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ABSTRACT 
 

An accurate yet simple estimate of the retrofit cost plays an important role in the decision-making process of retrofitting 
existing buildings. Fung et al. (2018b) developed a predictive model to estimate seismic retrofit costs as a function of 
building characteristics such as building area, building age, and building model type. However, in practice, a decision 
maker may not have access to the full set of building characteristics required for estimating the retrofit cost, especially 
when dealing with a portfolio of buildings. Certain characteristics (e.g., building area) might be more readily available 
or easier to obtain than others (e.g., building type). This paper considers the tradeoff, in terms of prediction error, from 
not using all of the building characteristics necessary for prediction of retrofit cost. The results show that excluding 
certain characteristics from prediction, such as building type, lead to negligible increases in the prediction error. The 
paper also finds the minimal set of building characteristics needed to approximate the accuracy of the model that uses 
the full set of building characteristics. Findings of this study will help decisions makers to estimate retrofit costs without 
having to spend additional time and money to collect the full set of data on the building portfolio. 
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INTRODUCTION 
 
One option for obtaining seismic retrofit cost estimates for a building is to hire an engineering consulting 
professional. However, even for a single building, the cost estimate requires detailed structural information, 
including the existing seismic detailing and material properties. Obtaining this information requires that the 
engineering professional examine the building on site. The process becomes time consuming and expensive 
as the number of buildings increases.   
 
An alternative is to estimate retrofit costs for a building based on historical retrofit costs of buildings that 
have been retrofitted. Fung et al. (2018b) develop a predictive model to estimate seismic retrofit costs as a 
function of eight predictors, shown in Table 1. The advantage of this approach over hiring a professional is 
that the data required for prediction is generally easier to obtain and does not require on site inspections. 
Thus, retrofit cost predictions can be generated quickly and cheaply. On the other hand, such cost predictions 
may not be as accurate as those from an engineering professional. 
 
In practice, some of the building characteristics presented in Table 1 may not be available for some or all 
buildings in a portfolio. Fung et al. (2018c), for instance, use the predictive modeling approach to obtain 
seismic retrofit cost estimates for a portfolio of buildings that does not include building age, height, or type. 
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Table 1. Target outcome, Y, and set of predictors, X, based on the retrofit cost model in Fung et al. (2018b). 

Variable Definition Scale/Values 

Y Retrofit cost Dollars per square foot 

s Seismicity {Low, Medium, High, Very High} 

p Performance objective {Life Safety, Damage Control, Immediate 
Occupancy} 

b Building group {1, …, 8}a 

Area Total building area Square feet 

Age Building age Years 

Height Building height Total above and below ground stories 

Occup Occupancy during retrofit {Vacant; In-place; Temporarily relocated 
within building} 

Historic Building historic status Is building deemed historic? (Yes or No) 
 a Building model types are categorized into eight building groups, as shown in Table 2. 
 
Note that the performance objective, p, i.e., the target building performance after the retrofit, and the 
occupancy during retrofit, Occup, are the only predictors that correspond to retrofit actions. The other 
predictors are building characteristics. The performance objective categories represented in Table 1 are 
defined in FEMA (1994) as follows: Life Safety (LS) “allows for unrepairable damage as long as life is not 
jeopardized and egress routes are not blocked;” Damage Control (DC) “protects some feature or function of 
the building beyond life-safety, such as protecting building contents or preventing the release of toxic 
material;” and Immediate Occupancy (IO) “allows only minimal post-earthquake damage and disruption, 
with some nonstructural repairs and cleanup done while the building remains occupied and safe.”  
 
Two Motivating Questions 
 
This paper explores the performance of the predictive model developed in Fung et al. (2018b) when some of 
the building characteristics are not available. The paper addresses two motivating questions:  

1. What is the minimal model, that is, minimal in the number of predictors, for obtaining performance 
comparable to the benchmark model that includes all of the predictors?  

2. What is the effect on performance from using a model that deliberately omits building age, height, 
and type (the practical model)? 

