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Abstract—Cyber-physical systems are systems governed by
the laws of physics that are tightly controlled by computer-
based algorithms and network-based sensing and actuation.
Wireless communication technology is envisioned to play a
primary role in conducting the information flows within such
systems. A practical industrial wireless use case involving a robot
manipulator control system, an integrated wireless force-torque
sensor, and a remote vision-based observer is constructed and
the performance of the cyber-physical system is examined. By
using readings from the remote observer, an estimation system
is developed using machine learning regression techniques. We
demonstrate the practicality of combining statistical analysis with
machine learning to indirectly estimate signal-to-interference of
the wireless communication link using measurements from the
remote observer. Results from the statistical analysis and the
performance of the machine learning system are presented.

Index Terms—industrial wireless, 802.11, factory communica-
tions, cyber-physical systems, wireless networking, robotics

I. INTRODUCTION

The advances in wireless devices for cyber-physical systems
(CPS) have led to rapid adoption of the industrial wireless
system (IWS) in factories. The use cases for IWSs include
process monitoring and control, discrete manufacturing, safety
systems, and flexible factory work cells [1]. Implementation
of wireless systems for industry has many advantages due
to the lower cost, ease of scale, and flexibility due to the
absence of cabling. However, these advantages come with
challenges [2]–[4]. Such challenges include unpredictable la-
tency, error uncertainty, and increased information loss when
operating in the presence of significant interference and limited
spectral resources [5]. When network operations are impaired
by interference, fading, and propagation loss, the physical
system performance may also be impaired. These impairments
contribute to a change in the quality of information flow
between wireless nodes and require careful co-design of the
network and controller [6], [7].

Interference presents a significant challenge to IWSs and
the underlying physical systems that rely on them. While
wireless systems can be designed to support many users
and devices and cognitive radio can be useful in schedul-
ing transmissions and avoiding problem locations within the
spectrum, sometimes it is not possible to avoid interference
entirely or responses to interference is too slow. Sources of
interference may be narrowband or wideband in nature. They
include multi-path reflections, competing wireless systems,
non-communication devices such as microwave ovens and
industrial machines, and intentional jamming [8].

Methods to estimate, avoid, or mitigate interference are
required for the deployment of reliable and deterministic
IWSs. Existing methods rely on traditional signal processing
and novel cognitive radio techniques. In [9], a method of
desensitizing a 5G cellular network using interference cancel-
lation of transmissions from neighboring cells is presented.
Interference cancellation equipment is highly complex and
costly, and the impact to latency in a CPS must be well
understood. In [10], a method using a dedicated link quality
estimation (LQE) node using received signal strength and
information (RSSI) obtained from received data packets to
identify interference and multi-path is presented as a viable ap-
proach to LQE in IEEE 802.15.4 networks without introducing
additional traffic. In [11], a taxonomy of channel link quality
techniques is presented providing a valuable survey on LQEs
and asserting importance of link quality estimation in IWSs.
In [12], failure analysis and wireless network troubleshooting
are performed whenever the CPS is not functioning properly.
Interference analysis is one major part of the troubleshooting
procedure which is performed through traffic patterns and
wireless spectrum analysis. Also, in [13], the use of spectrum
analysis for interference detection and estimation is proposed
for IWSs.



LQE is one important but insufficient aspect of assessing
the impact of link quality on a CPS. We assert that by
jointly observing the performance of the physical and wireless
components of a CPS, one obtains the complete perspective
of the quality of the wireless link and its impact on physical
performance. Since interference is such an important topic in
the wireless CPS, we are motivated to contribute a method that
simultaneously (1) makes observations of the physical system
using ground truth measurements, and (2) infers the quality
of the wireless communication system in terms of signal-to-
interference ratio (SIR) using a relevant use case found in
industry.

In this paper, we present a method using random forest
regression to estimate the SIR ratio of the communication
channel within a robotic arm force-seeking scenario in which
the force signal is transmitted over a wireless local area
network (WLAN) [14]. Position data from a vision-based
tracking system, a distant observer, is used to train a channel
quality estimator to infer the SIR of the wireless channel.
The experiment is designed so that the small perturbations in
the wireless channel resulting from interference will present
position uncertainty in the physical system.

