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Abstract

Scanning electron microscopy (SEM) is a practical tool to determine the di-

mensions of nanometer-scale features. Conventional width measurements use

arbitrary criteria, e.g., a 50 % threshold crossing, to assign feature boundaries

in the measured SEM intensity profile. To estimate the errors associated with

such a procedure, we have simulated secondary electron signals from a suite of

line shapes consisting of 30 nm tall silicon lines with varying sidewall angle and

corner rounding. Four different inelastic scattering models were employed in

Monte Carlo simulations of electron transport to compute secondary electron

image intensity profiles for each of the shapes. The 4 models were combinations

of dielectric function theory with either the single-pole approximation (SPA)

or the full Penn algorithm (FPA), and either with or without Auger electron

emission. Feature widths were determined either by the conventional thresh-

old method or by the model-based library (MBL) method, which is a fit of

the simulated profiles to the reference model (FPA + Auger). On the basis of

these comparisons we estimate the error in the measured width of such features

by the conventional procedure to be as much as several nanometers. A 1 nm

difference in the size of, e.g., a nominally 10 nm transistor gate would sub-

stantially alter its electronic properties. Thus, the conventional measurements
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do not meet the contemporary requirements of the semiconductor industry. In

contrast, MBL measurements employing models with varying accuracy differed

one from another by less than 1 nm. Thus, a MBL measurement is preferable

in the nanoscale domain.

Keywords: critical dimension (CD), inelastic scattering, JMONSEL,

low-energy electron transport, nanometer scale dimensional metrology, SEM,

simulation

1. Introduction

Electrons traversing a nanostructure pick up information about its shape,

dimensions, and electronic properties [1]. In the preceding decades, electron

microscopies have become increasingly sensitive to this information and have

accordingly gained widespread use as practical tools to gain insight into the

physical properties of material structures at the nanometer scale [2]. However,

in order to reliably extract accurate information from the measured signal, a

sound theoretical understanding of electron interactions in complex material

geometries is often indispensable. Thus, the modeling of electron transport

remains a topic of active development, both from a fundamental point of view

and for a variety of contemporary applications in fields as varied as surface

analysis and spectroscopies [3], surface tribology and chemical analysis of thin

films [4], catalysis [5, 6], plasmonics, and nanoscale metrology [7, 8, 9], to name

but a few.

In the present work we show by way of example how a dedicated effort in

modelling cross sections for the inelastic scattering of low-energy electrons in a

general-purpose Monte Carlo code for the simulation of electron transport proves

fruitful and allows a state-of-the-art physics-based procedure to outperform an

ad hoc and de facto industry-standard procedure for nanoscale dimensional anal-

ysis. For the sake of definiteness, we focus on the geometry depicted in the lower

panel of Fig. 1, namely that of a Si line of 30 nm height and variable width,

wall-tilt angle, and upper-corner curvature radius, resting on a flat substrate of
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the same material. This geometry is relevant for the semiconductor industry:

it describes, among others, key elements of modern FinFET transistors.

For such geometries, dimensional measurements consist in scanning a kilo-

electronvolt electron beam across the line under investigation, thus obtaining

its SEM intensity profile. The conventional approach to measure the linewidth

from the acquired SEM signal relies on an ad hoc assignment of the position of

the line edges, often taking the full width at half maximum (FWHM) of the mea-

sured profile as width of the line. From a practical point of view, this approach

is certainly appealing: it is straightforward to implement, its computational

cost is negligible, it is independent of the material composition and electronic

properties of the patterned line, and it does not require detailed knowledge of

electron transport through complex material geometries.

However, the conventional method described above suffers from an obvious

source of uncertainty which renders it questionable for measurements at the

nanometer scale: the position of the line edge does not result from physical

considerations, but rather from an operational definition adopted by convention.

Furthermore, the effect of other line parameters (height, wall-tilt angle, corner

curvature radius, etc.) on the position of the edge is not accounted for. As shown

below, the error incurred with such a measurement can easily approach 2 nm.

