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A B S T R A C T

Trends in the zeroth frequency moment of the imaginary part of the dielectric function are studied for a wide
range of metals, semiconductors and insulators. These results are combined with estimates for the inverse-first
moment (related by Kramers-Kronig relations to the static dielectric function) and knowledge of the first moment
from the f-sum rule. Matching all three moments allows for construction of a model dielectric function that
reasonably predicts the loss function at different values of momentum and lifetime damping effects on occupied
and unoccupied electron states. This is demonstrated by comparing model results and results of detailed, first-
principles calculations.

1. Introduction

Scattering rates, slowing of charged particles and lifetime damping
of high-energy electron states in matter depend on a system's dynamical
dielectric response. Much effort has been devoted to understanding
these effects and enabling investigators to predict and quantify them for
a wide range of applications. Several examples of past work are the
work by Jablonski and Powell (2015), Chantler et al. (2005), the
longstanding effort by Berger et al. (2010), and the recent work by Kas
et al. (2007), who formulate a reasonable means of estimating the
momentum-dependent loss function and apply it to damping effects for
electrons, holes and electron-hole pairs (Kas et al., 2016).

Here we consider the role of valence electrons in dielectric response,
whereas effects of core electrons depend much less on the system. Our
approach is to use three sum rules to find the inverse-first, zeroth and
first frequency moments of the imaginary part of the dielectric function
calculated within the random-phase approximation (RPA). By assuming
a model form for the imaginary part, the three sum rules constrain the
function completely. The real parts of the dielectric and loss functions
follow from time-reversal symmetry, Kramers-Kronig relations and the
relationship between the two functions. Using the loss function and a
free-electron Green's function helps one estimate electron damping. The
model results can be compared with detailed numerical results for
various quantities to test the model.

In what follows, we examine trends in the zeroth moment across
several sequences of materials. Two sequences include solids consisting
of first- and second-row elements with varying degrees of covalency:
diamond, cubic BN, wurtzite BeO, rocksalt LiF and solid Ne; and silicon,
zincblende AlP, rocksalt MgS and NaCl, and solid Ar. Another sequence
considers Group IV elements, (diamond) C, Si, Ge, α-Sn and Pb. Finally,

we compare trends in the metals, Li, Na Al and Pb. The zeroth moment
vanishes as wave vector q approaches zero, linearly in metals and
quadratically in non-metals. Trends in metals can be compared to the
nearly-free-electron limit (jellium), while trends in noble-gas solids can
be compared to the behavior expected for independent atoms.

By using the Levine-Louie model dielectric function (Levine and
Louie, 1982) for the static dielectric function, the inverse-first fre-
quency moment of the imaginary part of the dielectric function follows
from Kramers-Kronig relations. The f-sum rule gives the first frequency
moment. After evaluating a model form for the imaginary part, a mo-
mentum-dependent loss function is obtained and compared to results of
first-principles, numerical time-dependent density-functional theory
(TD-DFT) calculations that rely on standard methodology (Onida et al.,
2002). The resultant imaginary part of the “on-shell” one-electron self-
energy is found for Si, MgO and LiF, and we compare results to those of
detailed, numerical calculations obtained using Hedin's GW approx-
imation (Hedin, 1965; Hedin and Lundqvist, 1969) in a manner that
reflects the frequency dependence of dielectric screening, i.e., no ap-
proximation such as a plasmon-pole model was used (Soininen et al.,
2003).

2. Zeroth-moment trends

In the RPA, the polarization function in a given system is given by

= =
±

n f f g g
x x x

x
x x x x

( , ; ) ( , )
( , )

2
( ) ( , ) ( , )

i
.

i j

i j i j

i j
0

, (1)

This describes modulation of the charge density n at one point in
space x at frequency ω because of a potential disturbance ϕ at another
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point. Indices i and j sum over electronic (Kohn-Sham) states, both
occupied and unoccupied (Hohenberg and Kohn, 1964; Kohn and
Sham, 1965). An f or ε is a Kohn-Sham orbital occupancy or eigenvalue,
respectively, and =g x x x x( , ) ( ) * ( )i i i is a product of a Kohn-Sham
orbital and its conjugate. Indices i and j sum over states of only one spin
type, while the 2 multiplying the sum accounts for spin degeneracy.
(We only consider paramagnetic systems.) This implies
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Here v (c) sums over occupied (unoccupied) states, and ωcv= εc–εv.
For ω > 0, this gives
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We define a scaled frequency moment of the dielectric function's
imaginary part at wave vector q as
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where nav is the average valence electron density.
We studied trends in the behavior of M q( )0 using density-functional

theory (DFT) calculations (Hohenberg and Kohn, 1964) using the local-
density approximation (Kohn and Sham, 1965). We worked within a
plane-wave/pseudopotential framework using norm-conserving pseu-
dopotentials with a form like that proposed by Vanderbilt (1985). A
hard plane-wave cutoff was consistently used, as were experimental
lattice constants. Other numerical aspects are described elsewhere
(Shirley et al., 1996).

