
RTL-PSC: Automated Power Side-Channel Leakage
Assessment at Register-Transfer Level

Miao (Tony) He1, Jungmin Park1, Adib Nahiyan1, Apostol Vassilev2, Yier Jin1, and Mark Tehranipoor1

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 326111

National Institute of Standards and Technology, Gaithersburg, MD 208992

Email: {tonyhe, jungminpark, adib1991}uf.edu, apostol.vassilev@nist.gov, {yier.jin, tehranipoor}@ece.uf.edu

Abstract—Power side-channel attacks (SCAs) have become a
major concern to the security community due to their non-
invasive feature, low-cost, and effectiveness in extracting secret
information from hardware implementation of cryto algorithms.
Therefore, it is imperative to evaluate if the hardware is
vulnerable to SCAs during its design and validation stages.
Currently, however, there is little known effort in evaluating the
vulnerability of a hardware to SCAs at early design stage. In this
paper, we propose, for the frst time, an automated framework,
named RTL-PSC, for power side-channel leakage assessment of
hardware crypto designs at register-transfer level (RTL) with
built-in evaluation metrics. RTL-PSC frst estimates power profle
of a hardware design using functional simulation at RTL. Then
it utilizes the evaluation metrics, comprising of KL divergence
metric and the success rate (SR) metric based on maximum
likelihood estimation to perform power side-channel leakage
(PSC) vulnerability assessment at RTL. We analyze Galois-
Field (GF) and Look-up Table (LUT) based AES designs using
RTL-PSC and validate its effectiveness and accuracy through
both gate-level simulation and FPGA results. RTL-PSC is also
capable of identifying blocks∗ inside the design that contribute
the most to the PSC vulnerability which can be used for effcient
countermeasure implementation.†

Index terms— Side-channel Attacks, Leakage Assessment,
Vulnerability Evaluation, Register-Transfer Level.

I. INTRODUCTION

Power side-channel attacks (SCAs) exploit the weaknesses
in the hardware implementations of crypto algorithms to leak
sensitive information, e.g., the encryption key, irrespective of
the mathematical robustness of the algorithms. A number of
SCAs namely Simple Power Analysis [1], Differential Power
Analysis (DPA) [1], Correlation Power Analysis (CPA) [2],
Template Attacks [3], Mutual Information Analysis (MIA) [4],
and Partitioning Power Analysis (PPA) [5] have been proposed
and successfully demonstrated over the past two decades.
These attacks exploit the fact that the power consumption of a
cryptographic hardware depends on the data it processes and
the operation it performs [6].

To counter these attacks, a variety of countermeasures have
been proposed to make the crypto hardware resilient to SCAs.
The goal of these countermeasures is to reduce the depen-
dencies between the intermediate values of the cryptographic
algorithms and the power consumption of the cryptographic
devices. For example, hiding countermeasures attempt to break
the link between the processed data values and the power
consumption of the devices [6]. However, all of the SCA
countermeasures adversly affect the circuit area, thus making
them impractical to be applied to modern resource-constrained
designs. One major reason may come from the fact that the
evaluation methodology for side-channel leakage assessment

∗‘design’ refers to top module as well as its constituting sub-modules,
while a ‘block’ refers to a sub-module within the design.

†DISCLAIMER: This paper is not subject to copyright in the United
States. Commercial products are identifed in order to adequately specify
certain procedures. In no case does such identifcation imply recommendation
or endorsement by the National Institute of Standards and Technology, nor
does it imply that the identifed products are necessarily the best available for
the purpose.

are not capable of identifying the source of vulnerabilities
effectively and accurately. Hence, the corresponding coun-
termeasure has to be applied to the entire design instead of
specifc sub-blocks responsible for power side-channel leakage
(PSC) vulnerability.

Apart from power side-channel attacks and their correspond-
ing countermeasures, another highly important topic in this do-
main is power side-channel leakage assessment. Several tech-
niques have been proposed in this domain including signal-
to-noise ratio (SNR) [7], Test Vector Leakage Assessment
(TVLA) methodology [8], success rate [9], and autonomous
side-channel vulnerability evaluator (AMASIVE) [10], [11].
However, these techniques suffer from the following major
limitations.

• They mostly focus on the post-silicon side-channel as-
sessment, which is too late and prohibitively expensive in
making any changes to the design to address the leakage
issue.

• Existing techniques typically require large amount of plain-
texts and power traces, hence need prohibitively large sim-
ulation time, i.e., these techniques are feasible for the post-
silicon stage rather than the pre-silicon stage.

• Some techniques, e.g., TVLA [8] and χ2-test [12] can only
provide a pass/fail test and cannot give quantitative measure
of PSC vulnerability which can lead to false positive results.

