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Abstract—Power side-channel attacks (SCAs) have become a 
major concern to the security community due to their non-
invasive feature, low-cost, and effectiveness in extracting secret 
information from hardware implementation of cryto algorithms.
Therefore, it is imperative to evaluate if the hardware is 
vulnerable to SCAs during its design and validation stages.
Currently, however, there is little known effort in evaluating the
vulnerability of a hardware to SCAs at early design stage. In this
paper, we propose, for the frst time, an automated framework,
named RTL-PSC, for power side-channel leakage assessment of
hardware crypto designs at register-transfer level (RTL) with
built-in evaluation metrics. RTL-PSC frst estimates power profle
of a hardware design using functional simulation at RTL. Then
it utilizes the evaluation metrics, comprising of KL divergence
metric and the success rate (SR) metric based on maximum 
likelihood estimation to perform power side-channel leakage 
(PSC) vulnerability assessment at RTL. We analyze Galois-
Field (GF) and Look-up Table (LUT) based AES designs using
RTL-PSC and validate its effectiveness and accuracy through 
both gate-level simulation and FPGA results. RTL-PSC is also 
capable of identifying blocks∗ inside the design that contribute
the most to the PSC vulnerability which can be used for effcient 
countermeasure implementation.† 

Index terms— Side-channel Attacks, Leakage Assessment, 
Vulnerability Evaluation, Register-Transfer Level. 

I. INTRODUCTION 

Power side-channel attacks (SCAs) exploit the weaknesses 
in the hardware implementations of crypto algorithms to leak 
sensitive information, e.g., the encryption key, irrespective of 
the mathematical robustness of the algorithms. A number of 
SCAs namely Simple Power Analysis [1], Differential Power 
Analysis (DPA) [1], Correlation Power Analysis (CPA) [2], 
Template Attacks [3], Mutual Information Analysis (MIA) [4], 
and Partitioning Power Analysis (PPA) [5] have been proposed 
and successfully demonstrated over the past two decades. 
These attacks exploit the fact that the power consumption of a 
cryptographic hardware depends on the data it processes and 
the operation it performs [6]. 

To counter these attacks, a variety of countermeasures have 
been proposed to make the crypto hardware resilient to SCAs. 
The goal of these countermeasures is to reduce the depen-
dencies between the intermediate values of the cryptographic 
algorithms and the power consumption of the cryptographic 
devices. For example, hiding countermeasures attempt to break 
the link between the processed data values and the power 
consumption of the devices [6]. However, all of the SCA 
countermeasures adversly affect the circuit area, thus making 
them impractical to be applied to modern resource-constrained 
designs. One major reason may come from the fact that the 
evaluation methodology for side-channel leakage assessment 

∗‘design’ refers to top module as well as its constituting sub-modules,
while a ‘block’ refers to a sub-module within the design. 

†DISCLAIMER: This paper is not subject to copyright in the United 
States. Commercial products are identifed in order to adequately specify
certain procedures. In no case does such identifcation imply recommendation
or endorsement by the National Institute of Standards and Technology, nor
does it imply that the identifed products are necessarily the best available for
the purpose. 

are not capable of identifying the source of vulnerabilities 
effectively and accurately. Hence, the corresponding coun-
termeasure has to be applied to the entire design instead of 
specifc sub-blocks responsible for power side-channel leakage 
(PSC) vulnerability. 

Apart from power side-channel attacks and their correspond-
ing countermeasures, another highly important topic in this do-
main is power side-channel leakage assessment. Several tech-
niques have been proposed in this domain including signal-
to-noise ratio (SNR) [7], Test Vector Leakage Assessment 
(TVLA) methodology [8], success rate [9], and autonomous 
side-channel vulnerability evaluator (AMASIVE) [10], [11]. 
However, these techniques suffer from the following major 
limitations. 

• They mostly focus on the post-silicon side-channel as-
sessment, which is too late and prohibitively expensive in 
making any changes to the design to address the leakage 
issue. 

• Existing techniques typically require large amount of plain-
texts and power traces, hence need prohibitively large sim-
ulation time, i.e., these techniques are feasible for the post-
silicon stage rather than the pre-silicon stage. 

• Some techniques, e.g., TVLA [8] and χ2-test [12] can only 
provide a pass/fail test and cannot give quantitative measure 
of PSC vulnerability which can lead to false positive results. 

