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Abstract—We directly quantify the effect of infrequent calibra-
tion on the stability of microwave radiometer temperature mea-
surements (where a power measurement for the unknown source
is acquired at a fixed time, but calibration data are acquired at
variable earlier times) with robust and nonrobust implementations
of a new metric. Based on our new metric, we also determine a
component of uncertainty in a single measurement due to infre-
quent calibration effects. We apply our metric to experimental
data acquired from experimental ground-based calibration data
acquired from a NASA millimeter-wave imaging radiometer and
a NIST radiometer (Noise Figure Radiometer-NFRad). Based on
a stochastic model for the NFRad, we determine the random un-
certainty of an empirical prediction model of our stability metric
by a Monte Carlo method. For comparison purposes, we also
present a secondary metric that quantifies stability for the case
where calibration data are acquired at a fixed time, but power
measurements for the unknown source are acquired at variable
later times.

Index Terms—Calibration, measurement errors, microwave
radiometry, random noise, remote sensing, stability criteria,
statistics, stochastic processes, uncertainty quantification.

I. INTRODUCTION

M ICROWAVE radiometers [1], [2] are typically calibrated
based on power measurements of reference sources

with well-characterized temperatures. Given calibration data
acquired from the references, and the measured power of an
unknown source, one estimates the temperature of the unknown
source. The stability of this estimate depends, in part, on how
often one acquires calibration data as well as the particular
calibration method employed [3]–[6]. For instance, one might
estimate the unknown source temperature at time t based on
calibration data for two references at some past time t− τ or
multiple times before and after t. In this article, we focus on
the first approach that is typically denoted as the “two-point
calibration” method.

Manuscript received June 4, 2019; revised October 27, 2019 and January 20,
2020; accepted March 24, 2020. Date of publication April 16, 2020; date of
current version June 25, 2020. This work was supported by NIST and NASA.
(Corresponding author: Kevin J. Coakley.)

Kevin J. Coakley, Jolene Splett, and David Walker are with the National
Institute of Standards and Technology, Boulder, CO 80305 USA (e-mail:
kevin.coakley@nist.gov; jolene.splett@nist.gov; sixtiescycles@yahoo.com).

Mustafa Aksoy is with the University at Albany, State University of New
York, Albany, NY 12222 USA (e-mail: maksoy@albany.edu).

Paul Racette is with the National Aeronautics and Space Administration,
Greenbelt, MD 20771 USA (e-mail: paul.e.racette@nasa.gov).

Digital Object Identifier 10.1109/JSTARS.2020.2984004

Existing methods to quantify the stability of radiometer tem-
perature estimates include the variogram [7]–[10] and Allan de-
viation spectra [11]–[14]. Although valuable, neither approach
directly quantifies stability as a function of the variable time
delay between the data acquisition time of the calibration data
and the time at which the power of the unknown is measured. In
this article, we directly quantify how stability depends on this
variable time delay and quantify a component of uncertainty
due to infrequent calibration. In contrast, neither the variogram
nor the Allan deviation provides estimates of the component of
uncertainty due to infrequent calibration. To suppress the influ-
ence of outliers (e.g., warm-up effects in calibration studies),
we construct a robust version of our stability metric. (For a
related discussion of robust implementations of the variogram
metric and robust statistical analysis in general, see [8] and [15],
respectively.) We expect that discrepancies between the robust
and nonrobust implementations of any stability metric may
facilitate identification of outliers in a radiometer time series.
For informational purposes, we also study a second new metric
that quantifies instability when calibration data are acquired at
a fixed time, but power measurements for the unknown source
are acquired at variable subsequent times. We illustrate our met-
rics with experimental data acquired with the NIST radiometer
(Noise Figure Radiometer-NFRad) [16], [17] and ground-based
calibration data acquired from NASA’s millimeter-wave imag-
ing radiometer (MIR) [18]. For the NFRad, we attribute discrep-
ancies between robust and nonrobust implementations of our
metric to warm-up effects. We exclude data acquired during the
“warm-up” period from our analysis. Based on a nonstationary
stochastic model for the NFRad instrument, we determine the
random uncertainty of our stability metrics by a Monte Carlo
method. We expect our methods to apply to other instruments,
including the new generation of small satellites [19]–[24], [25].