To answer these questions, the paper compares three candidate models, the benchmark model, the minimal 
model, and the practical model by their performance in terms of prediction error. The next section describes 
the predictive modeling approach, and the following section presents the results. 
 
 
METHODOLOGY 
 
Fung et al. (2017, 2018a, 2018b) develop a predictive model for structural seismic retrofit costs, Y, as a 
function of the predictors shown in Table 1, 𝑌 = 𝑓(𝑋). The goal is to use historical data X to estimate a 
function 𝑓' such that 𝑌( = 𝑓'(𝑋)*+) is a reasonable prediction of retrofit costs for a new building with 
characteristics 𝑋)*+.  
 
This paper uses a Generalized Linear Model (GLM) to estimate f, as in Fung et al. (2018b).2 Moran et al. 
(2007) discuss the use of GLMs for cost prediction. One key advantage of using GLMs, rather than standard 
linear regression models, for cost prediction is that results are easily interpretable in dollar terms (Fung et al., 
2018b). 
 

                                                             
2 The paper uses a GLM with gamma-distributed outcome and a log link. The “Linear” part of a GLM means f is a 
function of a linear combination of the predictors, 𝑋𝛽, where 𝛽 is a vector of coefficients; thus, 𝑓(𝑋) = 𝑒./. For 
details, see Fung et al. (2018b). 



Given an estimator 𝑓', model performance is estimated using prediction error. This paper uses Root Mean 
Square Error (RMSE), given in Equation (1), as the measure of the prediction error, 
 

𝑅𝑀𝑆𝐸4𝑓'5 = 	78
9
∑ (𝑓'(𝑋;) − 𝑌;)=>
;?@  ,    (1) 

 
where 𝑌; is the actual retrofit cost for building i and 𝑓'(𝑋;) is the predicted retrofit cost for building i and m is 
the number of observations. Note that both the actual cost and the predicted cost are in the scale of dollars 
per square foot and thus RMSE is easily interpretable on the same scale.  
 
Prediction error is an important criterion for two distinct model development steps: model selection 
(choosing the best model out of a set of candidate models) and model evaluation (estimating a model’s 
expected performance on new data, or “out-of-sample performance”). This paper uses nested K-fold cross-
validation in order to perform both model selection and model evaluation (Fung et al., 2018b). The approach 
prevents the data used for selecting a model from contaminating the data used for model evaluation. This is 
especially useful when the number of observations used to fit, or train, the models is small.3  
 
In order to address the two motivating questions, this paper considers three models: 

1. The benchmark model, 𝑓'A*)BC>DEF, is the model that includes all of the predictors in Table 1. 
2. The minimal model, 𝑓'>;);>DG,  the model that includes the minimal number of predictors for 

obtaining performance close to that of the benchmark model. 
3. The practical model, 𝑓'HEDBI;BDG, is the model that deliberately omits predictors that may not be easily 

available (in this case, building age, building height, and building type).  
The three models are compared based on their out-of-sample prediction error. Thus, for instance, any 
increase in prediction error from omitting building age, height, and type can be interpreted as the cost of not 
collecting information on these predictors. 
 
Regularization 
 
In general, increasing the number of predictors in a regression model tends to improve performance on the 
training data, the data used to fit the model, though not necessarily on new data. This is known as 
overtfitting because the model tends to fit the training data precisely but cannot generalize when presented 
with new data.  
 
The problem of choosing the best subset of predictors, e.g., those that minimize prediction error, is known as 
variable selection. It is worth noting that, since five of the eight predictors in Table 1 are categorical, the 
number of effective predictors used to estimate f is much larger than eight.4 Rather than considering all 
possible combinations of the predictors (sometimes called stepwise variable selection), this paper uses 
regularization to find the minimal model, 𝑓'>;);>DG. Regularization penalizes model complexity (i.e., 
increasing the number of predictors) while minimizing a criterion such as prediction error (Zou and Hastie, 
2005). Regularization is often used to prevent overfitting and can be used to enforce model simplicity.  
 
