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ABSTRACT 
Diagnostics and prognostics of rotating machinery ball 

bearings is quite mature with an abundance of available methods 
and algorithms. However, extending these algorithms to other 
ball bearing applications is challenging and may not yield 
usable results. This work used a linear axis to study the ability of 
an inertial measurement unit (IMU), along with nine signal 
features, to measure changes in geometric error motions due to 
induced faults on the recirculating ball bearings of two carriage 
trucks. The IMU data was analyzed with the nine features used 
for rotating machinery systems, including root-mean-square, 
standard deviation, and kurtosis. For each stage of degradation, 
the statistical population and median value of each feature were 
compared against the population and median for no 
degradation, to monitor feature changes due to ball damage. 
Correlation analyses revealed an ability of the standard 
deviation feature to detect statistically significant changes as 
small as 0.05 micrometers or 0.5 microradians, corresponding 
to a total damaged surface area of truck balls of less than 
0.1 percent. 

Keywords: machine tool, smart manufacturing, linear axis, 
ball bearing, wear, degradation, diagnostics 
 
 
1. INTRODUCTION 

Linear axes are vital components in manufacturing, existing 
within machine tools to move cutting tools and workpieces to 
their desired positions for part production [1]. Figure 1A shows 
a typical linear axis, composed of four trucks (also called “linear 
motion guides”) that constrain a carriage to move along two rails 
(or “guideways”). As shown in Figure 1B, in addition to the 
commanded motion along the X-direction, the actual motion has 
three translational errors and three angular errors: one 
positioning error motion (EXX), two straightness error motions 
(EYX and EZX), and three angular error motions (EAX, EBX, and 
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ECX). Typically, a machine tool includes multiple axes that 
degrade with use, leading to changes in geometric motion errors 
that affect the quality of the machined parts. 
 

 
FIGURE 1: (A) LINEAR AXIS AND (B) GEOMETRIC ERROR 
MOTIONS. 
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Ideally, once a linear axis is operational on a machine tool, 
all error motions are zero; but in practice, nonzero errors exist 
that contribute to the errors on the workpiece. These error 
motions tend to worsen with machine usage, aging, and crashes, 
since abrasion and adhesion between parts in linear axes causes 
material fatigue, pitting, cracking, and wear. This damage can 
result in faults developing in linear axis components, such as the 
rails, rolling element bearings, and/or ball screw [2, 3]. If not 
properly mitigated, these faults will grow to affect the quality of 
parts produced, leading to parts becoming out of tolerance and/or 
machine failure [4]. As demands for versatility and batch volume 
increase for manufacturing processes, machines are experiencing 
higher production loads, and as a result, the potential for faults 
and failures is becoming more common. Hence, machine tool 
monitoring and maintenance rules are needed to mitigate this 
accumulation of degradation and minimize the costs imposed by 
imperfect production and scrapped parts. 

Mature methods exist for the fault detection and diagnostics 
of error motions, but they are manual, time consuming, and often 
cost prohibitive. The state-of-the-art instruments for linear axis 
error measurement (the basis for diagnostics) are explained in 
the International Organization for Standardization (ISO) 230-1 
[5]: straightedge and linear displacement sensor, microscope and 
taut wire, alignment telescope, alignment laser, and laser 
straightness interferometer. These time-consuming 
measurements require a shutdown of the machine with a typical 
setup change and thus cannot provide in-situ diagnostics [6]. 
 To enable proactive (not reactive) maintenance, 
manufacturers need automated methods for diagnosing machine 
tool linear axes without halting production. In 2010, Teti et al. 
[7] identified that intelligent sensor-based systems and advanced 
signal data processing need to be further developed to help 
decrease machine downtime and increase productivity, product 
quality, and knowledge of manufacturing processes. One 
possible advance lies in the use of an inertial measurement unit 
(IMU) consisting of a three degree-of-freedom (DOF) 
accelerometer and a three DOF rate gyroscope [8-10], as shown 
in Figure 2. Data from the IMU can be used to detect changes in 
the positioning, straightness, and angular error motions. IMU 
measurements can be made quickly and with little intrusion into 
the operation of the machine, resulting in data that provides 
insight into the condition of the linear axis. It has been shown to 
be effective at detecting rail degradation to similar levels of 
accuracy delivered by a laser interferometer [8]. 
 

 
FIGURE 2: (A) ISOMETRIC VIEW OF IMU AND (B) TOP VIEW 
OF IMU WITHOUT ITS COVER. 

