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As a neutron scatters from a target nucleus, there is a small but measurable effect caused by the
interaction of the neutron’s magnetic dipole moment with that of the partially screened electric field
of the nucleus. This spin-orbit interaction is typically referred to as Schwinger scattering and induces
a small rotation of the neutron’s spin on the order of 10−4 rad for Bragg diffraction from silicon.
In our experiment, neutrons undergo greater than 100 successive Bragg reflections from the walls
of a slotted, perfect-silicon crystal to amplify the total spin rotation. A magnetic field is employed
to insure constructive addition as the neutron undergoes this series of reflections. The strength of
the spin-orbit interaction, which is directly proportional to the electric field, was determined by
measuring the rotation of the neutron’s spin-polarization vector. Our measurements show good
agreement with the expected variation of this rotation with the applied magnetic field, while the
magnitude of the rotation is ≈40 % larger than expected.

I. INTRODUCTION

The neutron spin-orbit interaction, or Schwinger scat-
tering, which results from the interaction of a mov-
ing neutron’s magnetic dipole moment (MDM) with the
atomic electric field, induces a small rotation of the neu-
tron’s spin orientation in one Bragg reflection [1]. This
effect was first studied in the scattering of fast neutrons
from heavy nuclei [2–7]. For slow neutrons, the spin-orbit
interaction was first determined in vanadium by measur-
ing its spin-dependent scattering [8]. Vanadium was
employed because its small coherent scattering length
made the measurement possible. In that work, measure-
ments were also performed on silicon and NaCl, but the
data were consistent with zero within uncertainties due
to the larger coherent scattering lengths of those samples.
Spin-polarization-sensitive scattering was observed in the
scattering of neutrons by CdS [9]. In a later experiment
performed in the Laue geometry and employing neutron
spin-Pendellösung resonance, a 17.8 % larger effect than
expected from theory was observed in silicon, whereas
the experimental uncertainty was 1.8 % [10].

The interaction of neutrons with the strong atomic
electric field during Bragg reflection was exploited to
search for a neutron electric dipole moment (EDM) [11],
but this approach has been superseded by nuclear mag-
netic resonance methods with ultracold neutrons [12, 13].
The Schwinger interaction of polarized neutrons with the
electric field of a noncentrosymmetric perfect crystal has
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been investigated for neutron EDM searches [14, 15].
Here we report a measurement of the neutron spin-

orbit interaction in silicon using the technique of multiple
Bragg reflections to increase the strength of the observed
spin-orbit signal. The experiment was carried out on
the NG-6A beam line at the NIST Center for Neutron
Research (NCNR), where NG denotes neutron guide. In
principle, the power of the Bragg reflection method could
be greatly increased by the use of multiple reflections be-
cause the sensitivity to a neutron EDM is directly pro-
portional to the number of successive Bragg reflections.
The work described here is the first test of this method
using multiple Bragg reflections from a silicon crystal.

II. THEORY

When a neutron moving with velocity ~v scatters from

a silicon atom it will move through the electric field ~E
that is due to the nuclear charge modified by the atomic
electron screening. In the neutron rest frame this motion
induces an effective magnetic field

~Beff =
1

c
~v × ~E (1)

where c is the speed of light. (Following prior literature,
we employ Gaussian units for this discussion.) In this in-

duced magnetic field a neutron with spin-polarization ~P
will experience a torque on its magnetic dipole moment,

~µn = µn
~P , that is

~τMDM = µn
~P × ~Beff (2)
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This torque will rotate the polarization orientation

around ~Beff . This effective magnetic field gives rise to
the spin-orbit interaction energy, V , that was first de-
scribed quantitatively by Schwinger [1] and employed in
Ref. [8]:

V =
µn

mc
~P · (~p× ~E) (3)

Here ~p = m~v is the neutron momentum and m is the
neutron mass. Thus, the neutron scattering length br
will consist of two terms

br = bc ± i|bso|. (4)

bc is the spin-independent coherent nuclear scattering
length for silicon, bso is the spin-orbit (Schwinger) scat-
tering length, given by

bso =
µn

h̄c
Ze(1− f220) cot θB. (5)

and the sign depends on the neutron polarization direc-
tion. Here θB is the Bragg angle, Ze is the nuclear charge,
and f220 is the form factor for the charge distribution of
the atomic electrons for the (220) Bragg reflection [16].
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FIG. 1: Shown is the orientation and coordinate system for a
neutron with magnetic dipole moment ~µn scattering from the
(220) Bragg planes of a perfect silicon crystal. The electric

field ~E (blue) of the silicon atoms combined with incident

neutron velocity ~vi induces an effective magnetic field ~Beff

(red). When ~µn is aligned to the y-axis, a torque ~τMDM in
the z-direction rotates the MDM through a maximum angle
δr. Outside of the crystal, ~µn precesses around the applied
external field ~Bz.

The neutron scattering plane, as depicted in Fig. 1,
is defined by the cross product ~vo × ~vi = nv2 sin(2θB)
where n is the index of refraction and ~vi and ~vo are the
incident and outgoing neutron velocity vectors, respec-
tively. (Because the recoil energy of the silicon atom

bound in the crystal is negligible the process is elastic and

|~vi| ≈ |~vo|). The electric field ~E is directed along the mo-
mentum transfer vector, normal to the crystal planes [16].
We align the incident neutron beam to be in the horizon-
tal y-z plane so that, in the absence of divergence, ~vi
and ~vo will each have only vy and vz components. The
vz components (incoming and outgoing) are parallel to
~E so it is only the vy component that will contribute to
~Beff in Eq. (1).