In particular, the paper uses the lasso (least absolute shrinkage and selection operator) to estimate 𝑓'>;);>DG.5 
Lasso is especially useful for obtaining sparse solutions: the larger the penalty, the lower the number of 
active predictors used to train the model. Thus, regularization via lasso performs variable selection. 
 
Not all regularization methods perform variable selection. For instance, ridge regression (Hoerl and Kennard, 
1970) reduces the influence of correlated groups of predictors, but ultimately all predictors are used to train 
the model.6 Lasso, on the other hand, does not account for correlations among predictors. The elastic net is a 
                                                             
3 K-fold cross-validation splits the data into K mutually exclusive subsets then trains the model K times. At each 
iteration, one subset is used to estimate prediction error while the rest of the data is used to estimate 𝑓'. See Krstajic et 
al. (2014) for a review of the procedure as well as discussion of the potential pitfalls. 
4 In fact, Fung et al. (2018b) also include the combined effect of seismicity and the performance objective, an 
interaction term, that brings the total number of effective predictors to 35. 
5 Lasso penalizes the sum of the absolute values of the coefficients, ∑ |𝛽F|F , i.e., the L1-norm of the coefficient vector, 
‖𝛽‖@ (Tibshirani, 1996).  
6 Ridge regression penalizes the sum of the squared values of the coefficients, ∑ 𝛽F

=
F , i.e., the squared L2-norm of the 



regularization method that combines lasso with ridge regression, thus performing variable selection while 
accounting for correlations among predictors (Zou and Hastie, 2005). Elastic-net regularization is a convex 
combination of lasso and ridge regression and therefore includes both as special cases. 
 
In order for 𝑓'>;);>DG (and 𝑓'HEDBI;BDG) to be compared against an appropriate benchmark, the benchmark 
model 𝑓'A*)BC>DEF should be chosen as the optimal form of elastic-net regularization, which includes as a 
special case a model with no penalty (and hence no regularization). The model selection step of nested K-
fold cross-validation is used to choose 𝑓'A*)BC>DEF.7 The model evaluation step of nested K-fold cross-
validation is then used to estimate the expected out-of-sample performance of each model.  
 
The Training Data 
 
The historical retrofit cost data used in this paper was originally collected for FEMA 156 (FEMA, 1994) and 
is freely available online. In particular, the data can be found as part of FEMA’s archived Seismic 
Rehabilitation Cost Estimator (SRCE) software, (FEMA, 2013–2014).  
 
The publicly available version of the data (the SRCE data) includes 1978 buildings, compared to the 2088 
collected for FEMA 156. The SRCE data set is missing an important building characteristic that is used in 
FEMA 156: building occupancy class. Nevertheless, the discussion in FEMA 156 suggests this data set 
should be representative of commercial and residential buildings in the United States and Canada. 
 
The SRCE data used for training includes all of the predictors shown in Table 1, as well as the structural 
seismic retrofit cost for each building. Building model types are categorized into eight building groups, as 
shown in Table 2. 
 

Table 2. Building types, building groups, and their shares in the SRCE data. 

Building 
Group 

Building 
Type Building Type Name Share  

1 URM Unreinforced Masonry 30.08 % 

2 W1 
W2 

Wood Light Frame 
Wood (commercial or industrial) 

2.62 % 
3.08 % 

3 PC1 
RM1 

Precast Concrete Tilt Up Walls 
Reinforced Masonry with Metal or Wood Diaphragm 

3.34 % 
3.34 % 

4 C1 
C3 

Concrete Moment Frame 
Concrete Frame with Infill Walls 

6.75 % 
16.64 % 

5 S1 Steel Moment Frame 4.85 % 

6 S2 
S3 

Steel Braced Frame 
Steel Light Frame 

1.83 % 
0.72 % 

7 S5 Steel Frame with Infill Walls 7.01 % 

8 
C2 
PC2 
RM2 
S4 

Concrete Shear Wall 
Precast Concrete Frame with Infill Walls 
Reinforced Masonry with Precast Concrete 
Diaphragm 
Steel Frame with Concrete Walls 

16.19 % 
0.79 % 
0.66 % 
2.10 % 

 
Table 3 presents a summary of statistical information from the SRCE data for the structural retrofit cost per 
square foot, as well as some of the predictors from Table 1. All cost and RMSE values in this paper are given 
in 2016 US dollars per square foot (1 ft = 0.3048 m). Further information on the data set can be found in 
Fung et al. (2018b). 
  