 However, a challenge remains in verifying the IMU’s 
capabilities for detecting degradation in the truck bearings of a 
linear axis. One complication is the multitude of rolling element 
bearings (typically hundreds of balls) within the bearing system, 
which causes a low signal-to-noise ratio (that can be less than 1) 
in the health monitoring data. The convolution of numerous ball 
imperfections affects the geometric error motions of the carriage, 
making it difficult to isolate small influences due to damage on 
a single ball. Accordingly, an experiment was designed to 
examine the sensitivity of the IMU-based error motions to 
artificially-induced damage on the truck bearings. 
    
2. EXPERIMENTAL SETUP 
 Figure 3 shows the linear axis testbed used for data 
collection in this study. A lead screw rotates via a DC motor to 
move a carriage nominally parallel with the X-axis (Figure 3A). 
Four trucks with ball bearings contact two rails, to constrain the 
carriage to move in a nominally linear fashion. Each truck has 
two loops of balls (Figure 3B), an inner loop and outer loop, with 
each loop containing 32 balls. Correspondingly, each rail has an 
inner raceway and an outer raceway (Figure 3C). The two loops 
interact with different raceways (or grooves) in the rails, one 
inner and one outer. Whenever the carriage moves back and 
forth, the balls within the inner/outer loop of a truck rotate in and 
out of contact with the inner/outer raceway of the rail. At any 
given instant, about 13 balls per loop contact the given raceway 
of the rail. Hence, there are about 104 balls (13 balls per loop × 
2 loops per truck × 4 trucks) in contact with the two rails. 
 Each truck was modified to be a “smart truck” equipped 
with an inductive proximity sensor to detect the phase of the 
outer loop of balls. Figure 4A shows how each truck (Truck 2 in 
the figure) was modified with a slot and a tapped access hole, in 
which resides an inductive proximity sensor. The sensor is used 
to detect the presence of a metallic or non-metallic ball in its 
proximity. Instead of using thirty-two chrome steel balls that 
come with each truck, six of the thirty-two balls were replaced 
with nylon balls. Figure 4B shows the pattern of twenty-six metal 
balls with six nylon balls utilized for the outer loop of each truck. 
Each ball in the pattern, whether metallic or non-metallic, has its 
own identification number. The pattern was chosen out of many 
possibilities so that, at any time, visual inspection of the balls 
through the slot yields a unique pattern of plastic and metal balls 
for identification. For example, based on Figure 4B, the visible 
pattern in Figure 4A begins on the left side of the slot with the 
fourth ball (a nylon ball). 
 During linear axis motion, the voltage output of the 
inductive proximity sensor switches with a frequency of 5 kHz 
between about 0 V (for the presence of nylon) to a nominal 
voltage when enough metal appears in front of the sensor. A 
cross-sectional schematic illustration (Figure 4C) reveals that a 
ball moves to within less than 0.8 mm of the front surface of the 
inductive proximity sensor, which is sufficient for detectability. 
By measuring the output voltage as the carriage moves, the phase 
of the outer loop of balls can be deduced based on the fact that 
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the zero-volt portions of the signal follow a known pattern 
(Figure 4B). 

 

 
FIGURE 3: (A) LINEAR AXIS WITH IMU, (B) VIEW OF A 
TRUCK BOTTOM WITH LOOPS OF BALL BEARINGS EXPOSED, 
WHERE “INNER LOOP” CONTACTS INNER RACEWAY AND 
“OUTER LOOP” CONTACTS OUTER RACEWAY, AND (C) VIEW 
OF EXPERIMENTAL SETUP SHOWING TRUCK 2 ATTACHING 
TO RAIL 1 VIA RACEWAYS. 
 
 

 
FIGURE 4: (A) VIEW OF A TRUCK WITH EMBEDDED 
INDUCTIVE PROXIMITY SENSOR, (B) PATTERN OF METALLIC 
AND NON-METALLIC BALLS USED IN OUTER BALL LOOP OF 
EACH TRUCK, AND (C) CROSS-SECTIONAL SCHEMATIC 
ILLUSTRATION OF A TRUCK WITH SENSOR. 
 
3. EXPERIMENTAL PROCEDURE 
 In this experiment, the metal balls were progressively 
removed and degraded from the two trucks (Truck 1 and Truck 
2) on Rail 1. Figure 5 shows the procedure for damaging a ball 
one at a time. First, a single ball is removed from the outer loop 
of a truck (Figure 5A). The tapped hole in the truck allows 
removal of a ball while leaving the carriage/truck/rail/lead screw 
system effectively unchanged. This was necessary because if the 
trucks were removed and then reassembled at each stage of 
degradation, then the load on each truck would change from one 
assembly to the next, which would change the error motions as 
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well. Hence, to eliminate the need for disassembly and 
reassembly of the trucks during the experiment and thus ensure 
that changes in error motions are due only to damage in outer 
loop balls, the trucks were modified with a tapped access hole 
(Figure 4A). Second, the ball is abrasively modified to have a 
flat with a nominal depth of 30 µm (Figure 5B). Third, as seen 
in Figure 5C, the nominal diameter and the flat-to-sphere 
distance of the ball are measured with a micrometer and the 
difference of the two measurements is an estimate of the flat 
depth. Specifically, five measurements are performed for both 
the nominal diameter and the flat-to-sphere distance, and the 
difference of the respective averages is the estimated flat depth. 
Finally, the ball is placed back into its position in the outer loop 
of the truck. 
 