II. METHODS

A. Linear Calibration Model

Suppose that the theoretical temperatures and powers of two
reference sources are T1, T2, P1, and P2, and the theoretical
temperature and power of an unknown source are Tu and Pu,
respectively. At time tc, denote the measured powers of the first
and second references as ˜P1(tc) and ˜P2(tc), respectively. At time
tu, denote the measured power of the unknown source as ˜Pu(tu).
According to the two-point calibration method (assuming
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perfect knowledge of T1 and T2), we estimate the temperature
of the unknown source at time tu as ˜Tu(tu), where

˜Tu(tu) = T1 +

[

˜Pu(tu)− ˜P1(tc)

˜P2(tc)− ˜P1(tc)

]

(T2 − T1). (1)

For compactness, we write ˜Tu(tu) as

˜Tu(tu) = ˜T (˜θtc ,
˜Pu(tu)) (2)

where a calibration dataset acquired at time tc is ˜θtc =

( ˜P1(tc), ˜P2(tc)). For the special case where power measure-
ments are free of random error but systematic error varies
linearly with time, the bias (systematic error) of the temperature
estimate for the unknown source is

˜Tu − Tu =

[

β(tu − tc)

P2(tc)− P1(tc)

]

(T2 − T1) (3)

where β is the temporal derivative of the systematic error for
any power measurement.

Here, we focus on quantification of instability due to stochas-
tic effects. For the experimental cases studied here, the primary
source of instability in radiometer temperature estimates is ran-
dom electronic gain variation with a complicated correlation
structure. In general, if there are deterministic trends in an
observed radiometer time series, one should ideally detrend the
time series and determine stability metrics from the residual time
series. As a caveat, it may be difficult in some applications to
distinguish deterministic trends from stochastic variations.

B. Stability Metrics

In our primary analysis method, the power of the unknown
is measured at some fixed time t, but the calibration data are
acquired at each of many variable times t− τ , where τ is
nonnegative. We define a “variable calibration (VC)” deviation
as εVC(t, τ), where

εVC(t, τ) = ˜T (˜θt, ˜Pu(t))− ˜T (˜θt−τ , ˜Pu(t)). (4)

In a secondary analysis, the calibration data are acquired at some
fixed time t, but power of the unknown is acquired at each of
many variable times t+ τ , where τ is nonnegative. We define a
“fixed calibration (FC)” deviation, εFC(t, τ), as

εFC(t, τ) = ˜T (˜θt, ˜Pu(t+ τ))− ˜T (˜θt, ˜Pu(t)). (5)

In our analysis, we assume that the observed deviation
εVC(t, τ) is a realization of a random variable that has an ex-
pected value of 0 and finite second moment (expected squared
value) < ε2VC(t, τ)) > that does not vary with t. The theoretical
value of our primary stability metric for quantifying the effect
of infrequent calibration is

SVC(τ) =

√

1

2
< ε2VC(t, τ) > (6)

where < X > denotes the expected value of a random variable
X observed in statistically similar experiments. We estimate the

theoretical value of SVC(τ) as

˜SVC(τ) =

√

1

2
ε2VC(t, τ) (7)

where ε2VC(t, τ) is the sample mean (determined from exper-
imental data) of squared VC deviations corresponding to all
distinct values of (t− τ, t) where data are acquired. The robust
version of our (7) estimate is

˜RSVC(τ) =
1.4826√

2
MAD(εVC(t, τ)) (8)

where MAD(εVC(t, τ)) is the median absolute deviation (MAD)
of the set of εVC(t, τ) deviations corresponding to all distinct
values of (t− τ, t), where data are acquired. To get the MAD
of n values, (x1, x2, . . . , xn), one first computes their median
xmed. The MAD is the median of the following absolute devia-
tions (|x1 − xmed|, |x2 − xmed|, . . . , |xn − xmed|). As discussed
in many references, including [26], the factor 1.4826 in (8)
ensures that the scaled MAD of many realizations of a Gaus-
sian random variable converges to the standard deviation of
the Gaussian distribution (to within five digit precision). This
follows from the observation that when applied to random
variables with symmetric distributions, the MAD converges to
1/2 times the interquartile range of the distribution [15], which
is approximately 0.67448 σ for a Gaussian distribution with
standard deviation σ.

For cases where the asymptotic limit of ˜RSVC(τ) determined
from data pooled from N statistically similar and independent
experimental datasets as N → ∞ is defined, the theoretical
value of RSVC is this limit. We define theoretical values for the
nonrobust and robust version of our second metric in a similar
way for˜SFC(τ) and ˜RSFC(τ) in terms of the deviation εFC(t, τ).