This can be dismissed as nearly irrelevant for linewidths above a few 100 nm,

but not for contemporary linewidths of 7 nm to 15 nm: indeed, variations by

more than 1 nm in the fin width of a FinFET transistor lead to important

changes in its effective capacitance and effective current [10]. For this reason,

modern linewidth measurements need to be accurate within a fraction of 1 nm,

that is, within a few interplanar distances in crystalline materials. Clearly, the

conventional approach is not sufficiently accurate for these applications.

Given the lack of a standard against which to compare SEM linewidth mea-

surements, an alternative approach is necessary to estimate the error incurred by

the conventional measurement outlined above. A particularly fruitful approach

consists in focusing efforts on understanding how the SEM signal arises on the

basis of sound physical models. We have performed JMONSEL [7] Monte Carlo
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simulations of electron transport, using the NIST Electron Elastic-Scattering

Cross-Section Database (NIST-SRD64) for the elastic cross sections and for

inelastic electron scattering in bulk media a semiclassical dielectric formalism

description of inelastic electron collisions based on a state-of-the-art Full-Penn

dielectric function extension model, the relevant aspects of which are outlined

below. Note that we disregard surface plasmon excitations at the substrate

surface and on the nanostructured lines. Under the assumption that our most

realistic electron-transport model constitutes a sufficiently realistic description

of the formation of the SEM signal, we have simulated linescan profiles for a bat-

tery of lines of known (chosen) width, wall-tilt angle, and corner curvature radii,

taken as surrogates of actual SEM linescans. As shown below, the conventional

linewidth measurement applied to our battery of simulated linescans revealed

errors which do not meet the contemporary requirements of the semiconductor

industry.

An alternative measurement approach has been developed [11, 7], consisting

in generating a library of Monte-Carlo simulated linescans I(p) using state-

of-the-art interaction cross sections, for a dense mesh of various geometrical

parameters p (e. g. line width, wall-tilt angle, top curvature radius, etc.), at

a given primary energy for a given material. A nonlinear least-squares fit of

the parameters p to an experimental (or, in this work, simulated) linescan Ĩ

yields a measurement of the geometrical properties of the actual line. In this

work we examine the extent to which a model-based measurement incurs errors

smaller than the conventional measurement outlined above, and whether the

uncertainty required by the semiconductor industry (smaller than 1 nm) is at-

tained. Villarrubia and Ding previously reported a similar exercise to determine

the sensitivity of width determinations to model assumptions for a set of mod-

els [12]. The present comparison differs from the earlier one inasmuch as the

earlier set of models did not include the industry conventional method, nor did

it show the effects of the choice of dielectric-function model on the measured

linewidth. In this work we compare the performance of an inelastic electron

scattering model based on the single-pole approximation (SPA) vs. the full
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Penn algorithm (FPA), both described below.

Note that our procedure only allows us to determine the sensitivity of the

model-based procedure to the use of different dielectric-function models in the

description of low-energy inelastic electron collisions in solids. Thus, our anal-

ysis based on those sensitivities estimates only model-associated uncertainty

components and omits others associated with scan linearity, image noise, scale

calibration, etc. Despite that the former is not the total uncertainty, it is nev-

ertheless relevant to compare it to the measurement uncertainty required for

semiconductor electronics or other relevant technological applications. Since

additional error sources can only increase the total uncertainty, each of the com-

ponents, including this one, must be smaller than the tolerance, and methods to

drive down the uncertainty of each of those that initially exceed the tolerance

are necessary. When referring to the model-based procedure, the term measure-

ment will be used without further stress that the linescans to which it is applied

in this work were obtained from a Monte Carlo simulation.

The article is structured as follows. In section 2 we provide a general

overview of the employed electron transport model used to describe the for-

mation of the SEM signal, focusing on the inelastic-scattering cross section. We

discuss the shortcomings at low kinetic energies of the frequently used SPA,

and how these are overcome by the use of the more realistic FPA. In section

3 we describe the combinations of line shapes and instrument parameters that

were used to produce corresponding libraries of simulated linescans that were

in turn used to assess the errors of conventional and model-based measurement

procedures. In section 4 we discuss the error incurred when applying the con-

ventional algorithm to measure the linewidth. In section 5 the physics-based

measurement is outlined, and its uncertainties are discussed. The summary and

conclusions of the work are presented in section 6.
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2. Electron-transport model