• Existing techniques mostly require a security analysts to be 
manually involved in leakage assessment, which may not 
be feasible due to cost and time-to-market constraints for 
modern devices. 

We summarize the evaluation time and accuracy of side-
channel leakage assessment as well as the fexibility to make 
design changes at different pre-silicon design stages w.r.t. 
the post-fabricated device level in Figure 1. In the pre-
silicon stage, as the leakage assessment accuracy increases, 
the leakage evaluation time increases exponentially from RTL 
to gate-level (GTL) to layout level. It can also be observed 
that the fexibility in making design changes is reduced from 
RTL to gate-level to layout level. On the other hand, when 
observing the post-silicon stage, leakage assessment can be 
performed effciently and accurately, however, fexibility for 
making design changes is very diffcult (as in FPGA) if not 
impossible (as in ASIC). 

Our Contributions: We propose a framework named RTL-
PSC which can automatically assess PSC vulnerability at the 
earliest pre-silicon design stage, i.e., RTL. This framework is 
developed to be integrated into the traditional ASIC and FPGA 
design fow. RTL-PSC provides distinctive capabilities to chip 
designers and security analysts as listed below: 

• Leakage assessment at early design stage. The RTL-
PSC framework is developed to automatically evaluate PSC 
vulnerability of a design at higher levels of abstraction to 
reduce time-to-market, cost of redesign, and the overall cost 
of adding security to the design. 
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Figure 1: Comparison of the leakage assessment at various 
stages of the design process. 
• Technology independent. The vulnerability analysis is per-

formed on RTL design to make the evaluation framework 
fairly library independent. 

• Fine granularity evaluation. The RTL-PSC framework 
identifes which block of a design contributes the most to 
the vulnerability, i.e., pinpoints which block is leaking more 
secret information. Countermeasures only need to be applied 
for the vulnerable blocks/modules to reduce area overhead 
signifcantly. 

• Comprehensive analysis. RTL-PSC considers the relation 
between blocks/modules of a design during vulnerability 
analysis instead of analyzing blocks/modules of a design 
independently. 

• Fast power estimation. RTL-PSC estimates power leakage 
distribution based on the number of transitions at RTL to 
ensure the evaluation framework is fast. 

• Generic framework. The RTL-PSC framework can be au-
tomatically applied to any cryptographic implementations at 
RTL without any customization or designers’ involvement. 

• Time, accuracy, and fexibility trade-off. RTL-PSC can 
accurately and effciently estimate PSC vulnerability at RTL. 
RTL-PSC has an average evaluation time of 35mins and 
its evaluation results closely matches with silicon results 
obtained from FPGA. Also, RTL-PSC provides the hardware 
designers with the most fexibility to address PSC vulnera-
bilities having the capability of working at RTL. 
The rest of the paper is organized as follows: In Section II, 

the RTL-PSC framework is presented. Section III presents the 
RTL side-channel vulnerability evaluation metrics. Section IV 
provides and analyzes in detail the results demonstrating the 
performance of RTL-PSC and its respective metrics proposed 
in this paper. Finally, concluding remarks are offered in 
Section V. 

II. RTL-PSC VULNERABILITY EVALUATION FRAMEWORK 

Figure 2 outlines the side-channel vulnerability evaluation 
framework. It includes two main parts, RTL Switching Ac-
tivity Interchange Format (SAIF) fle generation shown in 
the blue box and identifcation of vulnerable designs and 
blocks shown in the purple box. Algorithm 1 describes the 
identifcation technique for vulnerable designs and blocks. 
Note that, here TC refers to the transition count, N refers to 
the Gaussian distribution, f refers to the probability density 
function (PDF), DKL refers to the KL divergence and ML 
refers to the maximum likelihood. Specifcally, in Step 1, a 
group of simulation keys are specifed. In Step 2, we utilize 
Synopsys VCS to perform functional simulation of the RTL 
design with the plaintexts and the selected keys as the inputs 
(key selection process is described in Section III-A). In Step 
3, once the simulation is complete, the SAIF fle for the RTL 
design is generated. After fnishing Step 3, all SAIF fles for 

Algorithm 1 Identifying Vulnerable Blocks 
1: procedure IDENTIFYING VULNERABLE BLOCKS 
2: Input: RTL design, P = {Plaintext}, {Key0,Key1} 
3: Output: SetVulnerable 
4: for Key j ∈ {Key0, Key1} do 
5: for Plaintexti ∈ P do 