III. RESULTS

A. NIST Radiometer

1) NFRad Measurement System: At the NIST, noise powers
from sources are measured with NFRad—a total-power noise
radiometer [16], [17]. The NFRad does not detect power with a
typical square-law detector (such as diodes and thermocouples).
Instead, the NFRad detects the power of a source with a thermis-
tor that responds to injected RF power by adjusting the amount
of dc power dissipated in the thermistor. The RF power of the
source is inferred from the reduction of dc power necessary to
maintain the thermistor in its original state (where no RF power
is injected) based on the dc substitution principle [27].

The NFRad consists of an ultralinear amplifier chain ter-
minated with a NIST Type-IV power meter. The ultralinear
amplifier chain refers to the entire radiometer detection, in-
cluding the amplifier, mixer, and detector. The two calibration
noise standards are an ambient 50-Ω load and a cryogenic load
immersed in a liquid nitrogen bath. Multiple noise sources may
be connected to the measurement system at any one time to
facilitate intercomparisons between devices.
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Fig. 1. Observed NFRad time series for (a) no source, (b) ambient source,
(c) cryogenic source, and (d) warm source. Solid vertical line is the data selection
threshold. To improve the resolution of the y-axis scale, we plot the difference,
D, between the observed voltage and 2.62 V. For each cycle, we assume that
powers are determined for the unknown and reference sources simultaneously.
The time interval between successive cycles is approximately 26 s.

We estimate the power of any source (reference or unknown)
as ˜P , where

˜P =
˜V 2

off − ˜V 2
source

˜R
(9)

where ˜Voff corresponds to measured voltage when no RF power
is injected, ˜Vsource corresponds to measured voltage when RF
power from a source is injected, and ˜R = 200Ω is the nominal
resistance of the thermistor in the power meter. The uncertainty
of this resistance is negligible.

The NFRad operates in a band between 1 and 12 GHz. During
each cycle of the experiment, we measure four voltages: Voff and
Vsource (for the unknown source and the two calibration sources).
For each case, the average of ten repeat voltage measurements
(acquired every 50 ms) are averaged. The wait time between the
different cases within any cycle is 500 ms. For analysis purposes,
we assume that the data acquisition times for power measure-
ments within any cycle are the same. The interval between cycles
is approximately 26 s.

2) Experimental Data: With the NFRad, we observe voltage
time series corresponding to three sources labeled as “Warm,”
“Ambient,” and “Cryogenic” (see Fig. 1). The corresponding
temperatures for the three sources are 302.9, 296.9, and 84.25 K.
In our study, the “Warm” source serves as the unknown source,
and the other two sources serve as calibration reference sources.

In NFRad experiments, early measurements are typically un-
reliable due to warm-up effects. When we determine our stability
metrics from the full data (including the first 200 cycles), SVC
and RSVC are not in good agreement [see Fig. 2(a)]. We expect

Fig. 2. Metrics determined from NFRad data. (a) Estimated SVC from full
and reduced data. The reduced data excludes the first 200 cycles of data (see
Fig. 1). (b) Estimated RSVC from same data as analyzed in (a). (c) Estimated
SFC from full and reduced data. (d) Estimated RSFC from same data as analyzed
in (c). The interval between adjacent cycles (where data are acquired) is τo ≈
26 s. The normalized lag, τ/τo, takes positive integer values (1, 2, 3, . . . ).

this discrepancy since SVC does not down-weight outliers due
to warm-up effects, whereas RSVC does. In contrast, when we
determine these metrics from the reduced data (which excludes
the first 200 cycles), the two metrics are in good agreement
[see Fig. 2(b)]. Thus, the dramatic discrepancy between SVC
and RSVC (when determined from the full data) indicates the
presence of outliers due to warm-up effects. In general, we
expect that comparison studies of SVC and RSVC may serve
as a diagnostic for detecting other sorts of outliers besides those
produced by warm-up effects. Similar comments apply to SFC
and RSFC [see Fig. 2(c) and (d)].

3) Observed Stability Metrics: We determine our metrics
from the reduced data, which correspond to a time series with
1000 samples. The spacing between samples is τ0 = 26s. Hence,
the time series that we analyze was acquired during an ob-
servation time of 7.2 h. For τ/τo ≥ 1 (where τ0 ≈ 26 s), we
characterize observed values of SVC and SFC (see Fig. 3) with
the following empirical prediction models:

̂SVC(τ/τo) = (α1 + β1(τ/τo)
γ1)K (10)

and

̂SFC(τ/τo) = (α2 + β2(τ/τo)
γ2)K. (11)

We determine the model parameters by the method of least
squares, where all parameter estimates are constrained to be
nonnegative (see Table I).