• Existing techniques mostly require a security analysts to be
manually involved in leakage assessment, which may not
be feasible due to cost and time-to-market constraints for
modern devices.

We summarize the evaluation time and accuracy of side-
channel leakage assessment as well as the fexibility to make
design changes at different pre-silicon design stages w.r.t.
the post-fabricated device level in Figure 1. In the pre-
silicon stage, as the leakage assessment accuracy increases,
the leakage evaluation time increases exponentially from RTL
to gate-level (GTL) to layout level. It can also be observed
that the fexibility in making design changes is reduced from
RTL to gate-level to layout level. On the other hand, when
observing the post-silicon stage, leakage assessment can be
performed effciently and accurately, however, fexibility for
making design changes is very diffcult (as in FPGA) if not
impossible (as in ASIC).

Our Contributions: We propose a framework named RTL-
PSC which can automatically assess PSC vulnerability at the
earliest pre-silicon design stage, i.e., RTL. This framework is
developed to be integrated into the traditional ASIC and FPGA
design fow. RTL-PSC provides distinctive capabilities to chip
designers and security analysts as listed below:

• Leakage assessment at early design stage. The RTL-
PSC framework is developed to automatically evaluate PSC
vulnerability of a design at higher levels of abstraction to
reduce time-to-market, cost of redesign, and the overall cost
of adding security to the design.

mailto:tehranipoor}@ece.ufl.edu
mailto:apostol.vassilev@nist.gov
http:adib1991}ufl.edu

Figure 1: Comparison of the leakage assessment at various
stages of the design process.
• Technology independent. The vulnerability analysis is per-

formed on RTL design to make the evaluation framework
fairly library independent.

• Fine granularity evaluation. The RTL-PSC framework
identifes which block of a design contributes the most to
the vulnerability, i.e., pinpoints which block is leaking more
secret information. Countermeasures only need to be applied
for the vulnerable blocks/modules to reduce area overhead
signifcantly.

• Comprehensive analysis. RTL-PSC considers the relation
between blocks/modules of a design during vulnerability
analysis instead of analyzing blocks/modules of a design
independently.

• Fast power estimation. RTL-PSC estimates power leakage
distribution based on the number of transitions at RTL to
ensure the evaluation framework is fast.

• Generic framework. The RTL-PSC framework can be au-
tomatically applied to any cryptographic implementations at
RTL without any customization or designers’ involvement.

• Time, accuracy, and fexibility trade-off. RTL-PSC can
accurately and effciently estimate PSC vulnerability at RTL.
RTL-PSC has an average evaluation time of 35mins and
its evaluation results closely matches with silicon results
obtained from FPGA. Also, RTL-PSC provides the hardware
designers with the most fexibility to address PSC vulnera-
bilities having the capability of working at RTL.
The rest of the paper is organized as follows: In Section II,

the RTL-PSC framework is presented. Section III presents the
RTL side-channel vulnerability evaluation metrics. Section IV
provides and analyzes in detail the results demonstrating the
performance of RTL-PSC and its respective metrics proposed
in this paper. Finally, concluding remarks are offered in
Section V.

II. RTL-PSC VULNERABILITY EVALUATION FRAMEWORK

Figure 2 outlines the side-channel vulnerability evaluation
framework. It includes two main parts, RTL Switching Ac-
tivity Interchange Format (SAIF) fle generation shown in
the blue box and identifcation of vulnerable designs and
blocks shown in the purple box. Algorithm 1 describes the
identifcation technique for vulnerable designs and blocks.
Note that, here TC refers to the transition count, N refers to
the Gaussian distribution, f refers to the probability density
function (PDF), DKL refers to the KL divergence and ML
refers to the maximum likelihood. Specifcally, in Step 1, a
group of simulation keys are specifed. In Step 2, we utilize
Synopsys VCS to perform functional simulation of the RTL
design with the plaintexts and the selected keys as the inputs
(key selection process is described in Section III-A). In Step
3, once the simulation is complete, the SAIF fle for the RTL
design is generated. After fnishing Step 3, all SAIF fles for

Algorithm 1 Identifying Vulnerable Blocks
1: procedure IDENTIFYING VULNERABLE BLOCKS
2: Input: RTL design, P = {Plaintext}, {Key0,Key1}
3: Output: SetVulnerable
4: for Key j ∈ {Key0, Key1} do
5: for Plaintexti ∈ P do

Key j 6: SAIF ← VCS(Plaintexti, Key j) i
7: end for
8: end for
9: for all Blocki ∈ M do