To evaluate M q( )0 , we note that Eq. (7) involves the square of the
one-electron density matrix and/or a double sum over occupied elec-
tron states. We sampled states indexed by v with crystal momentum k
on a regular grid that samples the whole Brillouin zone. The grid was
shifted to break symmetry, which accelerates convergence of results
with increasing sampling density. We sampled states indicated by v on
a commensurate grid at points k+Q for a few values of Q, which al-
ways lay within the first Brillouin zone. For one value of Q, this gives
results for M q( )0 for all q=Q+G, where G can be one of many re-
ciprocal-lattice vectors. Use of a plane-wave basis set for Bloch states
and fast Fourier-transform techniques made the evaluation very effi-
cient. Using 4–10 values of Q gave results for a sufficiently dense set of
values of q to establish trends in the behavior of M q( )0 , which depends
mostly on the magnitude of q, i.e., q.

We used 216 values of k for insulating materials and 64,000 values
of k for metallic systems. The results obtained from such sampling were
sufficiently converged with respect to sampling for all practical pur-
poses. An inconsequential exception to this rule was the small-q beha-
vior in metals, where M q( )0 goes to zero linearly. The results showed
fluctuations in the values of M qq( )/0 because of limited sampling of
combinations of states separated by q inside and outside of the Fermi
sea. [Recall that we are sampling combinations of occupied and un-
occupied states, although only occupied states appear in Eq. (7).]

In Fig. 1, we show trends in M q( )0 for the combinations of first-row
elements for the compounds indicated. Solid Ne has one atom per unit
cell, wurtzite BeO has four, while diamond, cubic BN and LiF each have
two. To illustrate trends most clearly, the wave vector is scaled against
the canonical Fermi wave vector kF given by =k n3F

3 2
av, and the value

of M q( )0 is scaled against the value of M q( )0 . The moment M q( )0
depends on the vector q, but we plot it as, and consider it to depend,
only on the magnitude q, so that the values of M q( )0 that are found
follow a smooth trend with modest scatter. Fig. 2 shows analogous
trends for combinations of second-row elements for the compounds
indicated in the Figure. All these compounds have eight electrons per
unit, with two atoms per unit cell in every system except solid Ar. In
both figures, trends are shown for the jellium limit and our DFT noble-
gas atom results. The trend for jellium can be found analytically, being
proportional to the volume of the Fermi sphere that is not contained
within an identical sphere centered at wave vector q. The noble-gas
atom results are based on calculations of the type reported by Ko-
tochigova et al. (Kotochigova et al., 1997a, 1997b) using the program
written by the author.

In Fig. 3, we show trends for M q( )0 for five Group-IV systems:
diamond C, Si, Ge, α-Sn, and Pb, and the jellium limit. In Fig. 4, we
show trends in the metals, Li, Na, Al and Pb, along with the jellium
limit. Fig. 4a shows trends for M q( )0 , and Fig. 4b shows scaled trends
for M qq( )/0 . The small-q limit in Fig. 4b is related to the area of the
Fermi surface projected along q. Results at small q fluctuate because of
imperfect Brillouin zone sampling. We attribute the systematic de-
partures from jellium-like behavior at small q to non-sphericity of the

Fig. 1. The scaled zeroth moment versus scaled wave vector for five first-row
compounds. The jellium and independent-atom limits are shown by a solid and
dashed black curve, respectively.

Fig. 2. The scaled zeroth moment versus scaled wave vector for five second-row
compounds. The jellium and independent-atom limits are shown by a solid and
dashed black curve, respectively.
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Fermi surface, even in an extended-zone scheme.

3. Parametrized model dielectric function

The analysis of the previous section establishes the behavior of
M q( )0 . The f-sum rule implies the value of M q( )1 . We use this rule and
ignore the fact that changes in the electron velocity operator because of
use of non-local pseudopotentials imply that it is only approximate.
Finally, M q( )1 is found from Kramers-Kronig relations by relating it to
the static dielectric function of Levine and Louie. This requires use of
the experimentally observed static macroscopic dielectric function, ε∞.
Note then that the above three moments are found using three

unrelated approximation schemes. The Cauchy-Schwarz inequality
implies that one should have M M Mq q q[ ( )] ( ) ( )0

2
1 1 , but this in-

equality is occasionally violated in our method, and we discard results
found for values of q for which the inequality is not satisfied.
Alternatively, one could do well by using a single-pole approximation
for such cases, because Im ε(q,ω) should be strongly peaked in such
cases. In addition, M q( )0 cannot exceed M q( )0 for electron-
counting reasons.