We model each observed NFRad voltage time series as a
realization of a nonstationary stochastic processes (see the
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Fig. 3. Stability metrics determined from reduced NFRad data. (a) Estimated
SVC. (b) Estimated SFC. We predict the metrics determined from observed
data with empirical models [see (10) and (11)]. We show the average of metrics
determined from 500 realizations of simulated data (see the Appendix). We
denote this average as the Monte Carlo prediction. The relative uncertainties of
the predicted metric values determined by our empirical models [see (10) and
(11)] generally increase with lag and range from approximately 2.5–5.5% for the
lags shown. The interval between adjacent cycles (where data are acquired) is
τ0 ≈ 26 s. The normalized lag, τ/τ0, takes positive integer values (1, 2, 3, . . . ).

TABLE I
ESTIMATED PARAMETERS AND THEIR ASSOCIATED STANDARD ERRORS FOR

SVC AND SFC METRICS FOR NFRAD DATA

Appendix). Based on the values of the simulation model param-
eters determined from the observed NFRad data, we simulate
many realizations of the voltage time series. From each realiza-
tion of a set of four simulated voltage time series (Voff, unknown
source voltage, and voltages for the two calibration sources),
we determine power time series for the unknown and the two
calibration reference sources in exactly the same way that we
determined power time series from the observed NFRad data.
(See Fig. 4 for comparison of observed and example realizations
of simulated power.)

From each realization of a set of simulated power time series,
we compute SVC and SFC metrics at all lags of interest and
determine the prediction model [see (10) and (11)] parameters.
From these results, we determine the standard errors of the
prediction model [see (10) and (11)] parameters (see Table I) and
the standard error of the prediction at each lag (see Fig. 3). Even
though the relative uncertainties of the model parameters shown

Fig. 4. NFRad power time series for (a) observed ambient power, (b) simulated
ambient power, (c) observed cryogenic power, (d) simulated cryogenic power,
(e) observed warm power, and (f) simulated warm power. For each cycle, we
assume that powers are determined for the unknown and reference sources
simultaneously. The interval between adjacent cycles (where data are acquired)
is τ0 ≈ 26 s.

in Table I are generally greater than 50%, the lag-dependent
relative uncertainties of the empirical prediction models [see
(10) and (11)] range from 2.5% to 5.5% (see Fig. 3).

B. NASA Radiometer

1) Experimental Data: The NASA MIR is a five-receiver
airborne radiometer built for remote sensing of water vapor,
precipitation, and clouds [18]. The MIR is a total power ra-
diometer with periodic through-the-antenna calibrations with
two internally mounted blackbody references. We analyze data
acquired from a 6-h laboratory experiment configuration of
MIR (see [28] for more details). Three calibration targets were
viewed periodically. The integration time for each measurement
was 200 ms. Accounting for latency between target views, the
cycling time was 1.16 s. Based on measured powers for the
references and unknown, temperature is estimated with (1). The
temperatures of the hot and cold reference sources are approx-
imately 325.6 and 293.7 K, respectively. A third source with
a temperature of approximately 79.0 K serves as the unknown
source in our study.

C. Stability Metrics

As a safeguard against possible warm-up effects, we fit the
above models to a subset of the calibration data that excludes
the first 28% of the calibration data. The number of samples in
the time series that we determine our metrics from is 12 890.
We stress that we analyze only a subset of all the data presented
in [28]. The spacing between samples is τ0 ≈ 1.16 s. Hence, the
time series that we analyze (see Fig. 5) corresponds to a data
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Fig. 5. NASA MIR power time series. (a) Unknown source. (b) Cold reference
source. (c) Hot reference source. The interval between adjacent cycles where
data are acquired is approximately 1.16 s.

TABLE II
ESTIMATED PARAMETERS AND THEIR STANDARD ERRORS FOR EMPIRICAL

MODELS OF SVC AND SFC METRICS FOR THE MIR DATA

acquisition time of 4.15 h. We characterize the observed values
of SVC and SFC with empirical prediction models determined
with model fitting software [29] (see Fig. 6 and Table II) as

̂SVC(τ/τ0) =
a1 + c1(τ/τo) + e1(τ/τo)

2

1 + b1(τ/τo) + d1(τ/τo)2
K (12)

and

̂SFC(τ/τ0) =
a2 + c2(τ/τo) + e2(τ/τo)

2

1 + b2(τ/τo) + d2(τ/τo)2
K. (13)

In contrast to the NFRad analysis, we failed to develop a
stochastic model for the MIR data and determine standard
errors for metric model parameters by Monte Carlo methods.
Identification of such a stochastic model for the MIR data is a
worthy topic but beyond the scope of this article.