 
FIGURE 5: PROCEDURE FOR DAMAGING A BALL: (A) 
REMOVAL OF BALL FROM OUTER LOOP, (B) ABRASIVE 
REMOVAL OF MATERIAL TO CREATE FLAT, AND (C) 
ESTIMATION OF FLAT DEPTH WITH HANDHELD 
MICROMETER MEASUREMENTS. 

 
 Over the course of the experiment, each of the metal balls in 
the outer loop of Truck 2 was damaged in a specific order until 

each ball had six flats, and then the same process was repeated 
for Truck 1. Figure 6 shows the order in which the twenty-six 
balls in the outer loop of a truck were damaged before a “damage 
cycle” is complete. The seemingly haphazard order was chosen 
a priori as an attempt to simulate random ball damage. Once four 
balls were damaged and placed back into Truck 2, fifty (50) runs 
of IMU data were collected. Each run consists of moving the 
carriage, forward and backward, at three different speeds: 0.02 
m/s, 0.1 m/s, and 0.5 m/s. Also, ten (10) bidirectional runs of 
laser-based reference data were collected statically at 1 mm 
intervals. Then, another four balls were damaged, and data was 
collected again for that new “stage” of degradation. Table 1 
shows the numbers of the outer loop balls in Truck 2 that were 
damaged at each of the thirty-nine stages of degradation, based 
on the damage cycle of Figure 6. Truck 2 was “fully damaged” 
once six damage cycles were completed; that is, each chrome-
steel ball in the outer loop of Truck 2 had six flats (Stage 39 in 
Table 1). Finally, the same ball-damage process was repeated for 
Truck 1 (Stage 40 to Stage 55), except that only about 3 flats 
were induced on each ball in Truck 1. A total of 220 flats were 
induced on 52 balls (26 balls per truck) in the entire experiment. 
IMU and laser-based reference data were gathered at each stage 
of degradation (Stage 0 to Stage 55). 
 

 
FIGURE 6: ORDER OF OUTER LOOP BALL DAMAGE. THE 
BLUE NUMBERS REPRESENT THE ORDER IN WHICH THE 
METAL BALLS ARE DAMAGED. WHENEVER A CYCLE IS 
COMPLETE (ALL TWENTY-SIX METAL BALLS HAVE SAME 
NUMBER OF FLATS), A NEW CYCLE MAY BEGIN. 
 
 Figure 7 shows histograms of the flat depths for all 220 flats 
induced on the metal balls in Truck 2 and Truck 1. Except for 
one outlier (not shown in Figure 7A), the flat depth ranges 
between 25 µm and 35 µm with an average of approximately 
30 µm. Specifically, the flat depth in Figure 7 is the difference 
between the average nominal diameter, resulting from five 
measurements, and the average flat-to-sphere distance, also from 
five measurements (see Figure 5C). The five nominal diameter 
measurements had an average standard deviation of 0.44 µm, 
while the flat-to-sphere measurements had an average standard 
deviation of 0.92 µm. The greater standard deviation for the flat-
to-sphere measurements is due in large part to the non-flatness 
of the flat (the “flat” is only nominally flat) combined with 
human operation of the micrometer. 
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TABLE 1: NUMBER OF BALLS IN OUTER LOOP OF TRUCK 2 
INDUCED WITH FLATS AT EACH STAGE OF DEGRADATION. 

Stage Damaged Balls  Stage Damaged Balls 
0 None  20 13, 28, 2, 16 
1 2, 16, 9, 25  21 9, 25, 5, 12 
2 5, 12, 21, 29  22 21, 29, 7, 14 
3 7, 14, 19, 27  23 19, 27, 32, 10 
4 32, 10, 30, 3  24 30, 3, 20, 11 
5 20, 11, 26, 15  25 26, 15, 31, 22 
6 31, 22, 8, 24  26 8, 24, 13, 28 
7 13, 28, 2, 16  27 2, 16, 9, 25 
8 9, 25, 5, 12  28 5, 12, 21, 29 
9 21, 29, 7, 14  29 7, 14, 19, 27 

10 19, 27, 32, 10  30 32, 10, 30, 3 
11 30, 3, 20, 11  31 20, 11, 26, 15 
12 26, 15, 31, 22  32 31, 22, 8, 24 
13 8, 24, 13, 28  33 13, 28, 2, 16 
14 2, 16, 9, 25  34 9, 25, 5, 12 
15 5, 12, 21, 29  35 21, 29, 7, 14 
16 7, 14, 19, 27  36 19, 27, 32, 10 
17 32, 10, 30, 3  37 30, 3, 20, 11 
18 20, 11, 26, 15  38 26, 15, 31, 22 
19 31, 22, 8, 24  39 8, 24, 13, 28 

 

 
FIGURE 7: HISTOGRAM OF FLAT DEPTH FOR (A) TRUCK 2 
AND (B) TRUCK 1. 