In order to model how the SEM signal arises, simulations of sub-30-keV elec-

tron transport in complex solid geometries with state-of-the art transport mod-

els can be reliably carried out with the Monte Carlo simulation code JMONSEL

(see [7] for a broader and more detailed account of the transport models imple-

mented in JMONSEL). The relevant aspect of the electron transport model for

the present work is the differential inelastic inverse mean free path for inelastic

scattering of the projectile electron in the solid, given within the semiclassical

dielectric formalism in Hartree atomic units by [13]

d2λ−1i

dωdq
=

2

πv2
1

q
Im

[
− 1

ε(q, ω)

]
, (1)

where ω is the energy loss of the projectile electron, q the modulus of the

momentum transfer to a target electron, v the speed of the projectile electron,

and ε(q, ω) the dielectric function of the material. The latter is often measured

(or calculated ab initio) as a function of only ω; an extension to q > 0 is

needed. Several extension algorithms have been developed in the past decades

[13, 14, 15, 16, 17, 18, 19, 20, 21, 22], the most recently widespread being the

so-called single-pole approximation (SPA) and the full-Penn algorithm (FPA).

The SPA dielectric function model is given by

Im

[
− 1

εSPA(q, ω)

]
=

1

1 +
πq2

6kF (ω0)

Im

[ −1

ε(ω0)

]
, (2)

where Im[−1/ε(ω0)] is the energy-loss function at q = 0, obtained experimen-

tally or from ab initio calculations [23], ω0 is a solution to the equation

x3+a(q)x2+b(q, ω) = 0, a(q) =
π2/3

2 61/3
q2, b(q, ω) =

q4

4
−ω2, x = ω

2/3
0 ,

(3)

and

kF (ωp) =

(
3π

4

)1/3

ω2/3
p , (4)

where ωp is the plasma frequency of an electron gas with the average density

of electrons in the actual solid. Whereas the SPA includes only plasmon-like

6



response terms, the FPA is more realistic in that it additionally accounts for

electron-hole excitations. We follow here Shinotsuka et al.’s implementation

[13], given by

Im

[
− 1

εFPA(q, ω)

]
= Im

[
− 1

ε(q, ω)

]
pl

+ Im

[
− 1

ε(q, ω)

]
eh

, (5)

where

Im

[
− 1

ε(q, ω)

]
pl

= πg(ω0)
1∣∣∣∣∂εL1 (q, ω, ωp)

∂ωp

∣∣∣∣
ωp=ω0

Θ(qm(ω, ω0)− q), (6)

with ω0 the root of the equation

εL1 (q, ω, ω0) = 0, (7)

and

Im

[
− 1

ε(q, ω)

]
eh

=

∫ ∞
0

dωp g(ωp)Im

[
− 1

εL(q, ω, ωp)

]
Θ[q−qm(ω, ωp)]Θ[qp(ω, ωp)−q],

(8)

where Θ is the Heaviside step function. Expressions for qm, qp, g(ω0), and

the Lindhard dielectric function εL(q, ω, ωp), with real and imaginary parts

εL1 (q, ω, ωp) and εL2 (q, ω, ωp) respectively, are given in [13], including limiting

expressions to avoid numerical issues. Implementation details and technicalities

are presented in Appendix A.

We have also given a rough account of Auger electron emission. After an

inner-shell ionization, a vacancy is left in an atomic shell. An electron from a

more loosely bound shell can undergo a transition and fill the vacancy, where-

upon the energy difference can either be released as a photon (fluorescence

photon) or it can be invested in emitting an Auger electron. Atomic relaxation

data from the Evaluated Atomic Data Library (EADL) of Perkins et al. [24]

were used, as implemented in the PENELOPE 2014 [25] databases which, for

a vacancy in a given shell, conveniently express the probability for each Auger

transition and the energy of the emitted Auger electron. Once the correspond-

ing Auger transition is selected, a secondary electron (the Auger electron) is

7



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

−20 −15 −10 −5 0 5 10 15 20

Se
co

nd
ar

y
E

le
ct

ro
n

Y
ie

ld

x (nm)