For the NFRad, the maximum (minimum) values of observed
SVC and SFC [see Fig. 3(a) and (b)] are similar for the lags
considered. However, for the MIR, the maximum value (over all

Fig. 6. Stability metrics determined from MIR data. In (a) and (b), we predict
the observed metrics defined in (12) and (13) with rational function models. The
interval between adjacent cycles (where data are acquired) is τo ≈ 1.16 s. The
normalized lag, τ/τo, takes positive integer values (1, 2, 3, . . . ).

lags) of observed SVC (about 1.7 K) is over 50% larger than the
maximum value of observed SFC (about 0.8 K). Furthermore,
the minimum value of observed SVC (about 1.5 K) is much
larger than the minimum value of observed SFC (about 0.2 K).
This disagreement is very plausible because the difference of
the temperatures of two MIR reference sources (31.90 K) is
much less than than the difference of the temperatures of the
two NFRad reference sources (212.65 K). Hence, for the MIR,
it is very plausible that the denominator term in (1) produces
more variability in SVC than in SFC.

IV. REMARKS

A. Uncertainty Component Due to Infrequent Calibration

For any value of τ > 0, no matter how small, we expect
SVC(τ) to be nonzero, since random errors in power measure-
ments for any two distinct times are different. Hence, SVC has
a discontinuity at τ = 0. In the variogram literature, a similar
effect called the nugget effect can produce a discontinuity in
the variogram at lag 0. (See [7] for more discussion of this
point.) For the two radiometers, the empirical prediction model
parameters α1 in (10) and a1 in (12) correspond to the discon-
tinuity in SVC/K at τ = 0. Assuming that the expected value
of the deviation defined in (4) is 0, 2SVC2(τ) is a variance. We
decompose this variance into the sum of an irreducible variance
u2

ir and a variance associated with infrequent calibration effects
u2

ic(τ) (e.g., temporal variations in gain). Assuming that mea-
surement errors produced by these two effects are independent,
we conclude that

2SVC2(τ) = u2
ir + u2

ic(τ) (14)
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Fig. 7. (a) Empirical prediction models for SVC for the NFRad [see (10)] and
the MIR [see (12)]. (b) Estimate of component of uncertainty due to infrequent
calibration, ũic(τ) (15), for a measurement of the temperature of the unknown
source.

where the irreducible variances for the NFRad and the MIR are
(uir/K)2 = 2(α1)

2 and (uir/K)2 = 2(a1)
2, respectively. Given

an estimate of uir, ũir, we quantify the component of uncertainty
due to infrequent calibration in any one temperature measure-

ment (given that 2̂SVC
2
(τ) ≥ ũ2

ir) as

ũic(τ) =

√

2̂SVC
2
(τ)− ũ2

ir. (15)

For other cases, ũic(τ) = 0.
For the NFRad and the MIR, the estimates ofα1 and a1 (listed

in Tables I and II) are 1.58 and 1.51, respectively. In Fig. 7, we
show how ũic(τ) varies with τ for both radiometers. We stress
that neither the variogram metric nor the Allan variance metric
yields an estimate ũic(τ).

For the case where the power of the unknown at a particular
cycle is determined with calibration data acquired at the same
cycle, i.e., for the case where τ = 0, we denote the theoretical
variance of the temperature estimate at each time as u2

c (assum-
ing that the observed temperature time series is stationary). For
the general case where calibration data and the unknown are
not acquired during the same cycle, we express the theoretical
variance of the temperature estimate as u2

combined(τ), where

u2
combined(τ) = u2

c + u2
ic(τ). (16)

We determine u2
c based on the analysis of the observed

time series of temperature estimates, where powers of the un-
known and calibration reference sources are acquired at the
same cycle. In particular, with the auto.arima function [30]
in R [31] (a public domain software system), we fit various
candidate autoregressive-integrated moving average (ARIMA)

models (see the Appendix for a definition of ARIMA models)
to the temperature time series, and select the one that minimizes
the corrected Akaike information criterion (AICc) [32], [33].
For the NFRad and the MIR, the selected models are AR(1)
and AR(5), respectively. Since AR models are stationary, our
model selection results are consistent with the hypothesis that
the observed time series for the τ = 0 case is stationary. The
associated estimates of uc and ũc, for the NFRad and the
MIR are 1.79 and 1.49 K, respectively. For the case where
τ > 0, we express the combined uncertainty of the temperature
estimate as

ũcombined(τ) =
√

ũ2
c + ũ2

ic(τ). (17)

In summary, the major steps in our analysis for general
applications are the following.

1) For each τ > 0, estimate SVC(τ) from all the data [see
(4) and (7)].