10: TC0 ←{SAIFKey0 , . . . , SAIFn
Key0 } Blocki 1

11: TC1 ←{SAIFKey1 , . . . , SAIFn
Key1 } Blocki 1

12: f 0 , σ2) i ← N (µTC0
blocki TC0

blocki
13: f 1 , σ2) i ← N (µTC1 TC1

blocki blocki
14: KLi ← DKL(fi

0 , fi
1)

15: SRi ← ML(fi
0 , fi

1 ,n Plaintexts)
16: if SRi > SRthreshold or KLi > KLnorm.th then
17: SetVulnerable ← Blocki
18: end if
19: end for
20: end procedure

a group of keys and the applied plaintexts are generated (See
Algorithm 1, Lines 4-8). As its name indicates, the SAIF fle
includes the switching activity information for each net and
register in the RTL design. Moreover, the SAIF fle generated
based on the RTL design has the same hierarchy as the
design itself, hence, in Step 4, the SAIF fle for each module
in the design can be separated for localized vulnerability
analysis. Next, the evaluation metrics are applied for leakage
assessment. Specifcally, in Step 5, the obtained switching
activity is exploited to estimate the power leakage distribution
for the design and each module within it (Lines 10-11 in
Algorithm 1). In Step 6, the Kullback-Leibler (KL) divergence
[13] and success rate (SR) based on power leakage distribution
are calculated for the design and each block (Lines 12-15 in
Algorithm 1). In Step 7, vulnerability analysis is performed for
the design and each block. In Step 8, the vulnerable design
is identifed based on the analysis performed in the previous
step. Then the vulnerable blocks in the design that are leaking
information the most are identifed for further processing.
Step 7 and Step 8 correspond to Lines 16-18 in Algorithm
1. Following this, the framework enters into Step 9, where
countermeasures only need to be applied to the vulnerable
block(s). Note that Step 9 is outside the scope in this paper.

III. EVALUATION METRICS

In order to reduce time-to-market and the overall cost of
adding security to the design, the RTL power side-channel
vulnerability evaluation metrics are proposed to perform a
design-time evaluation of PSC vulnerability. To be specifc,
Kullback-Leibler (KL) divergence metric and success rate (SR)
metric based on maximum likelihood estimation are developed
and combined to evaluate vulnerability of a hardware im-
plementation. The frst evaluation metric, i.e., KL divergence

RTL

VCS Simulation

Evaluation Metrics

RTL SAIF Generation

for a Design

RTL SAIF Generation

for Each Block

Power Leakage Distribution for

the Design & Each Block

KL Divergence and SR for

the Design & Each Block

Vulnerability Analysis for

the Design & Each Block

Identification of the Vulnerable

Design & Blocks

Countermeasures to be applied

to Vulnerable Blocks

Plaintexts

Keys

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Figure 2: RTL-PSC framework.

http:Algorithm1).In
http:KLnorm.th

metric, estimates statistical distance between two different
probability distributions, which is defned as follows [13]: Z fT |ki(t) DKL(ki||k j) = fT |ki(t) log dt (1)

fT |k j(t)

where fT |ki(t) and fT |k j(t) are the probability density functions
of the switching activity given keys ki and k j, respectively.

For instance, if power leakage probability distributions
based on two different keys are distinguishable, KL divergence
between these two distributions is high, which provides indica-
tion on how vulnerable the implementation is. Hence, KL di-
vergence is suitable for the vulnerability comparison between
different implementations. However, the KL divergence value
may be diffcult to interpret when performing vulnerability
analysis for just one implementation. To address this issue,
we introduce the second evaluation metric, named success
rate (SR)‡ metric based on maximum likelihood estimation.
The SR value represents the probability to reveal the correct
key and is suitable to evaluate vulnerability for only one
implementation. We derive the SR metric as follows: we
assume that the probability density function of the switching
activity T given a key K follows a Gaussian distribution, which
can be expressed as follows:

(t−µk)
2

1 −
fT |K(t) = √ e 2σk

2
(2)

2πσk

where µk and σ2 are the mean and variance of T , re-k
spectively. The likelihood function is defned as L (k; t) =
1

∑
n
i=1 ln fT |K(ti). Based on the maximum likelihood estima-n

tion, an adversary typically selects a guess key k ˆ as follows:
n 1

k̂ L (k; t) = argmax = argmax
k∈K k∈K n ∑

i 1=
ln fT |K(ti) (3)

the design, hence, Key0 and Key16 would create the worst

2) Hamming distance (HD) between two different subkeys
is maximum, i.e., subkey and subkey.