 
 The nominal flat depth of 30 µm was chosen to be large 
enough to influence the geometric error motions of the linear 
axis, without being too large as to be unrealistic of possible 
damage within a machine tool linear axis. The volume, ࢜, of 
material removed by a flat is defined as 
 

ݒ  ൌ
ߨ
3
݀ଶሺ3ݎ െ ݀ሻ  (1)

 
and the curved area, ܽ, of the ball marred with the flat is 
 

 ܽ ൌ (2)  ݀ݎߨ2
 
where ݀ is the flat depth and ݎ is the nominal ball radius. The 
metal balls were made of chromium steel with a nominal 
diameter of 3.965 mm. For a nominal flat depth, ݀ , of 30 µm (see 
Figure 7), Eq. (1) shows that the nominal volume of metal 
material removed by a flat is about 0.0056 mm3, which is a 
relatively small volume. Also, Eq. (2) shows that the nominal 
area of metal marred by the flat is about 0.37 mm2, which is a 

relatively small area. However, after 220 flats have been 
induced, the cumulative material removal is approximately 
1.23 mm3 and the cumulative marred area is about 0.82 cm2. 
These flats interact with the rails to influence the geometric error 
motions. 
 Theoretically, the surface roughness of the truck balls (not 
material volume) and the total damaged surface area are metrics 
that correlate with the geometric error motions, specifically the 
straightness and angular error motions. The average surface 
roughness, ܴa, across all 208 metal balls in the trucks (4 trucks 
 2 loops per truck  26 metal balls per loop) can be estimated 
via the material removal as 
 

 
ܴa ൎ തܴa ൅

ܸ
Tܣ

  (3)

 
where തܴa is the nominal average surface roughness [11] 
excluding the flats, ܸ is the total cumulative volume of material 
removed by all flats at any moment, and ܣT is the total 
cumulative surface area of all metal balls in the trucks 
(approximately equal to 103 cm2). The balls were specified as 
Grade 25, which has a maximum allowable average surface 
roughness of 0.0508 µm, so we assume that തܴa = 0.0508 µm. 
Consequently, after 220 flats have been induced for a total 
material removal of 1.23 mm3, Eq. (3) reveals that the average 
surface roughness across all metal truck balls is then 
approximately 0.17 µm. Similarly, the relative damaged surface 
area, ܣrel, is defined as 
 

 
relܣ ൌ

ܣ
Tܣ

  (4)

 
where ܣ is the total cumulative damaged ball area due to all flats 
at any moment. After 220 flats have been induced, Eq. (4) 
reveals that approximately 0.80% of the metal ball surface area 
has been damaged by the numerous flats. Thus, the 220 flats 
damage almost 1% of the total surface area, in addition to tripling 
the average surface roughness, of the metal balls. 
 This experiment and subsequent analysis explores the 
ability for such a significant change in surface roughness to be 
detected by an IMU-based methodology, based on changes 
detected in the geometric error motions of the linear axis. Figure 
8 shows the surface roughness and relative damaged surface area 
calculated according to Eq. (3) and Eq. (4), respectively, for all 
stages of degradation. Because the depth of each flat is nominally 
30 µm (Figure 7), the surface roughness and relative damaged 
surface area change relatively linearly with degradation stage. 
 Note that the nylon balls are not included in the surface 
roughness equation, Eq. (3), because the nylon balls bear 
insignificant loads. The nylon balls had a nominal diameter of 
3.969 mm, which is 4 µm greater than the nominal diameter of 
3.965 mm for the chromium steel balls. Therefore, the nylon 
balls will bear some nominal load. However, because nylon has 
such a relatively low modulus of elasticity compared to that for 
chromium steel, the nylon balls deflect easily under very low 
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loads. For example, the relatively small force due to the ratchet 
of the micrometer deflected the nylon balls about 72 µm. The 
low stiffness of the nylon balls means that the nylon balls act as 
metal-ball spacers without otherwise significantly influencing 
the geometric error motions. 
 

 
FIGURE 8: AVERAGE SURFACE ROUGHNESS AND 
RELATIVE DAMAGED SURFACE AREA OF ALL METAL BALLS 
WITHIN TRUCKS VERSUS DEGRADATION STAGE. 
  