Key j 6: SAIF ← VCS(Plaintexti, Key j) i 
7: end for 
8: end for 
9: for all Blocki ∈ M do 

10: TC0 ←{SAIFKey0 , . . . , SAIFn
Key0 } Blocki 1 

11: TC1 ←{SAIFKey1 , . . . , SAIFn
Key1 } Blocki 1 

12: f 0 , σ2 ) i ← N (µTC0 
blocki TC0 

blocki 
13: f 1 , σ2 ) i ← N (µTC1 TC1 

blocki blocki 
14: KLi ← DKL( fi 

0 , fi 
1 ) 

15: SRi ← ML( fi 
0 , fi 

1 ,n Plaintexts) 
16: if SRi > SRthreshold or KLi > KLnorm.th then 
17: SetVulnerable ← Blocki 
18: end if 
19: end for 
20: end procedure 

a group of keys and the applied plaintexts are generated (See 
Algorithm 1, Lines 4-8). As its name indicates, the SAIF fle 
includes the switching activity information for each net and 
register in the RTL design. Moreover, the SAIF fle generated 
based on the RTL design has the same hierarchy as the 
design itself, hence, in Step 4, the SAIF fle for each module 
in the design can be separated for localized vulnerability 
analysis. Next, the evaluation metrics are applied for leakage 
assessment. Specifcally, in Step 5, the obtained switching 
activity is exploited to estimate the power leakage distribution 
for the design and each module within it (Lines 10-11 in 
Algorithm 1). In Step 6, the Kullback-Leibler (KL) divergence 
[13] and success rate (SR) based on power leakage distribution 
are calculated for the design and each block (Lines 12-15 in 
Algorithm 1). In Step 7, vulnerability analysis is performed for 
the design and each block. In Step 8, the vulnerable design 
is identifed based on the analysis performed in the previous 
step. Then the vulnerable blocks in the design that are leaking 
information the most are identifed for further processing. 
Step 7 and Step 8 correspond to Lines 16-18 in Algorithm 
1. Following this, the framework enters into Step 9, where 
countermeasures only need to be applied to the vulnerable 
block(s). Note that Step 9 is outside the scope in this paper. 

III. EVALUATION METRICS 

In order to reduce time-to-market and the overall cost of 
adding security to the design, the RTL power side-channel 
vulnerability evaluation metrics are proposed to perform a 
design-time evaluation of PSC vulnerability. To be specifc, 
Kullback-Leibler (KL) divergence metric and success rate (SR) 
metric based on maximum likelihood estimation are developed 
and combined to evaluate vulnerability of a hardware im-
plementation. The frst evaluation metric, i.e., KL divergence 
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metric, estimates statistical distance between two different 
probability distributions, which is defned as follows [13]: Z fT |ki(t) DKL(ki||k j) = fT |ki(t) log dt (1) 

fT |k j(t) 

where fT |ki(t) and fT |k j(t) are the probability density functions 
of the switching activity given keys ki and k j, respectively. 

For instance, if power leakage probability distributions 
based on two different keys are distinguishable, KL divergence 
between these two distributions is high, which provides indica-
tion on how vulnerable the implementation is. Hence, KL di-
vergence is suitable for the vulnerability comparison between 
different implementations. However, the KL divergence value 
may be diffcult to interpret when performing vulnerability 
analysis for just one implementation. To address this issue, 
we introduce the second evaluation metric, named success 
rate (SR)‡ metric based on maximum likelihood estimation. 
The SR value represents the probability to reveal the correct 
key and is suitable to evaluate vulnerability for only one 
implementation. We derive the SR metric as follows: we 
assume that the probability density function of the switching 
activity T given a key K follows a Gaussian distribution, which 
can be expressed as follows: 

(t−µk)
2 

1 − 
fT |K(t) = √ e 2σk 

2 
(2) 

2πσk 

where µk and σ2 are the mean and variance of T , re-k 
spectively. The likelihood function is defned as L (k; t) = 
1 

∑
n
i=1 ln fT |K(ti). Based on the maximum likelihood estima-n 

tion, an adversary typically selects a guess key k ˆ as follows: 
n 1 

k̂ L (k; t) = argmax = argmax 
k∈K k∈K n ∑ 

i 1= 
ln fT |K(ti) (3) 

the design, hence, Key0 and Key16 would create the worst 

2) Hamming distance (HD) between two different subkeys 
is maximum, i.e., subkey and subkey. 