2) Estimate the discontinuity in SVC at τ = 0 with an appro-
priate empirical model for SVC(τ).

3) Estimate the irreducible variance u2
ir as twice the square

of the discontinuity determined in step 2.
4) Determine the component of uncertainty due to infrequent

calibration at lag τ as: ũic(τ) =

√

2̂SVC
2
(τ)− ũ2

ir, where
̂SVC(τ) and ũ2

ir are estimates of SVC(τ) and the irre-
ducible variance u2

ir, respectively.

B. Comparison of Stability Metrics

For the MIR data, we compare variograms to our SVC metric
(shown previously in Fig. 6). We define the variogram at lag τ
as

γ(τ) = < ε2var(t, τ) > (18)

where

εvar(t, τ) = ˜T (˜θt, ˜Pu(t))− ˜T (˜θt−τ , ˜Pu(t− τ)). (19)

In the variogram study, temperature estimates are determined
at each cycle. However, distinct calibration data for the cali-
bration sources are not acquired at each cycle. Instead, distinct
calibration data are acquired every Δ cycles. We determine a
temperature estimate at each cycle with calibration data acquired
before or at the cycle of interest. For the case where the power
of the unknown is measured at time t, but calibration sources
are not, we set ˜θt = ˜θt∗ , where t∗ < t is the calibration data
acquisition time nearest to t that also precedes t. In the variogram
plots (see Fig. 8), τ corresponds to the lag between the two cy-
cles where temperature estimates are determined. The assumed
calibration data for the two cycles may be the same or vary and
may not be acquired at either cycle. Hence, interpretation of the
variogram is more complicated than interpretation of the SVC
metric.

For lags less than approximately 300 cycles, the variogram
corresponding to Δ = 500 cycles is consistently lower than the
variograms corresponding to Δ = 1 cycle and Δ = 50 cycles
(see Fig. 8). That is, according to the variogram, a less-frequent
calibration scheme provides more stable temperature estimates
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Fig. 8. For MIR data, we compare ˜SVC (same as in Fig. 6) to variograms
determined for cases where the interval between acquisition of calibration data,
Δ, varies. As described in Section IV-B, variograms forΔ > 1 cycle correspond
to the case where earlier (relative to times when the power of the unknown source
is determined) calibration data are assumed for power estimation. For Δ = 1
cycle, at each cycle, power measurements of the unknown source are determined
with calibration data acquired at that cycle.

relative to a more frequent calibration scheme for lags less than
300 cycles. This strange behavior is consistent with our claim
that interpretation of variogram results is more complicated than
interpretation of SVC results (for the examples studied here).
Since SVC and the variogram are conceptually different, we do
not expect the two metrics to agree.

C. Other Calibration Schemes

In this article, we quantify stability for a calibration scheme
where calibration data are acquired before the power of the un-
known source is measured. Our stability metrics depend on both
gain variations and possible temporal variations in the brightness
temperatures of the reference sources. For the experimental data
analyzed here, such brightness temperature variations affect our
stability metrics in a very small or negligible way. In actual
satellite systems, unknown source temperatures are typically
determined with more complicated calibration schemes. For
instance, the temperature estimate of the unknown source may
depend on calibration data acquired before and after the time at
which the power of the unknown source is measured. Next, we
discuss a possible modification of our primary stability metric
for application to more complicated calibration schemes.

Suppose that we have fine-scale calibration data at every
time tu where the power of the unknown source is measured.
Furthermore, suppose that we subsample these data to produce
data on a coarse temporal grid, where the interval between suc-
cessive samples is Δ. Suppose that the closest time to tu where
there is coarse-scale calibration data is t∗ = tu + τ . Denote the

temperature estimate of the unknown source at tu determined
with the closest coarse-scale calibration data based on the more
complicated, but unspecified, calibration scheme as

˜T (tu, τ) (20)

and define a residual

ε(tu, τ) = ˜T (tu, 0)− ˜T (tu, τ) (21)

where ˜T (tu, 0) is determined, in part, from fine-scale calibration
data. Assuming that the mean square value of ε(tu, τ) exists and
does not depend on tu, a natural candidate for a modified version
of SVC is

SVCextend(τ) =

√

1

2
< ε2(tu, τ) > (22)

where the expectation would be over all possible values of tu
where −Δ/2 ≤ τ ≤ Δ/2. One would estimate SVCextend(τ)
from experimental data in a way similar to how SVC is de-
termined [see (7)]. The other steps to determine the component
of uncertainty due to infrequent calibration would be similar to
those listed at the end of Section IV-A. Application and analysis
of this extended metric to more complicated calibration schemes
is worthwhile but beyond the scope of this article.