3) If DKL(Key0||Keyi) increases asymptotically as i in-
creases, i= 1, . . .n, Key0 and Keyn are the appropriate key
pair, where Keyi is defned as [subkey . . .subkey subkey]. | {z }

i times

These key pairs can be used for the post-silicon validation.
While it is diffcult to measure the isolated leakage of each
block by a random key pair at the post-silicon stage, the
leakage of each block can be measured at the pre-silicon stage
through applying the key pairs satisfying the above conditions.
Moreover, the evaluation metrics would create the worst-case
scenario through applying the key pairs with the maximum
Hamming distance.

The selected keys applied to an AES RTL design are 16
pairs of keys starting from all 0s key until all Fs key. Each key
has 128-bit and Hamming-distance between Keyi and Keyi+1 is
eight, which is shown in Table I. Also, to take into account not
only the key’s impact on the power consumption, but also the
plaintext’s impact on power consumption, we use one thousand
random plaintexts with the selected key pairs. We use the AES
cipher operation itself for the generation of pseudo random
plaintext [15]. We use Plaintext0 as seed and then use each

§ ciphertext (j) as the next plaintext (j+ 1),

Plaintext0 = 000...000
(5)

Plaintext j+1 = AES(Keyi,Plaintext j), j = 0,1, ...,999.

It can be noted that the key pair Key0 and Key16 in Table
I satisfes the above conditions. Furthermore, it can be seen
that Key0 would create a state similar as the reset state of

ˆ case scenario. Therefore, this key pair is used for both the If the guess key (kg = k) is equal to the correct key (k∗), the evaluation and the validation metrics, which is shown in side-channel attack is successful. Thus, the success rate can Section IV. be defned as follows:
Table I: Keys used in RTL-PSC framework. SR = Pr[kg = k∗] = Pr[L (k∗ ; t) > L (hk̄∗i; t)] (4)

where hk̄∗i denotes all wrong keys, i.e., the correct key k∗ is
excluded from {k1,k2, . . . ,knk−1}.

KL divergence is closely related to SR since the mathe-
matical expectation of L (k∗; t) − L (ki; t) in Equation (4) is
equal to KL divergence between T |k∗ and T |ki [14]. Hence,
SR increases accordingly as KL divergence increases. Due

Key0 0x0000 0000 0000 0000 0000 0000 0000 0000
Key1 0x0000 0000 0000 0000 0000 0000 0000 00FF

......
Key15 0x00FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
Key16 0xFFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

B. Identifcation of Vulnerable Designs and Blocks
to the relation between KL divergence and SR based on
maximum likelihood estimation, the combination of KL and
SR is proposed for leakage assessment.

A. Selection of a Key Pair
As shown in Algorithm 1, frst, a key pair is specifed, then

the probability distributions of the switching activity based on
that key pair can be estimated using Equation (2). The best
key pair among all possible pairs is expected to provide the
maximum KL divergence for vulnerability evaluation in the
worst-case scenario. However, it is impossible and impractical �2128 �
to fnd the best key pair since the key space is huge, i.e., 2 .
Alternatively, an appropriate key pair is able to be chosen,
which satisfes the following conditions:

1) Assuming that each set of plaintexts is randomly gener-
ated, each key consists of the same subkey, e.g., Key0 =
{subkey . . .subkey} = 0x151515 . . .15.

‡This SR is the theoretical SR with infnite plaintexts and SRem in
Section IV-C represents the empirical SR based on actual SCA attacks with
n plaintexts.

When the appropriate key pair is applied to a design, the
same subkey patterns will be propagated to the same blocks,
e.g., Sbox blocks in the AES design. The switching activity
of each block and the entire design is recorded into SAIF fles
using VCS functional simulation, which corresponds to power
leakage at RTL. The higher the difference between two power
leakage distributions is, the higher impact the key has on the
power consumption of the design/blocks, the more susceptible
the design/blocks are to power analysis attack. Using the KL
divergence and SR metrics, the vulnerable design and blocks
within the design can be identifed. If KL divergence or SR of
any design or block is greater than KLthreshold or SRthreshold ,
the design or the block is considered to be the vulnerable one
(Line 16 in Algorithm 1). SRthreshold is determined based on
the security constraint, e.g., 95% SR with n plaintexts, while
KLthreshold is determined based on the SRthreshold through the
relation between KL divergence and SR.

§This seed is the same as TVLA’s setup [8] and 1000 plaintexts are
enough to estimate SCA leakage based on our experiments.

http:selectedkeypairs.We

IV. RESULTS AND ANALYSIS

In this section, we perform side-channel vulnerability as-
sessment of two different implementations of AES algorithm
using RTL-PSC. First, we provide a brief description of the
two AES designs: AES Galois Field (GF) and AES Lookup
Table (LUT). Then we present the evaluation results generated
by RTL-PSC. We validate the accuracy of RTL-PSC evaluation
results using gate-level simulation and FPGA silicon results.