3) If DKL(Key0||Keyi) increases asymptotically as i in-
creases, i= 1, . . .n, Key0 and Keyn are the appropriate key 
pair, where Keyi is defned as [subkey . . .subkey subkey ]. | {z } 

i times 

These key pairs can be used for the post-silicon validation. 
While it is diffcult to measure the isolated leakage of each 
block by a random key pair at the post-silicon stage, the 
leakage of each block can be measured at the pre-silicon stage 
through applying the key pairs satisfying the above conditions. 
Moreover, the evaluation metrics would create the worst-case 
scenario through applying the key pairs with the maximum 
Hamming distance. 

The selected keys applied to an AES RTL design are 16 
pairs of keys starting from all 0s key until all Fs key. Each key 
has 128-bit and Hamming-distance between Keyi and Keyi+1 is 
eight, which is shown in Table I. Also, to take into account not 
only the key’s impact on the power consumption, but also the 
plaintext’s impact on power consumption, we use one thousand 
random plaintexts with the selected key pairs. We use the AES 
cipher operation itself for the generation of pseudo random 
plaintext [15]. We use Plaintext0 as seed and then use each 

§ ciphertext ( j) as the next plaintext ( j+ 1),

Plaintext0 = 000...000 
(5) 

Plaintext j+1 = AES(Keyi,Plaintext j), j = 0,1, ...,999. 

It can be noted that the key pair Key0 and Key16 in Table 
I satisfes the above conditions. Furthermore, it can be seen 
that Key0 would create a state similar as the reset state of 

ˆ case scenario. Therefore, this key pair is used for both the If the guess key (kg = k) is equal to the correct key (k∗), the evaluation and the validation metrics, which is shown in side-channel attack is successful. Thus, the success rate can Section IV. be defned as follows: 
Table I: Keys used in RTL-PSC framework. SR = Pr[kg = k∗ ] = Pr[L (k∗ ; t) > L (hk̄∗i; t)] (4) 

where hk̄∗i denotes all wrong keys, i.e., the correct key k∗ is 
excluded from {k1,k2, . . . ,knk−1}. 

KL divergence is closely related to SR since the mathe-
matical expectation of L (k∗; t) − L (ki; t) in Equation (4) is 
equal to KL divergence between T |k∗ and T |ki [14]. Hence, 
SR increases accordingly as KL divergence increases. Due 

Key0 0x0000 0000 0000 0000 0000 0000 0000 0000 
Key1 0x0000 0000 0000 0000 0000 0000 0000 00FF 

...... 
Key15 0x00FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
Key16 0xFFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 

B. Identifcation of Vulnerable Designs and Blocks 
to the relation between KL divergence and SR based on 
maximum likelihood estimation, the combination of KL and 
SR is proposed for leakage assessment. 

A. Selection of a Key Pair 
As shown in Algorithm 1, frst, a key pair is specifed, then 

the probability distributions of the switching activity based on 
that key pair can be estimated using Equation (2). The best 
key pair among all possible pairs is expected to provide the 
maximum KL divergence for vulnerability evaluation in the 
worst-case scenario. However, it is impossible and impractical �2128 � 
to fnd the best key pair since the key space is huge, i.e., 2 . 
Alternatively, an appropriate key pair is able to be chosen, 
which satisfes the following conditions: 

1) Assuming that each set of plaintexts is randomly gener-
ated, each key consists of the same subkey, e.g., Key0 = 
{subkey . . .subkey} = 0x151515 . . .15. 

‡This SR is the theoretical SR with infnite plaintexts and SRem in 
Section IV-C represents the empirical SR based on actual SCA attacks with 
n plaintexts. 

When the appropriate key pair is applied to a design, the 
same subkey patterns will be propagated to the same blocks, 
e.g., Sbox blocks in the AES design. The switching activity 
of each block and the entire design is recorded into SAIF fles 
using VCS functional simulation, which corresponds to power 
leakage at RTL. The higher the difference between two power 
leakage distributions is, the higher impact the key has on the 
power consumption of the design/blocks, the more susceptible 
the design/blocks are to power analysis attack. Using the KL 
divergence and SR metrics, the vulnerable design and blocks 
within the design can be identifed. If KL divergence or SR of 
any design or block is greater than KLthreshold or SRthreshold , 
the design or the block is considered to be the vulnerable one 
(Line 16 in Algorithm 1). SRthreshold is determined based on 
the security constraint, e.g., 95% SR with n plaintexts, while 
KLthreshold is determined based on the SRthreshold through the 
relation between KL divergence and SR. 