4. FEATURES FOR DATA ANALYSIS 
 The IMU and laser-based reference data that were gathered 
at each stage of degradation (Stage 0 to Stage 55) can now be 
used for analysis. The fifty (50) runs of time-sampled IMU data 
were processed to yield the error motions as functions of travel 
position (X values) [8, 9], while the ten (10) runs of laser-based 
reference data were already functions of position, being collected 
at nominal positions with an interval of 1 mm. Based on the rate 
gyroscope and accelerometer bandwidths and axis speed, the 
available spatial frequency range is between 0 and 2 cycles/mm 
(2000 m-1). Hence, for each of the stages of degradation, there 
are fifty (50) IMU-based data runs and ten (10) reference-based 
data runs available for analysis. 
 The statistical time-domain features used in the analysis of 
this experiment are described in detail in Ref. [12]: peak value 
(ܸܲ), root-mean-square (ܴܵܯ), standard deviation (ߪ), 
skewness (ߛଵ), kurtosis (ߛଶ), crest factor (ܨܥ), shape factor (ܵܨ), 
impulse factor (ܨܫ), and clearance factor (ܨܮܥ). The feature 
formulas are given in Table 2, where  ݕത denotes the average of a 
signal (ݕ) and ܰ denotes the number of data points in the signal. 
For the current implementation, each ‘signal’ is a geometric error 
motion as a function of position, or some transformation of the 
error motion, e.g., via filtering. The features were calculated for 
every instance of error motion data generated at each stage of 
degradation. 

The features in Table 2 were applied to mean-subtracted, 
band-pass filtered signals. First, the error motions were bandpass 
filtered between spatial frequencies of 200 m-1 and 104 m-1, 
which have cutoff wavelengths of 5 mm and 0.1 mm, 
respectively. The cutoff wavelength of 0.1 mm is the smallest 
wavelength achievable, corresponding to the bandwidth of the 
rate gyroscopes (200 Hz) and the axis speed used for that 
frequency range (0.02 m/s). On the other hand, the cutoff 
wavelength of 5 mm is sufficient to capture any impacts from 
bearing faults, since bearing fault signatures are assumed to 
occur with wavelengths on the order of about 0.7 mm (the 

nominal diameter of the flats) and less than about 12.4 mm 
(circumference of a single ball). Filtering was performed with a 
first-order, zero-phase digital Butterworth filter [13]. Second, to 
eliminate any portion of data that relates to the shape of the rail 
raceways, the mean of the filtered signals was removed. This 
means that for the fifty (50) runs of IMU-based data for each of 
the six degrees of freedom, the means of all 50 filtered signals 
were subtracted from each individual signal for feature analysis. 
Similarly, the filtering and mean-removal processes were applied 
to the ten (10) laser-based reference data for each stage of 
degradation. 
 
TABLE 2: STATISTICAL FEATURES. 

Feature Name Formula 
Peak Value 

ܸܲሺݕሻ ൌ
1
2
൫maxሺݕሻ െ minሺݕሻ൯ 

Root-Mean-Square 

ሻݕሺܵܯܴ ൌ ඩ
1
ܰ
෍ݕ௜

ଶ

ே

௜ୀଵ

 

Standard Deviation 

ሻݕሺߪ ൌ ඩ
1

ܰ െ 1
෍ሺݕ௜ െ തሻଶݕ
ே

௜ୀଵ

 

Skewness 

ሻݕଵሺߛ ൌ

1
ܰ∑ ሺݕ௜ െ തሻଷேݕ

௜ୀଵ

ଷߪ
 

Kurtosis 

ሻݕଶሺߛ ൌ

1
ܰ∑ ሺݕ௜ െ തሻସேݕ

௜ୀଵ

ସߪ
 

Crest Factor 
ሻݕሺܨܥ ൌ

ܸܲሺݕሻ

ሻݕሺݏ݉ݎ
 

Shape Factor 
ሻݕሺܨܵ ൌ

ሻݕሺݏ݉ݎ
1
ܰ∑ ௜|ேݕ|

௜ୀଵ

 

Impulse Factor 
ሻݕሺܨܫ ൌ

ܸܲሺݕሻ
1
ܰ∑ ௜|ேݕ|

௜ୀଵ

 