E = 2 keV, w = 14 nm, h = 30 nm, θ = 0◦, r = 0 nm

SPA
FPA

SPA+Auger
FPA+Auger

θ

r

h

w

Figure 1: (Upper panel) Simulated linescans as a function of the position of the electron beam

for the various models considered in this work and (lower panel) two examples of line geometry

showing for the dashed curve the varied parameters: bottom linewidth w, wall-tilt angle θ,

and curvature radius r. The line height h was not varied in this work. The linescans have

been symmetrized around x = 0.

added to the stack. The vacancy left behind by the Auger electron is subse-

quently relaxed by iterating the process above. Note that we do not keep track

of fluorescence photons because their long mean free path means electrons gen-

erated by them carry little topographic contrast. In the primary-energy domain

considered below (200 eV to 10 keV), the inclusion of Auger-electron emission

yields simulated linescans with an intensity enhanced by up to 20 % compared

to linescans simulated without Auger emission (see e. g. upper panel of Fig. 1).

3. Library of simulated linescans

For each of the four models at our disposal, henceforth referred to as SPA,

SPA with Auger emission (SPA+Auger), FPA, and FPA with Auger emission
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(FPA+Auger), we have simulated a library of linescans Lm(wi, θj , rk;x,E) for

Si lines on a Si substrate. The lines are 30 nm high, with

• bottom widths wi from 8.5 nm to 15.5 nm in steps of 0.5 nm,

• wall-tilt angles θj from 0◦ to 3◦ in steps of 1◦,

• top curvature radii rk from 0 nm to 3 nm in steps of 1 nm.

40 000 primary electrons were simulated for every beam position x in every sim-

ulated linescan. The lower panel of Fig. 1 displays a schematic representation

of the geometry. The linescans were simulated by rastering the simulated elec-

tron beam perpendicularly to the symmetry axis of the line, from a substrate

position x = −100 nm to x = −1.5w in steps of 1 nm, and in steps of 0.25 nm

from x = −1.5w to x = 0 nm (the center of the line), using a two-dimensional

Gaussian beam profile with a standard deviation of 1 nm. Six primary energies

E were considered, spanning the experimentally relevant energy domain: (200,

500, 1000, 2000, 5000, and 10 000) eV.

Figure 2 displays the variation of the simulated secondary electron yield for

various E (panel a), w (panel b), θ (panel c), and r (panel d) for a partic-

ular model (FPA without Auger emission), with respect to a base case with

E0 = 500 eV, w0 = 10 nm, θ0 = 2◦, r0 = 2 nm. The variation with energy

(panel a) follows the energy dependence of the secondary electron yield in Si,

which exhibits a maximum at a few hundred electronvolts and decreases mono-

tonically for higher energies. The shape of the intensity edge, and not merely

its amplitude and offset, vary with energy. For example, the edge bloom as

measured by the ratio of maximum intensity near the edge to intensity at the

line center (x = 0) decreases as the beam energy increases, as one would expect

due to the increasing size of the interaction volume. As one increases the width

(panel b) one sees the linescan extend as expected to values of x farther from

x = 0, and the wider the line the lower the chance that secondary electrons have

of emerging e. g. through the side walls, hence the decrease in the simulated

intensity near the line center. A similar effect is expected as one varies the wall
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Figure 2: Variation of the linescans simulated with the FPA model (without Auger emission)

as a function of the primary energy E (panel a), the bottom linewidth w (panel b), the wall

tilt angle θ (panel c), and the curvature radius r (panel d) with respect to a reference case

with E0 = 500 eV, w0 = 10 nm, θ0 = 2◦, r0 = 2 nm.
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tilt-angle (panel c), where the more tilted the side angle the larger the chance

that secondary electrons have of escaping the line. Finally, panel d displays the

variation in the curvature radius r: the more curved the upper corner of the

line, the larger is the chance that a secondary electron can make it out of the

line. Owing to the small extent of the corner region relative to the line width,

variations are subtle, and error bars are omitted to avoid obscuring them. We

therefore anticipate that the curvature radius will be the most difficult of the

considered parameters to extract from the model-based measurement outlined

below.

The four generated linescan libraries (one per examined model) allow us to

examine two questions. On the one hand, applying the conventional linewidth

measurement to the simulated linescans and comparing with the actual width of

the simulated line allows one to estimate the error incurred by the conventional

measurement (section 4). On the other hand, taking linescans from our most re-

fined model (FPA with Auger emission) as surrogates for actual measurements1,

we can use less refined linescan libraries (SPA, SPA with Auger, and FPA) to

fit the “measurements” and compare the fitted widths with the actual widths.