§This seed is the same as TVLA’s setup [8] and 1000 plaintexts are 
enough to estimate SCA leakage based on our experiments. 
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IV. RESULTS AND ANALYSIS 

In this section, we perform side-channel vulnerability as-
sessment of two different implementations of AES algorithm 
using RTL-PSC. First, we provide a brief description of the 
two AES designs: AES Galois Field (GF) and AES Lookup 
Table (LUT). Then we present the evaluation results generated 
by RTL-PSC. We validate the accuracy of RTL-PSC evaluation 
results using gate-level simulation and FPGA silicon results. 

A. AES Benchmarks 
RTL-PSC framework is applied to AES-GF [16] and AES-

LUT [17] encryption designs. Both are open-source designs. 
In AES-GF design, the AES key expansion and AES round 
operations occur in parallel. The AES-GF implementation 
takes 10 clock cycles to encrypt each data block. In contrast, 
the AES-LUT design frst performs the key expansion and 
stores the expanded key in the key registers. The key expansion 
takes place once for each key. After the key expansion, the 
round operation starts and takes 11 clock cycles to encrypt a 
plaintext, precisely, one clock cycle for XORing a plaintext 
and the key, and 10 clock cycles for 10 round operations. 
Furthermore, the AES-GF architecture implements the AES 
SubByte operation with Galois-feld arithmetic, while the 
AES-LUT architecture implements the AES SubByte opera-
tion with a lookup table. 

The hierarchy of AES-GF and AES-LUT designs is as 
follows. The AES-GF consists of fve SubByte blocks and 
four MixColumn blocks. Each SubByte block includes four 
Sbox blocks, each of which includes a GFinvComp block. On 
the other hand, the AES-LUT cipher consists of a SubWord 
block, a SubByte block and four MixColumn blocks. SubWord 
block performs the key expansion operation and therefore, is 
not related with the plaintext and it is not considered as a 
potential vulnerable block in the following analysis. 

B. Analyzing Suitability of the Key Pairs 
We frst analyze that the key pairs selected for RTL-PSC 

evaluation adheres the conditions described in Section III-A. 
Figures 3(a) and 3(b) illustrate the leakage assessment results 
at RTL. The switching activities of all blocks during 11 clock 
cycles are calculated. In the AES-GF implementation, the 
KL divergence of the design (i.e., AES GF ENC) and each 
block increases asymptotically with increasing the Hamming 
distance of the key pairs as shown in Table I. Similarly, 
in the AES-LUT implementation, the KL divergence of the 
design (i.e., AES LUT ENC) and each block also increases 
asymptotically as the Hamming distance of the key pairs 
increases. It can be observed that the specifed key pair (key0 = 
0x00 . . . 00,key16 = 0xFF . . . FF) satisfes the key selection 
conditions, hence is appropriate for RTL side-channel leakage 
assessment. 

C. RTL Evaluation Metrics 
In order to determine if a RTL design is vulnerable, KL 

divergence of the design per clock cycle is calculated. Figure 
4(a) shows KL divergence from the second clock cycle to 
the 11th clock cycle of both AES-GF and AES-LUT RTL 
implementations, during which 10 round operations for an 
encryption are performed. At the second clock cycle corre-
sponding to the frst round operation, which is mostly exploited 
by power analysis attack, KL divergence of AES-GF and 
AES-LUT implementations are 0.47 and 0.28, respectively. 
These values correspond to 95% SRem

¶ vulnerability level 
(SRthreshold) with 25 plaintexts and 35 plaintexts, respectively, 

¶The SRem represents the empirical SR based on actual SCA attacks with 
n plaintexts. 

as shown in Figure 4(b). Based on KL divergence metric, as 
shown in Figure 4(a), KL divergence of AES-GF implemen-
tation at the second clock cycle (i.e., 0.47) is greater than that 
of AES-LUT implementation (i.e., 0.28). Likewise, based on 
SR metric, as shown in Figure 4(b), the DPA attack success 
rate of AES-GF implementation is higher than that of AES-
LUT implementation with the same number of plaintexts. 
Similarly, the number of plaintexts required for successful 
DPA attack on AES-GF implementation is less than that on 
AES-LUT implementation. Hence, compared with AES-LUT 
implementation, AES-GF implementation is identifed as the 
more vulnerable design. 