A. AES Benchmarks
RTL-PSC framework is applied to AES-GF [16] and AES-

LUT [17] encryption designs. Both are open-source designs.
In AES-GF design, the AES key expansion and AES round
operations occur in parallel. The AES-GF implementation
takes 10 clock cycles to encrypt each data block. In contrast,
the AES-LUT design frst performs the key expansion and
stores the expanded key in the key registers. The key expansion
takes place once for each key. After the key expansion, the
round operation starts and takes 11 clock cycles to encrypt a
plaintext, precisely, one clock cycle for XORing a plaintext
and the key, and 10 clock cycles for 10 round operations.
Furthermore, the AES-GF architecture implements the AES
SubByte operation with Galois-feld arithmetic, while the
AES-LUT architecture implements the AES SubByte opera-
tion with a lookup table.

The hierarchy of AES-GF and AES-LUT designs is as
follows. The AES-GF consists of fve SubByte blocks and
four MixColumn blocks. Each SubByte block includes four
Sbox blocks, each of which includes a GFinvComp block. On
the other hand, the AES-LUT cipher consists of a SubWord
block, a SubByte block and four MixColumn blocks. SubWord
block performs the key expansion operation and therefore, is
not related with the plaintext and it is not considered as a
potential vulnerable block in the following analysis.

B. Analyzing Suitability of the Key Pairs
We frst analyze that the key pairs selected for RTL-PSC

evaluation adheres the conditions described in Section III-A.
Figures 3(a) and 3(b) illustrate the leakage assessment results
at RTL. The switching activities of all blocks during 11 clock
cycles are calculated. In the AES-GF implementation, the
KL divergence of the design (i.e., AES GF ENC) and each
block increases asymptotically with increasing the Hamming
distance of the key pairs as shown in Table I. Similarly,
in the AES-LUT implementation, the KL divergence of the
design (i.e., AES LUT ENC) and each block also increases
asymptotically as the Hamming distance of the key pairs
increases. It can be observed that the specifed key pair (key0 =
0x00 . . . 00,key16 = 0xFF . . . FF) satisfes the key selection
conditions, hence is appropriate for RTL side-channel leakage
assessment.

C. RTL Evaluation Metrics
In order to determine if a RTL design is vulnerable, KL

divergence of the design per clock cycle is calculated. Figure
4(a) shows KL divergence from the second clock cycle to
the 11th clock cycle of both AES-GF and AES-LUT RTL
implementations, during which 10 round operations for an
encryption are performed. At the second clock cycle corre-
sponding to the frst round operation, which is mostly exploited
by power analysis attack, KL divergence of AES-GF and
AES-LUT implementations are 0.47 and 0.28, respectively.
These values correspond to 95% SRem

¶ vulnerability level
(SRthreshold) with 25 plaintexts and 35 plaintexts, respectively,

¶The SRem represents the empirical SR based on actual SCA attacks with
n plaintexts.

as shown in Figure 4(b). Based on KL divergence metric, as
shown in Figure 4(a), KL divergence of AES-GF implemen-
tation at the second clock cycle (i.e., 0.47) is greater than that
of AES-LUT implementation (i.e., 0.28). Likewise, based on
SR metric, as shown in Figure 4(b), the DPA attack success
rate of AES-GF implementation is higher than that of AES-
LUT implementation with the same number of plaintexts.
Similarly, the number of plaintexts required for successful
DPA attack on AES-GF implementation is less than that on
AES-LUT implementation. Hence, compared with AES-LUT
implementation, AES-GF implementation is identifed as the
more vulnerable design.

Vulnerable Block Identifcation: Once a RTL deign is
determined as a vulnerable one, the next step is to identify the
vulnerable blocks within the design that contribute to side-
channel leakage signifcantly. Side-channel vulnerability can
be evaluated in both time and spatial/modular domains. In
other words, the evaluation metrics based on the switching
activity of each block within the design are calculated at fne-
granularity scale so that vulnerable blocks can be identifed
per clock cycle.