This allows us to estimate the sensitivity of the model-based measurement to

approximations or simplifications of the model (section 5).

4. Error incurred in conventional linewidth measurements

Given an experimental (or simulated) linescan, e. g. the ones shown in the

upper panel of Fig. 1, the linewidth is given by the difference between right and

left edge positions, xright−xleft. The conventional approach to determine xright

consists, within minor variations, in:

1. Determining an average baseline value ymin to the right of the center of

the line. This is preferred to taking the minimum of the linescan, because

1Taking our detailed simulations as the reference has the advantage that we know all of

the shape parameters precisely, which is not the case for measured linescans.

11



the latter is often shallow and very variable, and therefore difficult to

determine systematically. Thus, one takes the average of the baseline

intensity far away from the line minimum (say a multiple of the line height

away). We have averaged the baseline from 70 nm to 100 nm away from

the center of the line.

2. Determining the position xmax and intensity ymax of the profile maximum

to the right of the center of the line.

3. Determining the abscissa xright such that the profile intensity is (ymax +

ymin)/2.

One repeats steps 1 through 3 on the left side to determine xleft.

An estimate of the error incurred when measuring the linewidth with the

conventional method outlined above can be readily obtained by applying the

procedure to a library of linescans (for which the width is known precisely)

simulated with our most refined electron-transport model (FPA with Auger-

electron emission). Figure 3 displays the incurred error (the measured linewidth

minus the actual width of the simulated linescan) as a function of the width used

in the simulation for various primary energies, wall-tilt angles, and curvature

radii. One clearly sees that the error incurred by the conventional measurement

is largest (approaching 2 nm) at low primary energies. This error has low

sensitivity to the curvature radius in the examined range. (Results for different

radii, coded by the 4 plot marker shapes, lie almost on top of each other except

in the leftmost, lowest energy panel.) On the other hand, the error is very

sensitive to the wall-tilt angle. Whereas at low primary energies (below 1 keV)

the smallest error is obtained for the smallest wall-tilt angle (0◦, red markers),

at somewhat higher energies the intermediate wall-tilt angles (1◦ and 2◦, blue

and green markers) result in a smaller error.

Thus, our analysis suggests that the error incurred when applying the con-

ventional linewidth measurement can easily approach 2 nm for the lowest pri-

mary energy we have considered (200 eV). Whereas this is typically not a con-

cern for linewidths above several tens of nanometers, in the sub-10-nm domain
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Figure 3: Overview of the error incurred when applying the conventional measurement to a

library of linescans (including all considered primary energies, wall-tilt angles and curvature

radii) simulated with our most refined model (FPA with Auger electron emission). Included

are various energies (from left-most to right-most column: 200 eV, 500 eV, 1 keV, 2 keV, 5

keV, 10 keV), wall-tilt angles (0◦ in red, 1◦ in blue, 2◦ in green, 3◦ in black), and curvature

radii (0 nm in squares, 1 nm in circles, 2 nm as triangles pointing up, and 3 nm as triangles

pointing down).

variations of 1 nm in the linewidth lead to significantly different electronic prop-

erties and, thus, width measurement errors are required to be smaller than 1 nm

[10]. Thus, the application of a conventional linewidth measurement becomes

increasingly questionable for linewidths below a few 10s of nanometers.

5. Error incurred in model-based linewidth measurements

In this section we discuss the error incurred by a model-based linewidth

measurement and compare it to that of the foregoing conventional measure-

ment. As discussed in section 3, for each of our “crude” models m = {SPA

without Auger emission, SPA with Auger emission, and FPA without Auger

emission}, a library of linescans Lm(wi, θj , rk;x,E) was generated as a func-

tion of the position x away from the line symmetry axis, spanning widths wi

from 8.5 nm to 15.5 nm in steps of 0.5 nm, wall-tilt angles θj from 0◦ to

3◦ in steps of 1◦, and top curvature radii rk from 0 nm to 3 nm in steps of

1 nm, for various energies E = {200, 500, 1000, 2000, 5000, 10 000} eV. For each

of these libraries, an interpolation function Im(w, θ, r;x,E) was determined.
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Three different model-based linewidth measurements [7] resulted from fitting