Clearance Factor 
ሻݕሺܨܮܥ ൌ

ܸܲሺݕሻ

ቀ
1
ܰ∑ ඥ|ݕ௜|ே

௜ୀଵ ቁ
ଶ 

 
5. DATA ANALYSIS AND RESULTS 
 An example of a feature applied to the IMU-based data is 
Figure 9, which shows the standard deviation of each filtered 
error motion. There are 55 degradation stages, and there are fifty 
(50) runs at each stage, leading to fifty values of standard 
deviation at each stage. Specifically, the standard deviation in 
Figure 9 is the standard deviation of a bandpass filtered version 
of an error motion (see Section 4), denoted by a tilde over each 
error motion, e.g., ܧ෨ଡ଼ଡ଼ and ܧ෨୅ଡ଼. At each stage, the blue box 
represents the middle 50 percent of the 50 values, and the black 
whiskers extend to the largest value that falls below ݍଷ ൅
1.5ሺݍଷ െ ଶݍ ଶሻ, or the smallest value that falls aboveݍ െ
1.5ሺݍଷ െ  ଷ are the 25th and 75th percentileݍ ଶ andݍ ଶሻ, whereݍ
respectively. Values that fall outside this range are classified as 
outliers, which are plotted as blue crosses in Figure 9. Also, the 
red line within each blue box is the median value for all 50 runs 
for that degradation stage. 

Truck 2 damaged

Trucks 1 & 2 damaged
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FIGURE 9: BOXPLOTS OF STANDARD DEVIATION OF 
FILTERED ERROR MOTION VERSUS DEGRADATION STAGE. 
 
 Some trends of the metric, ߪሺܧ෨୅ଡ଼ሻ, with degradation stage 
are evident in Figure 9, while others are more unclear. For 
example, one clear trend is that ߪሺܧ෨୅ଡ଼ሻ increases fairly linearly 
from a value of about 2.1 µrad at Stage 0 to about 2.5 µrad at 
Stage 40, which is a 0.4 µrad increase in the metric. Then, the 
metric essentially stays constant after Stage 40. This difference 
in trends (linear versus constant metric) is related to which balls 
were damaged at each stage: metal balls of Truck 2 were only 
damaged until Stage 40, at which point new flats were induced 
only on the metal balls of Truck 1. Therefore, the difference in 
trends is due to the dependence of ߪሺܧ෨୅ଡ଼ሻ on the balls of the 
trucks, accounting for the linear trend before Stage 40 (due to 
damage within Truck 2) and the constant trend after Stage 40 

(due to damage within Truck 1). Perhaps the physical mechanism 
that leads to the trend difference is the preload on each truck, 
with the preload being much greater on the balls of Truck 2 
compared to Truck 1. A greater preload within Truck 2 could lead 
to a greater dependence of ܧ୅ଡ଼ on changes to the balls within 
Truck 2. 
 One way to assess trends is to monitor a characteristic of a 
statistical population of the feature with degradation stage. Each 
of the boxplots in Figure 9 represents a statistical population at a 
given stage of degradation. As such, the statistical characteristics 
(mean, median, etc.) of each population can be monitored from 
stage to stage. Because median trends are visible in Figure 9, and 
the data has relatively large (but few) outliers, the median value 
is chosen instead of the mean for monitoring purposes. For the 
standard deviation feature, we can approximate the contribution 
of degradation to the median value. Based on the assumption that 
the additional signal (from degradation) and baseline signal 
(without degradation) are uncorrelated, this relationship can be 
represented as 
 

௜ߪ 
ଶ ൌ ଴ߪ

ଶ ൅ d,௜ߪ
ଶ   (5)

 
where ߪ଴ is the standard deviation without degradation, and ߪd,௜ 
is the contribution from degradation at the ݅th stage of 
degradation. To ensure that the contribution from degradation is 
positive and begins at zero at Stage 0, the median contribution is 
approximated as 
 

 
ොd,௜ߪ ൌ ටߪො௜

ଶ െ min	ሺߪො௜ሻଶ െ ො଴  (6)ߪ

 
where a “hat” denotes the median value, and the minimum 
function is for all median values. Equation (6) can be applied to 
the IMU-based data as well as the laser-based reference data. 
 Figure 10 shows the approximate contribution of 
degradation to the median standard deviation, ߪොd,௜, for the IMU- 
and reference-based data for one DOF (roll angle). Even though 
the reference data has a lower noise than the IMU data (Figure 
10A), the trend of the approximate contribution from 
degradation is very similar and within 0.5 µrad (Figure 10B). 
There appears to be a scaling difference between the IMU- and 
reference-based results for ߪොୢሺܧ෨୅ଡ଼ሻ, which could be due to the 
differences in data collection (carriage dynamics, sensor 
bandwidths, thermal states, etc.). For the other five DOF, the 
differences are much larger than a scaling factor. Figure 11 
compares the IMU- and reference-based approximate 
contribution of degradation for all six DOF. The medians trend 
at significantly different rates (for ܧ෨ଢ଼ଡ଼ and  ܧ෨୆ଡ଼) or even trend in 
opposite directions (for ܧ෨୞ଡ଼ and  ܧ෨େଡ଼). A question then arises: 
How do we assess trends of features with degradation stage? 
 One way to assess the trends of features is to evaluate the 
correlations with degradation stage. The Pearson correlation 
coefficient, ߩP, measures the linearity of a trend, while the 
Spearman correlation coefficient, ߩS, measures the monotonicity 
of a trend [14]. Because both correlation coefficients have merit, 
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the geometric mean of their magnitudes, ඥ|ߩP||ߩS|, can be used 
to quantitatively assess a trend. The closer the geometric mean is 
to the maximum possible value of one, the greater the correlation 
of a trend with degradation stage. 
 