If the Cauchy-Schwarz inequality is obeyed, many functions can
match the above three moments. The following form is convenient
because the moments can be found analytically:
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Here EG is the band gap, and we suppress the q-dependence of the
moments, C, p and Ω. Two ratios of moments are = +M M p E/0 1 G
and = + + +M M p p E p E/ ( 1) 21 1

2
G G

2. From this, one has
=p M M E( / )0 1 G , , =p p/ , and =C M p/[ ( ) ]p

1 . However, it
has been found advantageous to determine stationary points for the
logarithm of qIm ( , ) after only Ω and p are found, normalize a trial

qIm ( , ) so that it does not exceed unity, evaluate trial moments
thereof, and normalize once more to obtain the correct moments. This
avoids numerical pitfalls because of unwieldy compensating factors in
Eq. (9).

Time-reversal symmetry implies =q qIm ( , ) Im ( , ), and one
can find qRe ( , ) efficiently through Kramers-Kronig relations using
fast Fourier-transform methodology. Fig. 5 shows the loss function, Im
[−1/ε(q,ω)], for Ar, Si and Al for several values of q. These were ob-
tained using the present approach and time-dependent density-func-
tion-theory (TD-DFT) calculations using the program of Lawler et al.
(2008). The agreement between results supports use of the present
method for many applications.

4. Electron damping calculations

Damping of electronic states because of coupling to collective ex-
citations can be estimated using Hedin's GW approximation. In this
approach, the electron self-energy is an effective part of an electron or
hole's energy, and the self-energy's imaginary part determines the
damping and lifetime broadening. The self-energy is given by

= + + ++E e G E Wk q k q q( , ) i d
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Here we use the time-order free electron Green's function:
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We have =W Vq q q( , ) ( , ) ( )1 , where =V qq( ) 4 / 2 is the
Fourier transform of the Coulomb interaction. We can also write

= + +A Aq q q( , ) 1 ( , ) ( , )1
R A . The first term leads to Fock ex-

change, which only involves the advanced part of G. The retarded term
A q( , )R is −i times the loss function for ω > 0 and a real part dic-
tated by Kramers-Kronig relations. The advanced term A q( , )A is +i
times the loss function of |ω| for ω < 0 and a real part dictated by
Kramers-Kronig relations. Hence, A q( , )R arises from poles just below
the positive real axis and has a branch cut there, whereas A q( , )A
arises from poles just above the negative real axis and has a branch cut
there.

When carrying out integration over q, A q( , )R and A q( , )A were
interpolated from their values at the closest calculated values of q in Eq.
(10). Damping effects (synonymous with the imaginary part of the self-

Fig. 3. The scaled zeroth moment versus scaled wave vector for Group IV
elements. The jellium limit is shown by a solid black curve.

(a)

(b)

Fig. 4. (a.) The scaled zeroth moment versus scaled wave vector for four metals.
The jellium limit is shown by a solid black curve. (b.) Same as for panel (a.),
divided by (q/kF).
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energy) arose from the residue because of products of the advanced part
of G and A q( , )R for E < EF and products of the retarded part of G and
A q( , )A for E > EF. Fig. 6 shows results for Si, MgO and LiF using the
present model and detailed numerical calculations described elsewhere
(Soininen et al., 2003). Such broadening of electron and hole features
leads to concomitant broadening of spectral features in a variety of
excitation spectra, including the loss functions shown in Fig. 5. How-
ever, the connection between electron or hole broadening and the latter
broadening is complicated, as illustrated, for instance, by Kas et al.
(2016).

5. Conclusions

Use of three sum rules has permitted construction of a parametrized

dielectric function. This reproduces salient features of the loss function
at different values of momentum reasonably well. The resulting loss
function was also used to estimate electron damping in various systems.
From comparison of model and detailed, numerical results, we conclude
that this work presents a practical and accurate method for estimating
valence electrons’ contributions to quantities such as stopping powers
and electron damping and associated mean free paths.
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Fig. 6. Electron damping in Si, MgO and LiF, vertically offset for presentation.
The points indicate results of full, numerical self-energy calculations, and the
curves show the present model results.
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