to our refined-model (FPA with Auger emission) linescans L(wi, θj , rk;x,E) a

model function a + bIm(w, θ, r;E, x), where m runs over the three aforemen-

tioned coarser models, a and b are respectively the offset and scale parameter,

taking as fit parameters {a, b, w, θ, r}, considering that the beam energy E is

known, and including the full linescan in x ∈ [−100, 0] nm. This fit was done

for all three of our coarser models, thus yielding three model-based estimates of

the width for a broad range of line geometries, and allowing us to examine the

sensitivity of the model-based measurement to the particularly important choice

of dielectric-function model extension algorithm and to the absence of Auger-

electron emission in the model. As we did for the conventional measurement

algorithm in the previous section, we now consider the error in the model-based

measurement of the linewidth, which is given by wmeas −w, where wmeas is the

measured (fitted) width, and w is the actual width at which the refined-model

linescan was simulated.

Figures 4 through 6 display, as a function of the width of the linescan simu-

lated with our most refined model (FPA with Auger emission), the error incurred

by the model-based measurement taking as input models the three available for

our analysis, in increasing degree of realism: SPA without Auger emission, SPA

with Auger emission, and FPA without Auger emission, respectively. The fig-

ures are further resolved with respect to the primary energy, wall-tilt angle, and

curvature radius.

For all three model-based measurements, the error drops to a fraction of

1 nm. The error incurred by the SPA model (coarsest of the four examined

here), displayed in Fig. 4, drops to roughly 0.5 nm at the lowest energy consid-

ered (200 eV), and can reach 1 nm at the highest energy considered (10 keV).

Comparing the errors incurred by the SPA model (Fig. 4) with those incurred

by the SPA model with Auger emission (Fig. 5), we see that switching Auger

emission on or off does not lead to an observable reduction of the measurement

error: the error incurred by using the comparatively coarse SPA model to fit

FPA+Auger linescan widths prevails. Progressing from a coarse SPA model to
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the FPA model (more realistic for slow secondary electrons) the error, displayed

in Fig. 6, drops from ≈ 0.5 nm to ≈ 0.25 nm, that is, to a distance comparable

to the typical distance between atomic planes in a crystal.

Considering that the SPA model predicts considerably higher SE yields at

low beam energies, it is interesting that the effect on the determined dimension

was so small. We believe this is because our lines and substrate are of the same

composition. Much of the yield difference is uniform and does not produce a

significant change in the fitted size. There is no guarantee the same would be

true for samples with material contrast in addition to topographic contrast.

As a measure of our intrinsic fitting error (due, e.g., to noise in our Monte

Carlo simulations) we simulated linescans and fit them using libraries generated

with the same model. In the worst case (beam energy of 10 keV) the mean and

standard deviation of the error were 0.0005 ± 0.01 nm. This is negligible even

with respect to the small differences (≈ 0.25 nm) we observe between models

Whereas the conventional measurement yielded errors which could easily

approach 2 nm, the estimated error incurred by the model-based measurement

drops to a fraction of 1 nm, thus complying with the expectations of the semi-

conductor industry (accuracy better than 1 nm). Although in this work we

have focused only on the uncertainty due to model choices, it should be noted

that further components may contribute to the uncertainty in the measured

linewidth: scan linearity, image noise, scale calibration, etc. Each of these must

be below 1 nm, such that their combination also remains below this threshold

as expected by the semiconductor industry.

For the results shown in Figs. 3 through 6, the beam was Gaussian with

standard deviation fixed at σ = 1 nm. This value was chosen because it is

close to the value observed in earlier work with a high-resolution SEM in our

laboratory.[7] We for this reason regard it (and the results) as representative of

what should be attainable in practice. However, the beam size is seldom known

exactly, and it is interesting to ask how a different beam size would affect our

conclusions. To this end, we took a representative set of lines at primary ener-

gies (200, 500, 2000, and 5000) eV, included all considered wall-tilt angles and
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Figure 4: Error induced in measuring linescans generated with FPA+Auger with a model-

based measurement relying on a library of linescans generated with a coarser model (SPA

without Auger emission). Each of the panels corresponds to the indicated primary electron

energies (from 200 eV to 10 keV). Wall-tilt angles 0◦, 1◦, 2◦, 3◦ are coded in red, blue, green,

and black, respectively. Curvature radii 0 nm, 1 nm, 2 nm, and 3 nm, are coded as empty

squares, circles, upward pointing and downward pointing triangles, respectively.
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Figure 5: Same as Fig. 4 for a library of linescans generated with a coarser model (SPA with