First, KL divergence in both time and spatial/modular
domains is normalized, i.e., KL divergence of each block
is divided by the maximum KL divergence of those blocks
(KLnorm.th = KLi/max(KLi)). Then, if the normalized KL
divergence of any block is greater than KLnorm.th = 0.5, that
block is identifed as the vulnerable one and included into
the set of vulnerable blocks. Figure 5 shows KL divergence
of each block in both time and spatial/modular domains. The
identifed vulnerable blocks (i.e., KL divergence greater than
KLnorm.th = 0.5) are denoted with blue bars. Specifcally, in the
AES-GF design, GFinvComp blocks within Sbox0 and Sbox1
blocks are identifed as the vulnerable ones; in the AES-LUT
design, SubByte blocks are identifed as the vulnerable ones.
It should be noted that the threshold values (KLthreshold and
KLnorm.th) can be adjusted by the SR vulnerability level.

Evaluation Time: The evaluation time of RTL-PSC in-
cludes VCS functional simulation time of the RTL design as
well as the data processing time required for analyzing the
SAIF fles. The evaluation time of RTL-PSC for AES-GF is
46.3 minutes and for AES-LUT is 24.03 minutes. If the same
experiments were performed at gate-level designs, it would
take around 31 hours. Therefore, our RTL-PSC is almost 42X
more effcient as compared to similar gate-level assessment.
The evaluation time at layout level is going to be even more
expensive (more than a month). RTL-PSC also provides the
fexibility to make design changes whereas, the post-silicon
assessment provides no fexibility. In the next subsection, we
will validate that RTL-PSC is not only effcient, but also
accurate using the post-silicon results.

D. Validation of RTL-PSC

The RTL-PSC results are validated through both gate-
level and FPGA implementations. We present that the PSC
vulnerability assessment results generated by RTL-PSC is
highly correlated to the assessment results retrieved from gate-
level and FPGA.

GTL Validation: For gate-level validation, we frst synthe-
size the RTL codes of AES-GF and AES-LUT to gate-level
netlist using Synopsys Design Compiler [18] with Synopsys
standard cell library. Next we utilize VCS to perform func-
tional simulation of the netlist with the same plaintexts and
keys as used in RTL, and generate the corresponding SAIF
fles. Then, we use Synopsys PrimeTime [18] as well as the
generated SAIF fles to report the power consumption for the
entire design and each block inside the design. Finally, we

http:KLnorm.th
http:KLnorm.th
http:KLnorm.th
http:increases.It

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
Hamming Distance between Each Key and Key 0s

0

20

40

60
K

L
D

iv
er

ge
nc

e
be

tw
ee

n
E

ac
h

K
ey

 a
nd

 K
ey

 0
s

KL Divergence Comparison
between Blocks for RTL GF-based AES

AES_GF_ENC
SubBytes
Sbox
GFinvComp
MixColumns

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
Hamming Distance between Each Key and Key 0s

0

10

20

30

40

K
L

D
iv

er
ge

nc
e

be
tw

ee
n

E
ac

h
K

ey
 a

nd
 K

ey
 0

s

KL Divergence Comparison
between Blocks for RTL LUT-based AES

AES_LUT_ENC
SubBytes
MixColumns

(a) KL divergence comparison between blocks for RTL AES-GF (b) KL divergence comparison between blocks for RTL AES-LUT
implementation implementation

Figure 3: KL divergence comparison between blocks for RTL AES-GF and AES-LUT implementations.

(a) KL divergence per clock cycle for AES-GF and AES-LUT (b) SRem corresponding to KL divergence (0.47 and 0.28) for AES-
implementations GF and AES-LUT implementations

Figure 4: KL divergence and SRs for AES-GF and AES-LUT implementations.

(a) Normalized KL divergence for AES-GF implementation in both time and (b) Normalized KL divergence for AES-LUT implemen-
spatial/modular domains tation in both time and spatial/modular domains

Figure 5: Normalized KL divergence for vulnerable blocks within AES-GF and AES-LUT implementations (KLnorm.th = 0.5).

derive the gate-level KL divergence metric for the design and
each block using Equation 1.

We then calculate the Pearson correlation coeffcient be-
tween the KL divergence of the RTL and GTL design/blocks
(shown in Column 2 of Table III and Table II). The high
correlation coeffcient values (> 90%) indicate that the PSC
vulnerability assessment results generated by RTL-PSC at RTL
is almost as accurate as the assessment results retrieved from
GTL.

Next we validate the vulnerable block identifcation results
produced by RTL-PSC. Table II presents the correlation co-
effcient values between the KL divergence metric for each
block at RTL and gate-level. The KL metric for each block of
AES-GF and AES-LUT implementations at RTL has a high
correlation to that at gate-level indicating that our vulnerable

block identifcation technique at RTL is as accurate as gate-
level. Next we validate the RTL-PSC evaluation results w.r.t.
FPGA.