Our paper is organized as follows: In Section II the use case
is presented with details of its construction. In Section III
we present our process of data collection and subsequent
analysis to include statistical exploration and our machine
learning approach. We then present the results of our analysis
in Section IV followed by conclusions and future direction in
Section V.

II. ROBOT ARM FORCE-SEEKING APPLICATION

A. General Construction and Operation

A robotic force-seeking apparatus is constructed using a
Universal Robots UR-3 collaborative robot. As illustrated in
Fig. 1, the robot is fitted with a six degrees-of-freedom (DOF)
force-torque sensor (FTS) followed by a probe. The robot
is programmed to apply a downward force, F (t), in the z

direction until a force exceeding a threshold, Ft, is reported
to the controller. The robot encounters the force threshold
through a fixed plunger-spring assembly. The force in the
spring is governed by the equation F (t) = kl where k is the
spring constant and l is the spring deflection. The robot will
push the spring downward repeatedly for the duration of 30
minutes. Plunger movement is limited by a hard stop which
will reset the height of the robot arm. A photograph of the
force-seeking apparatus is shown in Fig. 2. The illuminated
spheres shown in the photo are infrared markers used by the
remote observer to track the position of the probe.

Fig. 1. Robot force-seeking spring system with controlled wireless channel
emulation and interference injection.

Fig. 2. A photograph of the robot force-seeking experiment shows the
robotic arm, the spring-based plunger, and the visual markers used for position
tracking.

B. Components

Referring again to Fig. 1, the system is composed of the
following components:

Robot The robotic arm applies a downward force along the
z-axis to the plunger-spring assembly. The robot is a 6-
DOF rigid body manipulator in which all joints have
a full 360 degrees of motion. For the experiment, the
robot is configured such that it would replicate the action
of a robot applying a force to push a small part into
place within an automotive assembly work-cell [15]. The
robot is mounted on a motionless optics table in which
mechanical vibration is dampened.

Robot Controller The robot controller (RC) provides the



motion control function of all joints on the robot. The
RC is responsible for controlling motion while searching
for a force feedback signal.

Force Torque Sensor The force torque sensor (FTS) pro-
vides continuous force and torque readings at a rate of
125 Hz. Readings from the FTS include force measure-
ments in Newtons along the three Cartesian axes, x, y,
and z, and three torque readings in Newton-meters (N-
m) about each axis. The FTS is designed to communicate
with the RC through an Ethernet connection.

Robot End-effector The robot end-effector (REEF) is a rigid
body probe attached to the end of the robot arm just after
the FTS. The REEF is used to make contact with the
plunger-spring assembly.

Wireless Components The wireless Ethernet adapter (WEA)
replaces the Ethernet connection between the FTS and
the RC with a Wi-Fi connection. The adapter supports the
IEEE 802.11 b, g, n, and ac modes. The WEA connects
to the RC through a wireless access point (WAP).

Jammer The jammer provides the source of interference,
J , which is directly injected into the wireless channel.
For simplicity, interference is injected as non-modulated
additive white Gaussian noise (AWGN). The power of
J at each receiver is determined by its distance to the
jammer.

Channel Emulator The channel emulator (CE) provides the
capability to control the electromagnetic channel between
the WEA and the WAP. The CE supports frequencies
between 1 GHz and 6 Ghz and has an instant bandwidth
of 250 MHz. It also supports a channel impulse response
of 13 taps with a minimum time resolution of 4 ns mak-
ing the replication of close-quarter multi-path reflections
possible. As shown in Fig. 1, all wireless devices are
connected to the CE.

Electromagnetic Interference Cabinets The electromag-
netic interference (EMI) cabinets provide isolation
between devices such that communication between
devices does not occur through radiated leakage.

Wireless Sniffer A wireless sniffer (WS) is used to monitor
wireless traffic during operation. The sniffer is connected
to a laptop computer running Wireshark, and packet logs
are used for offline analysis of network events.

Vision Tracking System An OptiTrack VS120 Trio is used
as the vision-based tracking system (VTS) to produce
accurate ground truth measurements of the probe position.
Position estimates along the z-axis are captured at the
maximum video frame rate of 120 frames per second.
Each estimate includes time and position.