Auger emission).
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Figure 6: Same as Fig. 4 for a library of linescans generated with a coarser model (FPA without

Auger emission). Note the change of scale in the ordinates with respect to the previous figures.
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curvature radii, included widths of (8, 10, and 12) nm and convolved them with

a Gaussian with 1.75 nm standard deviation. The beam standard deviation was

thereby augmented to
√

(1 nm)2 + (1.75 nm)2 ≈ 2.0nm. We likewise extended

our FPA+Auger linescan library, convolving it with Gaussians with standard

deviations ranging from 0.75 nm to 2.25 nm in steps of 0.25 nm. This augmen-

tation of the library permitted the fit procedure to also determine the beam

size. With this setup, we have performed both a conventional measurement

and a “beamsize-extended” model-based measurement on the representative set

of lines described above. Whereas the conventional measurement led to errors

reaching and exceeding 2 nm, the errors incurred by the beamsize-extended

model-based measurement remained within 0.5 nm. Thus, as spot sizes were

increased beyond those typical of our high-resolution SEM, errors in both the

conventional and model-based width determinations increased, but those with

the conventional method increased more than those with the model-based one,

thereby strengthening the accuracy advantage of the latter. This is not surpris-

ing, given that the model-based method estimates the beam size based on the

fit to features of the intensity profile whereas the conventional method has no

means to distinguish changes due to beam size from those due to true changes

in feature width.

6. Summary

In this work we have considered the problem of SEM width measurements of

lines patterned in Si on a Si substrate. In general there are many possible sources

of uncertainty in such a measurement, including scan linearity, image noise, scale

calibration, etc. Most of these can be estimated by the usual methods: reversal,

repeatability, etc. Errors due to the choice of model in the inelastic electron scat-

tering description may be important but are not accessible by these techniques.

In this work, we have concentrated on these model-associated uncertainties by

comparing conventional and model-based determinations of widths on simulated

SEM scans of a set of lines covering a range of shapes and sizes. The line di-
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mensions were 30 nm height, width varying from 8.5 nm to 15.5 nm, sidewall

angle from 0◦ to 3◦ and corner rounding from 0 nm to 3 nm. The conventional

measurement procedure relies upon edge positions assigned by intensity thresh-

old crossings in the SEM secondary electron image. We used state-of-the-art

modeling of low-energy electron energy losses in a general-purpose Monte Carlo

code to simulate intensity profiles across lines of known width and shape in

such images. The conventional measurement procedure applied to the simu-

lated profiles exhibited bias of up to almost 2 nm. These errors have significant

dependence upon the sample’s shape and the beam energy. The shape in par-

ticular is generally not known independently of the measurement, rendering

such errors difficult to correct. We also compared model-based measurements

using three models that were in varying degrees more primitive than our best

model. Widths determined by the model-based measurements were less sensitive

to changes in edge shape or beam energy than were the conventionally deter-

mined ones. Under the assumption that our most detailed electron-transport

model provides a sufficiently realistic description of how the SEM signal arises,

our analyses suggest that the error incurred even in model-based measurements

with the more primitive models drops to a fraction of 1 nm, thus showing that

efforts invested in further careful modeling of electron transport would prove

fruitful for contemporary metrology applications. The illustrative example cho-

sen for these simulations was drawn from semiconductor electronics, but we

expect similar results for other applications where nanometer-scale accuracy is

important, such as for nanoparticles, photonic devices, and nanotechnology.
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Appendix A. Implementation aspects

When implementing the FPA extension algorithm, one stumbles upon im-

plementation issues that are seldom mentioned. The first of these concerns

finding the root ω0 of Eq. (7). We have proceeded by first attempting Brent’s

method [26] in the interval ω ∈
[
10−5,min

(
ω,
∣∣∣ q2 − w

q

∣∣∣)], defaulting to the

secant method if Brent’s method cannot be started (no sign change between

endpoints of the initial interval).