V. SUMMARY

We directly quantified the effect of infrequent calibration
on the stability of microwave radiometer temperature measure-
ments acquired with the NFRad and the MIR with a new metric.
For the calibration scheme studied, we also identified a com-
ponent of uncertainty in a temperature estimate at a particular
time based on the lag between the times at which the unknown
power and the powers of the calibration sources are acquired.
In contrast, existing stability metrics such as the variogram and
Allan variance do not provide an estimate of this uncertainty
component.

We developed a nonstationary stochastic model for the NFRad
and determined random uncertainties of an empirical prediction
model of our metric by Monte Carlo simulation. For the NFRad,
we demonstrated that warm-up effects produced discrepancies
between robust and nonrobust implementations of our metric.
Hence, we expect that discrepancies between the two implemen-
tations may facilitate identification of outliers. For comparison
purposes, we also studied a secondary metric that quantified
stability for the case where calibration data are acquired at a
fixed time, but power measurements for the unknown source are
acquired at variable later times.

For the NFRad and the MIR, we fit many candidate empirical
prediction models to our observed metrics and selected a parsi-
monious model from those that agreed best with observed values
according to a root-mean-square deviation criterion. Since the
radiometer hardware are different and the temperatures of the
reference sources and unknown sources are different, differences
in the selected mathematical forms are not unexpected. In gen-
eral, the mathematical form of the “best” empirical prediction
model may vary for other radiometers.
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In our analysis, we determine our metric from relatively
short time series. For sufficiently long time series, one might
determine metrics from contiguous time intervals and search
for temporal variations in the expected value of the metrics.
Given a sufficiently long time series, one might determine a
metric for each of many contiguous time intervals and determine
metric uncertainty due to random effects based on these repeat
measurements.

Due to size and mass limitations, small satellites typically
lack blackbody targets and utilize external targets for calibration.
Because these external targets cannot be observed as frequently
as internal references, our methods are relevant to small satel-
lites. Our methods should be useful for ground-based calibration
studies as well.

APPENDIX

STOCHASTIC MODEL FOR NFRAD DATA

We model the unobserved gain time series, G, as a stochastic
process G = 1 + z, where z is an ARIMA time series. Our dis-
cussion of ARIMA processes closely follows [34]. An ARIMA
process is a stochastic process that can be “differenced” to yield
a stationary and causal autoregressive moving average (ARMA)
process. More specifically, if {Xt} is an ARIMA(p, d, q) pro-
cess, Yt := (1−B)dXt is a causal ARMA(p, q) process, where
BXj := Xj−1 and d is a nonnegative integer. If {Xt} is an
ARMA(p, q) process, it satisfies

Xt − φ1Xt−1 − · · · − φpXt−p

= Zt + θ1Zt−1 + · · ·+ θqzt−q (23)

where {Zt} is white noise and φ1, . . . , φp and θ1, . . . , θq are
model parameters to be determined. (In a causal ARMA model,
Xt can be expressed as a weighted sum of realizations of the
white noise terms at time t and all times earlier than t.) ARIMA
processes where d = 0 are stationary ARMA(p, q) processes.
The terms AR(p) and MA(q) are shorthand for ARMA(p, 0) and
ARMA(0, q) processes, respectively.

A simple example of an ARIMA process is a Gaussian random
walk (a Brownian motion sampled at uniformly spaced times)
Xt = Z1 + Z2 + · · ·Zt, where Z1, Z2, . . . , Zt are independent
and identically distributed Gaussian random variables with mean
0 and variance σ2, and X0 = 0. Since the variance of Xt is σ2t,
{Xt} is not a stationary process. However, Yt := (1−B)Xt =
Zt is stationary with varianceσ2 and mean 0. Thus, the Gaussian
random walk is an ARIMA(0,1,0) process. Although nonsta-
tionary, one can define the generalized power spectrum of the
Brownian motion process as S(f) ∝ f−2 [35].