FPGA Validation: For FPGA silicon validation, we use
the SAKURA-G board [19] for AES implementations, which
contains two SPARTAN-6 FPGAs and is designed for research
and development on hardware security. Tektronix MDO3102
oscilloscope is used to measure the voltage drop between shunt
registers connected to the Vdd pin. The clock frequency of
the AES implementation is 24 MHz. The sampling rate and
bandwidth of the oscilloscope are 500 MS/s and 250 MHz,
respectively. Figure 6 shows the experimental setup for the
FPGA validation.

We frst map the AES-GF and AES-LUT designs on an
FPGA and then, apply the same plaintexts and keys as used at

http:implementations(KLnorm.th

Table II: Correlation coeffcient between KL divergence of RTL and GTL blocks.
AES-GF Blocks, RTL vs. GTL AES-LUT Blocks, RTL vs. GTL

SubByte Sbox GFinvComp MixColumn SubByte MixColumn
99.11% 99.55% 99.64% 94.73% 99.71% 96.80%

Table III: Correlation coeffcient between KL divergence at
RTL, GTL, and FPGA silicon level.

Benchmark RTL vs. GTL RTL vs. FPGA Silicon Level
AES-GF 99.57% 98.83%

AES-LUT 90.35% 80.80%

RTL, and measure the power consumption during encryption
operation. Following this, we derive the KL divergence metric
from the collected power traces. Then, we can calculate the
Pearson correlation coeffcient between the KL divergence at
RTL and FPGA (as shown in Column 3 of Table III). The
high correlation coeffcient values (> 80%) indicate that the
PSC vulnerability assessment results generated by RTL-PSC
at RTL is almost as accurate as FPGA assessment. In other
words, RTL-PSC can accurately analyze PSC vulnerability at
RTL.

Note that many implementation details, e.g., glitches caused
by the gate delay, clock gating, datapath gating, retiming,
clock and power network structure is not available at RTL
unlike gate-level and FPGA implementations. In spite of
these limitations, RTL-PSC is able to accurately identify PSC
vulnerability which proves the effcacy of the framework.

Also, note that it is not feasible to perform vulnerable block
identifcation at FPGA. The reason is that, it is not feasible to
isolate the power traces associated to each block from the post-
silicon power measurements. Therefore, we could not validate
vulnerable block identifcation at FPGA.

Comparison with State-of-the-art: Veshchikov et al. [20]
presented a comprehensive survey of simulators for side-
channel analysis, e.g., PINPAS [21], SCARD [22], OSCAR
[23], etc. These simulators mostly support software crypto
algorithms implemented in microprocessors, not hardware
crypto modules. On the other hand, TVLA [8] and χ2-test
[12] can work with hardware crypto designs. However, these
techniques only provide a pass/fail test and do not provide the
quantitative amount of leakage. AMASIVE framework [10]
identifes the hypothesis function for HW/HD model to be used
for side-channel vulnerability assessment. The major limitation
is that it can only identify the hypothesis function and the
fnal vulnerability assessment still needs to be carried out on a
prototype device. In contrast, RTL-PSC can quantitatively and
accurately assess PSC leakage of hardware crypto modules in
RTL level in time effcient manner.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an automatic evaluation frame-
work to perform a design-time evaluation of side-channel
attacks resistance for a cryptographic implementation at RTL.
Instead of measuring dynamic power, switching activity at
RTL is exploited by using VCS functional simulation to
estimate power profle to ensure the evaluation framework is
effcient, effective, and library independent. Once the power
estimation is complete, the KL divergence metric and SR
metric based on maximum likelihood estimation are combined
to identify the vulnerable design and blocks within the design.
Experimental results on AES-GF and AES-LUT implemen-
tations demonstrated that the methodology proposed in this
paper were able to perform leakage assessment and identify the
vulnerable design/blocks effciently, effectively, and precisely.

In our future work, the proposed evaluation framework will
be applied to evaluate vulnerabilities of the DPA protected
designs, thus providing information in terms of scaling and
effectiveness for leakage assessment of protected ones.

REFERENCES

[1] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Proceedings of the 19th Annual International Cryptology Conference
on Advances in Cryptology, ser. CRYPTO ’99. London, UK,
UK: Springer-Verlag, 1999, pp. 388–397. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646764.703989

[2] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” in Cryptographic Hardware and Embedded Systems -
CHES 2004, M. Joye and J.-J. Quisquater, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 16–29.

[3] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Cryptographic
Hardware and Embedded Systems - CHES 2002, B. S. Kaliski, ç. K.
Koç, and C. Paar, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 13–28.

[4] B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel, “Mutual information
analysis,” in Cryptographic Hardware and Embedded Systems – CHES
2008, E. Oswald and P. Rohatgi, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 426–442.