Fig. 3. Feedback signal flow model of the force-seeking controller

Fig. 4. RF emulation scenario design of the robotic force-seeking scenario.

C. Robot Arm Motion Control

A diagram of the control system for the robotic manipulator
is shown in Fig. 3. The UR-3 is constructed of the manipulator
assembly and the RC assembly. The internal construction of
the robot arm is irrelevant for this experiment, but it is assumed
that the arm produces encoder positions y(t) for each joint. It
is also assumed that the robot arm accepts actuation signals
~u(t) from the motor drives located in the RC. Both y(t) and
~u(t) are conveyed through wired connections. The force sensor
signal F̂ (t) is produced by the FTS and is conveyed via an
IEEE 802.11 wireless connection. The RC is programmed
to move a probe connected to the end of the manipulator
downward along a linear path until a force of at least 5 N
is detected. The RC will not move the arm during the force-
seeking operation unless it receives an FTS signal; therefore,
the duration and continuity of the movement of the arm will
be impacted by unreliable communication between the FTS
and the RC.

D. RF Emulation Scenario

The CE is programmed using a graphical user interface
in which the wireless scenario is modeled. Scenarios are
composed of radios, platforms, and links. Platforms represent



the physical machine on which a radio may be deployed.
Platforms may be mobile or stationary, ground-based or aerial.
Radios are assigned to platforms, and each radio is associated
to a physical port on the emulator. Links are representations
of the physical connections between radios. Each link has an
associated path loss and multi-path representation. Path loss
is implemented according to Friis equation [16] simplified as
Pr = Pt +C−10γ log10 (d), where Pr is the received power,
Pt is the transmitted power, C is a characteristic constant
representing characteristics of the channel and electronics,
γ is the path loss exponent, and d is the distance between
transmitter and receiver. For simplicity, we assume that path
loss occurs in accordance with the square of the distance
(γ = 2); however, in practice, the path loss exponent is usually
greater, causing a more rapid loss of signal power over the
same distance [17]. Since the focus of this work is to infer
signal quality from ground truth measurements, the path loss
exponent is inconsequential to our analysis.

Shown in Fig. 4 is the general scenario for the wireless com-
munication system employed for the force feedback control
system. In the figure, there are three nodes, a wireless router
(R), a wireless station (S), and a jammer (J). The router and
station transmit with nominal power that is dependent upon the
802.11 protocol. The jammer transmits with constant power,
and its impact on the scenario depends on its position relative
to the other nodes. The distance between J and R is denoted
by dJ,R, and the distance between the J and S is denoted by
dJ,S . The resulting signal-to-interference power ratio (SIR) for
the router is defined in decibels as SIRJ,R = PS,R − PJ,R

which is the power received by the router of the station signal
divided by the power of interference experienced at the router.
Similarly, the SIR experienced at the station is defined as
SIRJ,S = PR,S − PJ,S which is the received signal power
of the router at the station divided by the interference power
experienced at the station.

For each experiment, the location of the J is adjusted to
produce a desired SIR. Each time the location of J is changed,
the robot is allowed to operate for a period of 30 minutes.
This included periods of inaction by the robot when the SIR
prohibits movement of the arm. The SIR setting was validated
for each run using a real-time spectrum analyzer connected
directly to the emulator.

III. DATA ANALYSIS

The data analysis process for the experiment is divided
into four parts: raw data collection, data cleaning and feature
extraction, training, and the operation of the SIR estimation.
The raw data was produced as an output of the VTS as a time

(a) sample time series of probe position

(b) feature extraction model

Fig. 5. A time-series sample (a) of a single iteration of the measured z-axis
probe position and (b) the corresponding model for feature extraction.

series of z-axis position. Feature extraction was conducted
in MATLAB by following the time series and extracting or
calculating features for each iteration. Once features were
extracted, a statistical analysis of the features was conducted to
determine the variability of the features as a function of SIR.
Statistical analyses included visual inspection of histograms
of each factor and an inspection of the correlation coefficients
over the range of SIRs. A discussion of the statistical results
is provided in IV-A which demonstrates suitability of the use
of position measurements for machine learning. Training of a
machine learning algorithm followed. The machine learning
algorithm was programmed in Python using the Sci-kit Learn
library [18].