                                                                                                                                                                                                          
coefficient vector, ‖𝛽‖== (Zou and Hastie, 2005). 
7 To be precise, 𝛼, the hyperparameter governing the convex combination of L1 and L2 penalties, is chosen using 
random grid search. For a given 𝛼, the penalty parameter,	𝜆, is chosen based on search algorithms developed in 
Friedman et al. (2010). If 𝜆 = 0, then there is no penalty and thus no regularization. The best combination of 𝛼, 𝜆 is the 
best pair (in terms of RMSE) from the model selection step of nested K-fold cross-validation. 



 
Table 3. Summary statistics for the outcome of interest, structural retrofit cost per square foot (1 ft = 0.3048 

m) and select predictors in the training (SRCE) data, with N=1526 excluding Canadian buildings. 

Variable Minimum Mean Median Maximum Standard 
Deviation 

Structural cost 
($/sq ft) 0.49 36.03 23.33 675.42 44.74 

Area  
(1000 sq ft) 0.15 68.98 28.67 1430.30 113.26 

Age 2.00 44.29 40.00 153.00 22.13 

Stories 1.00 3.12 2.00 38.00 2.99 
 
 
 
RESULTS 
 
This section presents the main results. First, the results from model selection and the resulting benchmark 
model. Second, the expected out-of-sample performance for the benchmark, minimal, and practical models. 
 
Model Selection and the Benchmark Model 
 
The benchmark model is the optimal model chosen in the model selection step: it is the model that minimizes 
prediction error in the model selection step of nested K-fold cross-validation. Table 4 presents the results of 
model selection and, hence, the resulting benchmark model. The value of 𝛼 = 0.7 implies elastic-net 
regularization that weighs lasso more heavily than ridge regression and, thus, favors a sparser model. The 
value of 𝜆 = 0.002, while not huge in magnitude, is sufficiently larger than zero that the regularization 
penalty is non-trivial. 
 

Table 4. The benchmark model is defined as the model with optimal values of the regularization 
hyperparameters, 𝛼, 𝜆 based on nested K-fold cross-validation with K=10. 

 𝜶 𝝀 

Mean 0.707 0.002 

Standard deviation 0.230 0.001 

 
Table 5 presents prediction error results from the model selection step of nested K-fold cross-validation for 
each of the candidate models.  It is worth noting that Fung et al. (2018b) do not use regularization. Since the 
optimal model from the model selection step, 𝑓'A*)BC>DEF, does use some form of regularization, it is worth 
comparing the benchmark model to the original model with no regularization, 𝑓'UE;V;)DG. 
  

Table 5. Model selection for each of the candidate models based on prediction error, RMSE, as well as the 
standard deviation of RMSE, sRMSE. The benchmark model is defined as the optimal model: the model with 

the lowest RMSE. All values in dollars per square foot (1 ft = 0.3048 m).  

Model RMSE sRMSE 

Benchmark model, 𝑓'A*)BC>DEF 38.57 1.06 

Original model, 𝑓'UE;V;)DG 38.89 1.06 

Minimal model, 𝑓'>;);>DG 38.80 1.17 

Practical model, 𝑓'HEDBI;BDG 40.11 1.06 

 



The results suggest that the practical model, 𝑓'HEDBI;BDG, is not optimal. This is not surprising: if a decision 
maker has all of the information necessary for prediction available, it should be used. Regularization will 
ensure that the model does not overfit. Nevertheless, the standard deviation of the RMSE estimates suggest 
that the practical model is only marginally sub-optimal. 
 