 
FIGURE 10: (A) BOXPLOTS OF STANDARD DEVIATION OF 
FILTERED ERROR MOTION BASED ON IMU DATA (BLUE 
BOXES AND CROSSES) AND REFERENCE DATA (RED BOXES 
AND CROSSES), AND (B) RELATIVE MEDIAN VALUES. 
 

 
FIGURE 11: (A) RELATIVE MEDIAN VALUES FOR IMU- AND 
REFERENCE-BASED RESULTS. 
 

The metric, ඥ|ߩP||ߩS|, can be calculated for any statistical 
characteristic of any feature. Figure 12 shows the geometric 
mean of the Pearson and Spearman coefficients for the median 
of each of the nine statistical features (Table 2). Each of the six 

degrees of freedom has a different value of ඥ|ߩP||ߩS| for each of 
the nine features. Visual inspection shows that there can be 
significant variety among the metric values for the degrees of 
freedom, leading to a “skyscraper” effect in Figure 12. 
Nonetheless, some features trend with the degradation of the 
outer loop balls, since many of the geometric means in Figure 12 
have magnitudes above 0.5. 
 

 
FIGURE 12: GEOMETRIC MEAN OF PEARSON AND 
SPEARMAN CORRELATION COEFFICIENTS FOR MEDIAN OF 
EACH STATISTICAL FEATURE BASED ON DATA FROM (A) 
IMU AND (B) REFERENCE. 
 
 In order to quantitatively assess the metrics in the aggregate 
for a feature, the arithmetic mean, ̅ߩ, is defined as 
 

ߩ̅  ൌ mean൫ඥ|ߩP||ߩS|൯ for six values for each feature  (7)

 
Figure 13 compares the arithmetic mean of the IMU- band 
reference-based medians for the nine statistical features (Table 
2). The IMU-based values of ̅ߩ range from about 0.3 (shape 
factor feature) to about 0.7 (peak value and standard deviation 
feature), while reference-based values of ̅ߩ range from about 0.5 
(skewness feature) to about 0.7 (RMS and standard deviation 
features). Therefore, the standard deviation feature has, on 
average, the largest value of ̅ߩ and is therefore chosen as the 
feature to be investigated for monitoring purposes. 
 Not only can the median value of standard deviations be 
used for monitoring trends (Figure 11) in a physical sense of 
micrometers or microradians, but the Wilcoxon rank sum test can 
be used to determine whenever the median value of one 
population (for Stage 1 and beyond) has deviated significantly 
from that for the initial population (for Stage 0) [14]. If the 
Wilcoxon rank sum test probability, ܲ, is below 0.05 (5%), the 
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distribution for that stage is statistically different from the initial 
stage. In that case, the hypothesis, ܪ, equals 1, because the 
hypothesis of a statistically significant change due to degradation 
is true. On the other hand, whenever the probability, ܲ, is not 
below 0.05 (5%), the hypothesis is false (ܪ ൌ 0), since the 
median value of the given distribution has not changed much 
from the initial value for Stage 0; degradation is unclear. 
 

 
FIGURE 13: ARITHMETIC MEAN OF GEOMETRIC MEANS 
FOR MEDIAN OF EACH STATISTICAL FEATURE OF IMU-
BASED AND REFERENCE-BASED RESULTS. 
 