A. Feature Extraction

Feature extraction begins with a time series of position of
the probe through successive iterations of the plunger applying
force to the spring and then returning to its home position.
A sample time series of the z-axis position of the probe
is as shown in Fig. 5a. Rather than using the time series
directly, a more convenient and practical solution is to extract
features that represent aspects that may be useful for analysis
and machine learning algorithms. This reduces the number
of learning dimensions and usually improves computation
efficiency. The selected features are illustrated in Fig. 5b.
Shown in the model, the probe begins at its home position,
a. It will not begin its downward motion until it receives
sufficient FTS readings. Marker b indicates the beginning of
the probes descent. Marker c represents that point in which the
probe descends below a predetermined threshold, and marker
d represents the position in which the probe begins its return
ascent to the home position. Finally the probe returns to
the home position as indicated by marker e. Therefore, the
extracted features of each successive iteration is defined as
follows:

Feature Zd The length of the probe’s descent measured in
millimeters,

Feature ∆tab The duration in seconds the the robot waits
before moving the probe along its descent,

Feature ∆tbc The duration in seconds of the time that the
robot takes to move the probe beyond the threshold, Zth,
of -77 mm,

Feature ∆tcd The duration in which the probe dwells below
Zth and the speed of the probe remains under 0.15
mm/sec,

Feature ∆tae The duration of the full iteration as measured
from the home position, a, to the next home position, e.

B. Statistical Analysis

Each factor was visually examined to assess its variability
as a function of the SIR. In order to predict the SIR given a
set of measurements of the dynamics of the physical system,
sufficient variability is needed. This assessment was performed
visually using histograms as a basis for comparison. The
factors Zd and ∆tbc were used for examination of the data
using histograms.

In addition, it would be helpful to show that the fac-
tors are uncorrelated as a function of SIR demonstrating a
further level of confidence that each factor will be useful
to a machine learning algorithm. This assessment was ac-
complished by computing the correlation coefficient matrix
of the extracted factors as defined by the Pearson product-

moment method [19]. The correlation coefficient matrix is a
covariance matrix that is normalized by the product of the
standard deviations of two factors being compared according
to ρX,Y = cov(X,Y )/(σXσY ). Since each factor correlates
exactly with itself, a correlation matrix should have values of
1 along the diagonal. Other elements of the matrix will take on
values between -1 and 1. A visual inspection of the coefficient
matrices will show how strongly selected factors vary together.
Correlation can be viewed as a function of SIR to verify that
factors are independently applicable to a learning algorithm.
The objective of factor selection is, therefore, to choose factors
that are highly uncorrelated and yet still vary appreciably [20].

C. Machine Learning

In order to learn the SIR level from observing the various
features, we leverage the random forest model [21]. Random
forest is an ensemble of decision trees with random feature
selection which can be used for classification or regression
based on the predicted output space. Deploying random forest
in machine learning has been successful in various applications
such as [22]–[24]. Its main advantages are that it is stable, fast
to compute, and insusceptible to over-fitting.

In this work, we deploy the random forest model for SIR
regression using the five features defined in III-A. These fea-
tures are evaluated for each iteration of the probe movement.
We define a data segment which is composed of a number
of successive iterations and we denote the segment size by
M . As a result, we use the random forest regression model
to get an input vector of size 5M and regression output of
the corresponding SIR value. The random forest is selected
because it is computationally efficient with high-dimensional
data and it is robust for outliers and data non-linearity.

We start by training the random forest regression model
by taking a fixed number of segments for each SIR labelled
data. We denote the size of the training set for each SIR level
by T . The rest of the measurements are used for testing. In
general, the proposed machine learning approach will deploy
a sliding window approach of size M to collect the features
of the force-seeking use case to estimate the current level of
SIR at various nodes of the wireless network.

IV. RESULTS

The results in this section are presented from an experi-
mental run in which the jammer J interferes with the router,
R, while communication is conducted using a mixed mode
of IEEE 802.11 b and g [14]. Analyses using histograms and
covariance are presented in Section IV-A followed by results
of the machine learning application in Section IV-B.



