   

    Thus, if devices are expected to communicate infrequently 
and in short bursts, it is better to use the strict ACL model. 
Otherwise, it is possible that the communication may 
complete before the MUD ACE flow rules intervene. 
    Finally, we measured the overhead of strict ACLs on 
connection establishment. We initiate a connection from a 
local network resident device to a server accepting 
connections on port 80 on the MUD-compliant IOT device 
and measure the overhead in TCP connection establishment 
with and without relaxed ACL support over 100 attempts.  
The results are summarized in Table 1. 

 
ACL Model Max Connection 

establishment time (s) 
Standard 

deviation (s) 
Relaxed  0.002 .0003 

Strict 2.0 .15 
 
    Table 1: Max TCP connection establishment time for strict and relaxed 
ACLs. 
 
    Significantly worse performance for strict ACL is caused 
by packets being dropped before flow rules are pushed. 
Dropping packets when the TCP connection is being 
established adversely impacts the connection establishment 
time. Note that this phenomenon only occurs when the rule is 
first installed because of the round trip to the controller before 
the installation of the rule. 

VII CONCLUSION 

 
    In this paper we presented the design and implementation 
of the MUD standard on OpenFlow switches, thereby 
demonstrating its implementation feasibility – even on 
limited memory devices. Our design is model driven, resilient 
to controller failure and allows for dynamic re-configuration. 
Our design uses 𝑂(𝑁) flow rules for N distinct MAC 
addresses seen at the switch.  

    An open question is how to set the idle timeout for the 
flows.  Our timeout policy for the experiments described in 
this paper was to set the timeout the same for all devices – 
which makes sense in this case given a homogenous 
communication pattern with equal probability that a 
randomly selected pair of MAC addresses will communicate. 
In general, the communication between devices and between 
devices and its controller or host is not likely to be uniform. 
To achieve best utilization of the switch flow table memory, 
the idle timeout should be set high for MAC addresses that 
have a high probability of being referenced and set low for 
MAC addresses that have a low probability of being 
referenced [10]. It would be useful to extend the MUD 
standard to provide hints for communication frequency and 
length of communication burst for different MUD ACEs so 
that the controller can use this information to optimize 
timeouts and pick the appropriate management strategy on 
the classification flow table.  
    Our future work includes setting timeouts adaptively and 
combining MUD with an IDS to develop a comprehensive 
enterprise security architecture. 
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