 Figure 14 shows the probability, ܲ, and hypothesis, ܪ, 
values for ߪ൫ܧ෨ଢ଼ଡ଼൯. The IMU detects a change at Stage 1, which 
is much earlier than when the reference detects a change at Stage 
16, despite the reference yielding a much greater correlation 
(ඥ|ߩP||ߩS| = 0.7) than the IMU (ඥ|ߩP||ߩS| = 0.2) for standard 
deviation of ܧ෨ଢ଼ଡ଼ in Figure 12. To smooth abrupt changes of ܲ  for 
condition monitoring purposes, filtered versions of ܲ and ܪ, 
denoted as Fܲ and ܪF, are also shown in Figure 14. The ܲ curve 
is filtered with a first-order Savitzy-Golay filter of length 11 to 
yield Fܲ, which then results in ܪF via the 5% threshold. In Figure 
14A, the ܪF value switches at Stage 6 because the Savitzy-Golay 
filter of length 11 (= 5 + 1 + 5) smooths out the abrupt shift of ܲ 
at Stage 1 to last until Stage 6 (= 1 + 5). 
 Figure 15 shows the Fܲ curves for standard deviation for all 
degrees of freedom. The IMU-based results cross the 5% 
threshold only once, while the reference-based results sometimes 
cross back and forth across the 5% threshold, despite increasing 
degradation. Furthermore, the IMU-based results cross the 5% 
threshold at earlier stages than the reference-based results, 
showing how the IMU is perhaps more sensitive and better suited 
for monitoring purposes. The only degree of freedom that does 
not cross the 5% threshold is ܧ෨ଡ଼ଡ଼, because the positioning error 
motion is not significantly affected by truck ball degradation. 
 Figure 15 can be combined with Figure 11 to determine the 
minimum significant changes of standard deviation for five DOF 
(positioning error excluded). The IMU-based values in Figure 11 
at the threshold crossings in Figure 15 are either about 0.05 µm 
(for translational error motions) or 0.5 µrad (for angular error 
motions). Therefore, 0.05 µm and 0.5 µrad are the minimum 
statistically-significant changes of standard deviation due to 

degradation for the IMU-based results. In fact, these two minima 
are essentially the same, because the characteristic distance 
between trucks is roughly 0.1 m, which means that a change of 
0.05 µm would create an angular change of about 0.5 µrad (= 
0.05 µm/0.1 m). Finally, the crossing locations in Figure 15A 
range from Stage 6 to Stage 28, which relate to 0.09% or 0.4% 
of damage to the total metal ball surface area. Consequently, as 
little as 0.09% of total metal ball area damage can yield a 
statistically significant change of standard deviation. 
 

 
FIGURE 14: WILCOXON RANK SUM TEST, AND ITS 
FILTERED FORM, FOR ߪ൫ܧ෩YX൯ BASED ON DATA FROM (A) IMU 
AND (B) REFERENCE. 
 

 
FIGURE 15: FILTERED VERSION OF WILCOXON RANK SUM 
TEST VERSUS DEGRADATION STAGE, BASED ON DATA 
FROM (A) IMU AND (B) REFERENCE. DOWNWARD/UPWARD 
CROSSINGS WITH THE (DASHED) FIVE PERCENT LINE ARE 
DENOTED WITH BLACK/WHITE FILLED CIRCLES. 
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6. CONCLUSIONS 
 An inertial measurement unit was studied for its ability to 
measure changes in geometric error motions due to induced 
faults on the recirculating ball bearings of two carriage trucks 
within a linear axis. Each truck was modified with an access hole 
that allowed the metal balls in the outer loop of the truck to be 
progressively removed and degraded. In this experiment, each of 
the metal balls in the outer loop of two trucks were damaged in 
a specific order until each ball had six flats, each with a nominal 
depth of 30 µm. For each stage of degradation, four new flats 
were induced and then fifty (50) runs of IMU data were collected 
in addition to ten (10) runs of laser-based reference data. After 
220 flats had been induced, approximately 0.80% of the metal 
ball surface area was damaged by the numerous flats, and the 
average surface roughness was changed by about 0.11 µm. 
 For each stage of degradation, the fifty runs of IMU data and 
ten runs of reference data were analyzed with the nine features 
(standard deviation, kurtosis, etc.) used for rotating machinery 
systems. Trends in the median value of the statistical populations 
were determined via the Pearson and Spearman correlation 
coefficients. The standard deviation feature had one of the 
greatest correlations with degradation among both the IMU and 
reference data, so the standard deviation feature was used for the 
rest of the analysis. Subsequently, the Wilcoxon rank sum test 
was used to reveal an ability of the standard deviation feature to 
detect statistically significant changes as small as 0.05 µm or 
0.5 µrad, corresponding to a total damaged surface area of truck 
balls of less than 0.1 percent. 
 Therefore, results showed that the IMU-based monitoring 
system has promise for online, data-rich, integrated diagnostics 
and prognostics of linear axes system health. Feature changes 
due to increasing degradation were identified in the median of 
standard deviation and other features. Pearson and Spearman 
correlation analysis provided a high-level view of these trends 
and insight into how to select a feature for monitoring. On the 
other hand, the Wilcoxon rank sum test provided a low-level 
view of how to determine statistical lower bounds, for 
thresholding purposes, within future online monitoring systems. 
 Future work includes analysis of filtered components with 
spatial frequencies that are different than those used in this study, 
as well as the incorporation of the inductive proximity sensor 
data. The “smart truck” concept, used to detect the phase of the 
outer loop of balls, could be used to study the influence of the 
balls and their damage on the geometric error motions. 
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