(a) z-axis position

(b) Plunge delay ∆tbc

Fig. 6. Variations in probability distributions of the z-axis position (a) and the
plunge delay (b) indicate that machine learning may be effective in inferring
information about the underlying communication channel. In the figure, the
baseline case of infinite SIR is depicted as a histogram with white bars, and
the experimental case is depicted as a histogram with red bars.

A. Statistical Analysis

1) Analysis of Factors Using Histograms: The results of
the histogram analyses for the z-axis position of the probe
and the probe descent delay are shown in Fig. 6a and Fig. 6b,
respectively. The expectation of the histogram analysis was
that Zd and the ∆Tbc would exhibit appreciable variation that
may be observed through a visual inspection. This was indeed
the case. Referring to Fig. 6a, a visual inspection reveals that
the minimum z-axis position for each iteration skews to lower
positions for lower SIR values and higher positions for higher

TABLE I
CORRELATION COEFFICIENTS FOR −9 dB SIR

∆tab ∆tbc Zd ∆tcd ∆tae
∆tab 1 0.04 0.04 0 0.56
∆tbc 0.04 1 -0.96 -0.08 0.18
Zd 0.04 -0.96 1 0.03 -0.01
∆tcd 0 -0.08 0.03 1 0
∆tae 0.56 0.18 -0.01 0 1

TABLE II
CORRELATION COEFFICIENTS FOR −8 dB SIR

∆tab ∆tbc Zd ∆tcd ∆tae
∆tab 1 0.01 -0.05 -0.06 0.58
∆tbc 0.01 1 -0.99 -0.13 0.1
Zd -0.05 -0.99 1 0.07 -0.1
∆tcd -0.06 -0.13 0.07 1 -0.03
∆tae 0.58 0.1 -0.1 -0.03 1

TABLE III
CORRELATION COEFFICIENTS FOR −7 dB SIR

∆tab ∆tbc Zd ∆tcd ∆tae
∆tab 1 -0.05 -0.04 0.09 0.01
∆tbc -0.05 1 -0.93 -0.17 0.05
Zd -0.04 -0.93 1 0.08 -0.05
∆tcd 0.09 -0.17 0.08 1 -0.02
∆tae 0.01 0.05 -0.05 -0.02 1

SIR values. This implies that the controller algorithm responds
faster to force sensor readings at higher SIR values than lower
values. Similarly, by observing the plunge delay, ∆tbc, the
controller takes more time to respond at lower SIR values
than at higher values. This behavior is exemplified by the
probability skew shown in the histograms.

2) Factor Correlation Coefficient Analysis: Correlation co-
efficients were calculated for each of the five factors defined
in Section III-A and correlation coefficients matrices were
produced for each of the SIR values used. The correlation
coefficient matrices for SIR values of -9, -8, and -7 are
shown in Tables I-III, respectively. Inspection of the corre-
lation coefficient tables indicate that the factors are mostly
uncorrelated across SIR values except for the clear correlation
between plunge delay and plunge depth. Low correlation
values demonstrate a necessary but not sufficient condition
for the independent applicability factors to machine learning. If
desired, either ∆tbc or Zd could be omitted as they are strongly
correlated and therefore provide redundant information.

B. Machine Learning Results

We deploy the proposed machine learning approach to three
values of the SIR, -9, -8, and -7 dB. We start by showing the
output of the random forest regression model for two values



(a) M = 100

(b) M = 1

Fig. 7. Predicted SIR versus actual SIR for the cases of (a) M = 100 and (b)
M = 1. The box plots show the median value while the bottom and top edges
of the box indicate the 25th and 75th percentiles. Statistical outliers are shown
as red + signs.

of the segment size M . We set the training set size T = 200

for each SIR value. We use the random forest model with a
number of estimators of 500 and a tree depth of 5. In Fig. 7,
we present the box plots of the predicted SIRs against the
correct value of the corresponding SIR for M = 100 and
M = 1. Generally, increasing the value of M increases the
acquisition time for the input data for the random forest model
while enhancing the performance of the algorithm. By setting
M = 1, we notice that the predicted values of SIR are widely
spread around the median and a large number of outliers exists.
However, by increasing M , we have much less variations in
the predicted SIRs and a smaller number of outliers.