Vulnerable Block Identifcation: Once a RTL deign is 
determined as a vulnerable one, the next step is to identify the 
vulnerable blocks within the design that contribute to side-
channel leakage signifcantly. Side-channel vulnerability can 
be evaluated in both time and spatial/modular domains. In 
other words, the evaluation metrics based on the switching 
activity of each block within the design are calculated at fne-
granularity scale so that vulnerable blocks can be identifed 
per clock cycle. 

First, KL divergence in both time and spatial/modular 
domains is normalized, i.e., KL divergence of each block 
is divided by the maximum KL divergence of those blocks 
(KLnorm.th = KLi/max(KLi)). Then, if the normalized KL 
divergence of any block is greater than KLnorm.th = 0.5, that 
block is identifed as the vulnerable one and included into 
the set of vulnerable blocks. Figure 5 shows KL divergence 
of each block in both time and spatial/modular domains. The 
identifed vulnerable blocks (i.e., KL divergence greater than 
KLnorm.th = 0.5) are denoted with blue bars. Specifcally, in the 
AES-GF design, GFinvComp blocks within Sbox0 and Sbox1 
blocks are identifed as the vulnerable ones; in the AES-LUT 
design, SubByte blocks are identifed as the vulnerable ones. 
It should be noted that the threshold values (KLthreshold and 
KLnorm.th) can be adjusted by the SR vulnerability level. 

Evaluation Time: The evaluation time of RTL-PSC in-
cludes VCS functional simulation time of the RTL design as 
well as the data processing time required for analyzing the 
SAIF fles. The evaluation time of RTL-PSC for AES-GF is 
46.3 minutes and for AES-LUT is 24.03 minutes. If the same 
experiments were performed at gate-level designs, it would 
take around 31 hours. Therefore, our RTL-PSC is almost 42X 
more effcient as compared to similar gate-level assessment. 
The evaluation time at layout level is going to be even more 
expensive (more than a month). RTL-PSC also provides the 
fexibility to make design changes whereas, the post-silicon 
assessment provides no fexibility. In the next subsection, we 
will validate that RTL-PSC is not only effcient, but also 
accurate using the post-silicon results. 

D. Validation of RTL-PSC 

The RTL-PSC results are validated through both gate-
level and FPGA implementations. We present that the PSC 
vulnerability assessment results generated by RTL-PSC is 
highly correlated to the assessment results retrieved from gate-
level and FPGA. 

GTL Validation: For gate-level validation, we frst synthe-
size the RTL codes of AES-GF and AES-LUT to gate-level 
netlist using Synopsys Design Compiler [18] with Synopsys 
standard cell library. Next we utilize VCS to perform func-
tional simulation of the netlist with the same plaintexts and 
keys as used in RTL, and generate the corresponding SAIF 
fles. Then, we use Synopsys PrimeTime [18] as well as the 
generated SAIF fles to report the power consumption for the 
entire design and each block inside the design. Finally, we 
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Figure 3: KL divergence comparison between blocks for RTL AES-GF and AES-LUT implementations. 

(a) KL divergence per clock cycle for AES-GF and AES-LUT (b) SRem corresponding to KL divergence (0.47 and 0.28) for AES-
implementations GF and AES-LUT implementations 

Figure 4: KL divergence and SRs for AES-GF and AES-LUT implementations. 

(a) Normalized KL divergence for AES-GF implementation in both time and (b) Normalized KL divergence for AES-LUT implemen-
spatial/modular domains tation in both time and spatial/modular domains 

Figure 5: Normalized KL divergence for vulnerable blocks within AES-GF and AES-LUT implementations (KLnorm.th = 0.5). 

derive the gate-level KL divergence metric for the design and 
each block using Equation 1. 

We then calculate the Pearson correlation coeffcient be-
tween the KL divergence of the RTL and GTL design/blocks 
(shown in Column 2 of Table III and Table II). The high 
correlation coeffcient values (> 90%) indicate that the PSC 
vulnerability assessment results generated by RTL-PSC at RTL 
is almost as accurate as the assessment results retrieved from 
GTL. 

Next we validate the vulnerable block identifcation results 
produced by RTL-PSC. Table II presents the correlation co-
effcient values between the KL divergence metric for each 
block at RTL and gate-level. The KL metric for each block of 
AES-GF and AES-LUT implementations at RTL has a high 
correlation to that at gate-level indicating that our vulnerable 

block identifcation technique at RTL is as accurate as gate-
level. Next we validate the RTL-PSC evaluation results w.r.t. 
FPGA. 