We stress that we simulate one realization of G that applies
to all the sources as well as the observed Voff time series. In
our analysis, we approximate G as a scaled version of Voff.
Based on this approximation, we determine an ARIMA model
for G based directly from analysis of the observed Voff time
series. In particular, we fit ARIMA models with varying orders
to the Voff time series and select the model that minimizes the
AICc [32], [33], with the auto.arima function [30] in R [31]
(a public domain software system). This approach yields an
ARIMA(2,1,3) model. Hence, our initial model for z is the

TABLE III
ESTIMATED PARAMETERS FOR INITIAL MODEL DESCRIBED BY (24) AND (25)

following nonstationary time-series model:

yt = φ1yt−1 + φ2yt−2 + θ1et−1 + θ2et−2 + θ3et−3 + et
(24)

where yt = zt − zt−1 and yt is an ARMA(2,3) stochastic pro-
cess. The et term is Gaussian white noise with variance σ2

e .
We do not expect a scaled version of the gain to exactly

predict Voff. Hence, we model the observed Voff times series
as the product of the unobserved stochastic gain function G and
a scale factor βoff plus additive Gaussian white noise, ẽoff(t), as
follows:

Voff(t) = βoff G(t) + ẽoff(t). (25)

We set βoff equal to the median value of the observed Voff

time series. Estimation of the variance of the additive Gaussian
white noise term, ẽoff(t), in our model for Voff is nontrivial
because G(t) contains additive white noise. We first estimate
the variance of the additive noise in Voff at any time, σ2

eoff
, as the

sample variance of the Voff time series. As a caveat, we expect
that the sample variance of Voff is an inflated estimate of the
additive noise variance for various reasons. Our goal was to get
a conservative estimate of the additive noise variance and then
estimate a scaled version (where the scaling factor is less than
1) of it in a later analysis. (The initial estimates of the variances
of additive noise terms for each reference source were similarly
obtained.) We estimate the standard deviation of the additive
noise terms in our model [see (25)] for Voff, σ̃eoff , as

σ̃eoff = ασeoff (26)

where α is an adjustable scaling factor. Later, we scale et in
our (24) by replacing et with ẽt = κet where κ is adjustable.
However, in the initial model described by (24) and (25), we do
not scale et. Table III lists estimated model parameters for the
model of Voff described by (24) and (25).

We model the voltage time series for any particular reference
source as

Vref(t) = βref G(t) [1 + Θ(t)] + α εref(t) (27)

where Θ is an AR(1) time series. Thus, we have

Θ(t) = γ1 Θ(t− 1) + δ(t) (28)

where δ(t) is Gaussian white noise with adjustable variance σ2
δ

and γ1 falls in the interval (−1, 1). We stress that each simulated
realization of the Θ time series applies to simulated time series
that corresponds to the two reference sources and the unknown
source. Like before,βref is a scale factor set to the median value of
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TABLE IV
ESTIMATED MODEL PARAMETERS FOR SOURCES

TABLE V
ADDITIONAL MODEL PARAMETERS DETERMINED BY A GRID SEARCH WHERE,

FOR THE UNKNOWN SOURCE, WE MINIMIZE THE MEAN-SQUARED

DIFFERENCE BETWEEN OBSERVED SVC AND THE MEAN VALUE OF SVC
DETERMINED FROM 15 SETS OF SIMULATED TIME SERIES FOR THE TWO

REFERENCE SOURCES AND THE UNKNOWN SOURCE

the reference time series of interest. The term εref(t) is Gaussian
white noise, and α is the adjustable scaling factor discussed
earlier. We list estimated model parameters determined from
Voff and the reference sources directly in Tables III and IV. In
Table V, we list parameters determined from a grid search, where
we minimize the difference between the observed value of SVC
and the mean value of 15 simulated realizations of SVC for all
candidate values of the relevant model parameters.

In our study, we assume that the expected value of observed
and simulated metrics exist. As a technical aside, for our Gaus-
sian noise model, the expected value and the expected squared
value (and hence the theoretical variance) of our simulated
metric may not exist because the possible values of simulated
normal (Gaussian) random variables are unbounded. To make
this discussion more clear, we note that if observed powers are
realizations of independent Gaussian random variables, the ex-
pected value and variance of the temperature estimate [see (1)] is
a ratio of correlated Gaussian random variables, and its expected
value and variance do not exist [36]. However, as discussed
in [36], if the denominator is simulated from a truncated Gaus-
sian distribution that sets a lower bound on the realizations, the
ratio has well-defined expected value and theoretical variance.
One can set this lower bound so that the probability of simulating
a realization below the threshold from the original (untruncated)
distribution is negligible. Hence, for theoretical reasons, it is
reasonable to consider a truncated normal distribution model for
noise. For instance, simulate realizations in the range (−kσ, kσ),
where σ is the standard deviation of the noise and k is, say, 10.
For our problem, we expect that such a truncation yields metrics
with well-defined theoretical expected values and theoretical
variance. Therefore, from a conceptual perspective, we should
regard our simulation model as sampling from such truncated
distributions. We stress that the number of realizations that one
would have to simulate to observe a realization that differs from
0 by more or less than ten standard deviations is so large; the
probability of observing one is negligible.
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