The evaluation of the FPA is computationally intensive. In particular, a tai-

lored numerical-integration scheme is needed to evaluate Eq. (8). One approach

to make calculations in a reasonable time consists in evaluating Im[−1/ε(q, ω)]

on a reasonably chosen grid of q and ω and using a quick integration scheme on

these tabular abscissas, e. g., the integral of the linear log-log interpolant. This,

of course, assumes a dense enough grid, such that interpolation inaccuracies are

palliated to the extent possible. In what follows, “interpolation” implies a linear

log-log interpolation; similarly, “integration” implies the integral of the linear

log-log interpolant.

We consider the following scheme:

• Given a table containing Im[−1/ε(ω)] (or optical constants from which this

quantity can be built), we extrapolate from the first two tabular abscissas

to very small ω, say ω ≈ ∆Egap + 10−4 eV, where ∆Egap is the band

gap, so as to have also tabular abscissas along q for very small energy

losses. This reduces integration errors for quantities at very low primary

energies (where the energy-loss domain is very narrow and therefore with

potentially few points and potentially large interpolation inaccuracies, a

situation for which we try to compensate by adding more ω-abscissas).

• Similarly, in order to obtain an inelastic mean free path well resolved

in energy, it is convenient to add relatively densely spaced ω-abscissas

immediately above the Fermi energy.

• For each tabular ω-abscissa in the (augmented) optical data, we adap-
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tively evaluate Im[−1/ε(q, ω)] along Q = q2/2, adding more Q abscissas

wherever the curvature (absolute value of the relative difference between

the i-th tabular value and the interpolation from the (i−1)-st and (i+1)-

st points at the i-th tabular value) is largest. We make sure to add the

point ω = q2/2, which corresponds to the maximum on the Bethe ridge,

particularly relevant for large ω. We start with ≈ 200 equispaced points

and add ≈ 300 adaptive abscissas, which proved to be reasonable.

• At this point we have different q abscissas for different ω. Thus, the

resulting grid is not rectangular.

• The (usually very sharp) peak of Im[−1/ε(q, ω)] along q shifts as ω varies.

For ω-abscissas that are not close enough, this peak shift leads to interpo-

lation artifacts at intermediate points. To palliate such potential errors,

we add ≈ 100 abscissas in ω adaptively, wherever the peak shift along ω

relative to the peak width along q is largest.

• Finally, as a precaution to minimize the impact of “wiggle”-artifacts in

the cubic interpolation used in JMONSEL, we add further ω abscissas

wherever the spacing in consecutive ω abscissas suddenly becomes larger

by more than a factor of two.

• When calculating electronic-stopping properties, both the grid of primary

energies and the grid of energy losses will be the grid of ω we generated

as described above.

• When calculating the energy loss distribution dλ−1i (K,ω)/dω, where K

is the kinetic energy of the projectile electron, there is a minimum and

a maximum energy loss, none of which will necessarily coincide with a

tabular ω. Thus, when calculating

λ−1i (K) =

∫ ωmax(K)

ωmin(K)

dω
dλ−1i (K,ω)

dω
(A.1)

or higher ω moments with our linear-log-log integration, one could miss

the interval from ωmin to the first tabular abscissa verifying ω ≥ ωmin
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(and similarly for the upper integration bound). Thus, care should be

taken to consider the value of the integrand at the tabular ω immediately

below ωmin for the purposes of this integral. If this is not observed, λi(K)

exhibits a sawtooth artifact for values of K immediately above the Fermi

energy.

• The linear-log-log integration scheme above allows one to also calculate

higher moments of the energy-loss distribution, such as the stopping power

(average energy loss per unit path length),

S(K) =

∫ ωmax(K)

ωmin(K)

dω ω
dλ−1i (K,ω)

dω
, (A.2)

and the straggling parameter (related to the spread per unit path length

of the energy distribution of an originally monochromatic beam of energy

K),

Ω2(K) =

∫ ωmax(K)

ωmin(K)

dω ω2 dλ−1i (K,ω)

dω
. (A.3)
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