FPGA Validation: For FPGA silicon validation, we use 
the SAKURA-G board [19] for AES implementations, which 
contains two SPARTAN-6 FPGAs and is designed for research 
and development on hardware security. Tektronix MDO3102 
oscilloscope is used to measure the voltage drop between shunt 
registers connected to the Vdd pin. The clock frequency of 
the AES implementation is 24 MHz. The sampling rate and 
bandwidth of the oscilloscope are 500 MS/s and 250 MHz, 
respectively. Figure 6 shows the experimental setup for the 
FPGA validation. 

We frst map the AES-GF and AES-LUT designs on an 
FPGA and then, apply the same plaintexts and keys as used at 

http:implementations(KLnorm.th


Table II: Correlation coeffcient between KL divergence of RTL and GTL blocks. 
AES-GF Blocks, RTL vs. GTL AES-LUT Blocks, RTL vs. GTL 

SubByte Sbox GFinvComp MixColumn SubByte MixColumn 
99.11% 99.55% 99.64% 94.73% 99.71% 96.80% 

Table III: Correlation coeffcient between KL divergence at 
RTL, GTL, and FPGA silicon level. 

Benchmark RTL vs. GTL RTL vs. FPGA Silicon Level 
AES-GF 99.57% 98.83% 

AES-LUT 90.35% 80.80% 

RTL, and measure the power consumption during encryption 
operation. Following this, we derive the KL divergence metric 
from the collected power traces. Then, we can calculate the 
Pearson correlation coeffcient between the KL divergence at 
RTL and FPGA (as shown in Column 3 of Table III). The 
high correlation coeffcient values (> 80%) indicate that the 
PSC vulnerability assessment results generated by RTL-PSC 
at RTL is almost as accurate as FPGA assessment. In other 
words, RTL-PSC can accurately analyze PSC vulnerability at 
RTL. 

Note that many implementation details, e.g., glitches caused 
by the gate delay, clock gating, datapath gating, retiming, 
clock and power network structure is not available at RTL 
unlike gate-level and FPGA implementations. In spite of 
these limitations, RTL-PSC is able to accurately identify PSC 
vulnerability which proves the effcacy of the framework. 

Also, note that it is not feasible to perform vulnerable block 
identifcation at FPGA. The reason is that, it is not feasible to 
isolate the power traces associated to each block from the post-
silicon power measurements. Therefore, we could not validate 
vulnerable block identifcation at FPGA. 

Comparison with State-of-the-art: Veshchikov et al. [20] 
presented a comprehensive survey of simulators for side-
channel analysis, e.g., PINPAS [21], SCARD [22], OSCAR 
[23], etc. These simulators mostly support software crypto 
algorithms implemented in microprocessors, not hardware 
crypto modules. On the other hand, TVLA [8] and χ2-test 
[12] can work with hardware crypto designs. However, these 
techniques only provide a pass/fail test and do not provide the 
quantitative amount of leakage. AMASIVE framework [10] 
identifes the hypothesis function for HW/HD model to be used 
for side-channel vulnerability assessment. The major limitation 
is that it can only identify the hypothesis function and the 
fnal vulnerability assessment still needs to be carried out on a 
prototype device. In contrast, RTL-PSC can quantitatively and 
accurately assess PSC leakage of hardware crypto modules in 
RTL level in time effcient manner. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we proposed an automatic evaluation frame-
work to perform a design-time evaluation of side-channel 
attacks resistance for a cryptographic implementation at RTL. 
Instead of measuring dynamic power, switching activity at 
RTL is exploited by using VCS functional simulation to 
estimate power profle to ensure the evaluation framework is 
effcient, effective, and library independent. Once the power 
estimation is complete, the KL divergence metric and SR 
metric based on maximum likelihood estimation are combined 
to identify the vulnerable design and blocks within the design. 
Experimental results on AES-GF and AES-LUT implemen-
tations demonstrated that the methodology proposed in this 
paper were able to perform leakage assessment and identify the 
vulnerable design/blocks effciently, effectively, and precisely. 

In our future work, the proposed evaluation framework will 
be applied to evaluate vulnerabilities of the DPA protected 
designs, thus providing information in terms of scaling and 
effectiveness for leakage assessment of protected ones. 
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