[5] T.-H. Le, J. Clédière, C. Canovas, B. Robisson, C. Servière, and J.-L.
Lacoume, “A proposition for correlation power analysis enhancement,”
in Cryptographic Hardware and Embedded Systems - CHES 2006,
L. Goubin and M. Matsui, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 174–186.

[6] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing
the Secrets of Smart Cards (Advances in Information Security). Secau-
cus, NJ, USA: Springer-Verlag New York, Inc., 2007.

[7] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Examining
smart-card security under the threat of power analysis attacks,” IEEE
Trans. Comput., vol. 51, no. 5, pp. 541–552, May 2002. [Online].
Available: https://doi.org/10.1109/TC.2002.1004593

[8] G. Becker, J. Cooper, E. DeMulder, G. Goodwill, J. Jaffe, G. Kenworthy,
T. Kouzminov, A. Leiserson, M. Marson, P. Rohatgi et al., “Test vector
leakage assessment (TVLA) methodology in practice,” in International
Cryptographic Module Conference, vol. 1001, 2013, p. 13.

[9] B. Gierlichs, K. Lemke-Rust, and C. Paar, “Templates vs. stochastic
methods,” in Cryptographic Hardware and Embedded Systems - CHES
2006, L. Goubin and M. Matsui, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 15–29.

[10] S. A. Huss, M. Stöttinger, and M. Zohner, “Amasive: an adaptable and
modular autonomous side-channel vulnerability evaluation framework,”
in Number Theory and Cryptography. Springer, 2013, pp. 151–165.

[11] S. A. Huss and O. Stein, “A novel design fow for a security-driven
synthesis of side-channel hardened cryptographic modules,” vol. 7, no. 1.
Multidisciplinary Digital Publishing Institute, 2017, p. 4.

[12] A. Moradi, B. Richter, T. Schneider, and F.-X. Standaert, “Leakage de-
tection with the x2-test,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, vol. 2018, no. 1, pp. 209–237, 2018.

[13] S. Kullback and R. A. Leibler, “On information and suffciency,” Ann.
Math. Statist., vol. 22, no. 1, pp. 79–86, 03 1951. [Online]. Available:
https://doi.org/10.1214/aoms/1177729694

[14] Y. Fei, A. A. Ding, J. Lao, and L. Zhang, “A statistics-based fundamental
model for side-channel attack analysis,” Cryptology ePrint Archive,
Report 2014/152, 2014, https://eprint.iacr.org/2014/152.

[15] S. S. Keller, “Nist-recommended random number generator based on
ansi x9. 31 appendix a. 2.4 using the 3-key triple des and aes algorithms,”
NIST Information Technology Laboratory-Computer Security Division,
National Institute of Standards and Technology, 2005.

[16] A. Lab., “Galois feld based aes verilog design,” 2007. [Online].
Available: http://www.aoki.ecei.tohoku.ac.jp/crypto

[17] S. Lab., “Lookup table based aes verilog design,” 2017. [Online]. Avail-
able: http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html

[18] “Synopsys,” http://www.synopsys.com/, 2018, accessed: 2018-04-20.
[19] S. Lab., “Sakura-g fpga board,” 2013. [Online]. Available:

http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html
[20] N. Veshchikov and S. Guilley, “Use of simulators for side-channel

analysis,” in Security and Privacy Workshops (EuroS&PW), 2017 IEEE

Figure 6: Experimental setup for FPGA validation.

http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html
http:http://www.synopsys.com
http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html
http://www.aoki.ecei.tohoku.ac.jp/crypto
https://eprint.iacr.org/2014/152
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1109/TC.2002.1004593
http://dl.acm.org/citation.cfm?id=646764.703989

European Symposium on. IEEE, 2017, pp. 104–112.
[21] J. den Hartog, J. Verschuren, E. de Vink, J. de Vos, and W. Wiersma,

“Pinpas: a tool for power analysis of smartcards,” in IFIP International
Information Security Conference. Springer, 2003, pp. 453–457.

[22] M. Aigner, S. Mangard, F. Menichelli, R. Menicocci, M. Olivieri,
T. Popp, G. Scotti, and A. Trifletti, “Side channel analysis resistant
design fow,” in Circuits and Systems, 2006. ISCAS 2006. Proceedings.
2006 IEEE International Symposium on. IEEE, 2006, pp. 4–pp.

[23] C. Thuillet, P. Andouard, and O. Ly, “A smart card power analysis
simulator,” in Computational Science and Engineering, 2009. CSE’09.
International Conference on, vol. 2. IEEE, 2009, pp. 847–852.