In Fig. 8, we present the two criteria for measuring the

Fig. 8. The performance of the random forest regression model against M .

performance of the proposed SIR estimation algorithm. We
show the performance against the segment size M . The first
criterion is the mean squared error where the mean of the
squared error between the estimated SIR and the actual SIR
values is calculated. The second criterion is the variance score
which is a statistical measure of how close the data are to the
fitted regression line. We use the r-squared variance score that
is defined as the ratio between the total variance explained by
model and total variance of the data [25]. In this figure the
improvement in the performance against the segment size is
demonstrated.

V. CONCLUSION

In this paper we have presented a practical use case of a
wireless force-torque feedback control system that could be
deployed in a manufacturing assembly system such as a pick-
and-place or assembly operation. A 6-DOF force sensor was
connected to a robot controller tasked with moving a probe
along a linear path until an opposing force exceeding 5 N
was detected. We demonstrated that the reliability of the wire-
less communication system directly impacts the repeatability
performance of the physical system. We also demonstrated
that the quality of the underlying wireless channel may be
inferred by observing the position of the probe along a single
spatial dimension and applying machine learning to predict the
signal-to-interference ratio. Our findings provide motivation
for applying machine learning to larger more complex systems
with high degrees of freedom. Future work will extend to
the inclusion of more descriptive factors, the addition of
network information such as the wireless protocol mode,
and the addition of a larger number of variables tracked by
many remote observers. Experimentation with neural networks



and deep learning to improve prediction accuracy and better
generalization will be of great values to wireless operations in
factories. Finally, the applications of online machine learning
techniques to this and other use cases could provide significant
benefits to the manufacturing community.

DISCLAIMER

Certain commercial equipment, instruments, or materials are
identified in this paper in order to specify the experimental
procedure adequately. Such identification is not intended to
imply recommendation or endorsement by the National Insti-
tute of Standards and Technology, nor is it intended to imply
that the materials or equipment identified are necessarily the
best available for the purpose.
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F. Héritier, Springer Handbook of Robotics, B. Siciliano and O. Khatib,
Eds. Springer International Publishing, 2016. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-32552-1

[16] J. A. Shaw, “Radiometry and the Friis transmission equation,” American
Journal of Physics, vol. 81, no. 1, pp. 33–37, Jan 2013. [Online].
Available: http://aapt.scitation.org/doi/10.1119/1.4755780

[17] R. Candell, C. Remley, J. Quimby, D. Novotny, A. Curtin, P. Papazian,
G. Koepke, J. Diener, and M. Kashef, “Industrial wireless systems:
Radio propagation measurements,” National Institute of Standards and
Technology, Gaithersburg, MD, Tech. Rep., 2017. [Online]. Available:
http://nvlpubs.nist.gov/nistpubs/TechnicalNotes/NIST.TN.1951.pdf

[18] “scikit-learn: machine learning in Python.” [Online]. Available:
http://scikit-learn.org/stable/

[19] K. Yeager, “LibGuides: SPSS Tutorials: Pearson Correlation.” [Online].
Available: https://libguides.library.kent.edu/SPSS/PearsonCorr

[20] J. Lee Rodgers and W. Alan Nice Wander, “Thirteen ways to look at
the correlation coefficient,” American Statistician, pp. 59–66, 1988.

[21] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5–32, Oct 2001. [Online]. Available: https://doi.org/10.1023/A:
1010933404324

[22] X. Zhen, Z. Wang, M. Yu, and S. Li, “Supervised descriptor learning for
multi-output regression,” in 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2015, pp. 1211–1218.

[23] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake, “Real-time human pose recognition in parts
from single depth images,” in CVPR 2011, June 2011, pp. 1297–1304.

[24] X. Zhen, Z. Wang, A. Islam, M. Bhaduri, I. Chan, and S. Li, “Direct
estimation of cardiac bi-ventricular volumes with regression forests,”
in Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2014, P. Golland, N. Hata, C. Barillot, J. Hornegger, and
R. Howe, Eds. Cham: Springer International Publishing, 2014, pp.
586–593.

[25] S. Deb, “A novel robust r-squared measure and its applications in
linear regression,” in Computational Intelligence in Information Systems,
S. Phon-Amnuaisuk, T.-W. Au, and S. Omar, Eds. Cham: Springer
International Publishing, 2017, pp. 131–142.