The results suggest that some form of regularization is optimal and, in particular, regularization that favors 
sparsity. Note that the minimal and original models are only marginally sub-optimal (in terms of RMSE) to 
the benchmark model. In fact, the standard deviation of the RMSE estimates suggests that both 𝑓'>;);>DG and 
𝑓'UE;V;)DG could be optimal. Thus, a decision maker could reasonably choose either 𝑓'A*)BC>DEF, 𝑓'>;);>DG, or 
𝑓'UE;V;)DG. 
 
On the other hand, the minimal model 𝑓'>;);>DG uses 24 of 35 predictors and is thus only marginally sparser 
than the benchmark model 𝑓'A*)BC>DEF, which uses 25 of 35 predictors. In both cases, the models ignore 
several of the interactions between seismicity and the performance objective, suggesting that the other 
predictors do a good job of capturing this effect. Interestingly, both models discard the effect of the Damage 
Control performance objective, most likely because its effect on cost is correlated with the Life Safety and 
Immediate Occupancy performance objectives. The most noteworthy result of shrinkage is that the effect of 
building area as a predictor of cost is on the order of 10-6, almost (though not identically) zero.  
 
Model Performance 
 
This section presents the estimates of expected out-of-sample performance for each of the candidate models 
(including the original model with no regularization). Expected out-of-sample performance is an estimate of 
prediction error on new data, obtained from the model evaluation step. The results are presented in Table 6. 
 
Table 6. Estimated out-of-sample performance, RMSE, and standard deviation of RMSE, sRMSE, for each of 

the candidate models. All values in dollars per square foot (1 ft = 0.3048 m). 

Model RMSE sRMSE 

Benchmark model, 𝑓'A*)BC>DEF 38.61 8.97 

Original model, 𝑓'UE;V;)DG 37.72 8.91 

Minimal model, 𝑓'>;);>DG 37.69 8.91 

Practical model, 𝑓'HEDBI;BDG 39.15 8.15 

  
The main implication is that the minimal model, 𝑓'>;);>DG, dominates the benchmark model, 𝑓'A*)BC>DEF, in 
terms of performance on new data. Indeed, the minimal model outperforms all the candidate models, 
including the original model, 𝑓'UE;V;)DG. However, note that the standard deviation of RMSE estimates is 
much larger when estimating out-of-sample performance than when selecting a model (as shown in Table 5). 
Thus, the differences between RMSE estimates presented in Table 6 are not statistically significant, meaning 
the minimal model is no worse than the benchmark model.8 
 
Most importantly, note that while the practical model, 𝑓'HEDBI;BDG, has the worst expected performance (as 
shown by the largest RMSE value in Table 6), the large variance in prediction error estimates suggests the 
practical model could achieve performance comparable to the benchmark or minimal models. In other words, 
the results suggest that there is no statistically significant penalty to deliberately omitting (or not collecting) 
information on building age, building height, and building type.  
 
 
  

                                                             
8 For instance, application of Welch’s t-test shows the difference in RMSE estimates for the benchmark and minimal 
models has a p-value of 0.823 and, thus, is far from statistically significant.  



CONCLUSIONS 
 
This paper considers an “optimal” model for predicting structural seismic retrofit costs and considers the 
impact on expected out-of-sample performance (prediction error on new data) when the model does not 
include all of the available predictors. The results suggest that, in fact, the optimal model itself does not 
require all of the predictors. Moreover, the paper considers a model that deliberately omits information on 
building age, building height, and building model type, as a thought experiment on what happens when a 
decision maker cannot (or does not want to) obtain this information for a portfolio of buildings. The results 
suggest there is a negligible penalty for omitting this information from the model. In fact, the results suggest 
all models achieve statistically indistinguishable performance on new data.  
 
It would be interesting to compare performance of the GLM predictive model used in this paper with other 
models that can capture more nonlinearities (e.g., random forests, gradient boosting machines, and deep 
neural networks). This is left for future work. 
 
Disclaimer 
 
NIST policy is to use the International System of Units (metric units) in all its publications. In this paper, 
however, information is presented in U.S. Customary Units (inch-pound), as this is the preferred system of 
units in the U.S. earthquake engineering industry. 
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