Taking the Bragg angle θB in Eq. (5) to be 85◦, µn =
−1.91 nuclear magnetons, where the nuclear magneton
is 5.05× 10−24 erg/G, e = 4.803× 10−10 statcoul, Z(1−
f220) = 5.612 [17], m = 1.67×10−24 g, and c = 3.00×1010

cm/s we obtain bso = 7.22 × 10−17 cm. Using neutron
interferometry bc has been measured to high precision to
be 0.415× 10−12 cm [18].

Because bso � bc we can approximate the scattering
length as

br ≈ bc exp [iβ(±Pz)] (6)

where Pz is the neutron spin component along the z-axis
and

β(±Pz) ≈ |bso/bc| (7)

represents the spin dependent phase angle induced by
the spin-orbit interaction coupling to the neutron MDM.
Thus, if the neutron spin is in the x-y plane (aside from
the special case of the spin along the x-axis) it will ex-

perience a rotation about ~Beff that will rotate it out of
the x-y plane giving it a z-component. The expected
magnitude of this rotation angle can be estimated as

δr = 2|bso/bc| (8)

which for the values above gives 3.27× 10−4 rad.
Moreover, while the neutron wave reflects off multiple

atomic planes, for large Bragg angles, λB ≈ 2d220, where
λB is the Bragg-diffracted neutron wavelength and d220

is the lattice spacing for the (220) plane. Each successive
plane contributes an unimportant phase shift Φ = n2π
(where n is an integer) to the overall scattered wave
plus the spin-orbit phase shift generated at the atomic
sites where the wave scatters. Therefore, when scatter-
ing occurs in a perfect silicon crystal each part of the in-
duced neutron wave front reflected from successive crys-
tal planes contributes coherently to the reflected wave.

The scattering induced z-component of the neutron
spin polarization Pz is evidence of the spin-orbit interac-
tion. However, because of the exceptionally small size of
this effect on a single scatter it has presented experimen-
tal challenges in past attempts to measure this effect in
silicon [8].

It is evident that when the spin orientation ~P is parallel
to the y-axis when reaching the crystal surface that the
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rotation about ~Beff will produce the largest z-component
Pz. If the polarization is aligned with the x-axis upon
reaching the crystal surface there will be zero rotation as
~P is parallel to ~Beff . Between these two extremes, the
Pz induced will be proportional to cos(φ) where φ is the

angle between ~P and the y-axis at the crystal surface.
(For example, if φ = π the rotation will induce a compo-
nent of the spin polarization in the opposite z direction.)
Therefore, for completeness we write the size of the in-
duced Schwinger spin-orbit rotation on one reflection as
δso = cos(φ)× 3.27× 10−4 rad.

To amplify the signal size from a single reflection we
have devised a method to have multiple sequential Bragg
reflections in a single crystal by cutting a slot in the crys-
tal parallel to the (220) planes wherein the neutrons will
sequentially reflect off opposing walls of the slot. These
sequential reflections will occur at identical Bragg an-
gles and according to neutron diffraction theory [3] those
neutrons with wave vectors k that fall within the narrow
range kP − kD < kz < kP + kD will be almost 100 % re-
flected. Here kz is the z-component of the neutron wave
number, kP is the value of kz at the center of the scatter-
ing peak and kD is half the Darwin width, which is ap-
proximately 10−4kP. Neutrons within the Darwin width
will be nearly 100 % reflected on subsequent encounters
with the walls of the crystal slot as they progress in the
y-direction down the slot. The reflectivity for neutrons
outside the Darwin width drops rapidly as a function of
kz so these neutrons will be lost after a few reflections.

To see how multiple Bragg reflections of the neutron
in the silicon slot with parallel walls can amplify the
Schwinger signal, consider the first reflection to have
~P incident along the y-axis. The spin-orbit interaction

will rotate ~P through an angle δso thereby inducing a z-
component Pz. (See Fig. 1.) After the first reflection,
the neutron will reach the second reflection along the
opposite wall in the slot where the electric field points

opposite to the first reflection, i.e, ~E → − ~E. As a re-

sult, the induced ~Beff and the associated torque will be
opposite to that on the first reflection. Thus, the second

reflection will cause ~P to rotate opposite to that on the
first reflection and the net Pz after two reflections will
be zero. To rectify this problem and make the multi-
ple Bragg reflections all additive we placed the crystal
in a uniform magnetic field parallel to the z-axis, Bz, so
that the neutron polarization will precess about Bz as
the neutron crosses the slot. If we set the magnitude of

Bz to cause ~P to precess through an angle of π radians

then on subsequent reflections the ~E-field, ~Beff , and the

polarization ~P will all change sign so that the torque on
the neutron MDM will be consistently in the same di-
rection on each reflection. Thus the incremental changes
in Pz will all be in the same direction and will, there-
fore, be additive. For example if the crystal slot is 10
mm wide and 120 mm long we expect to have 136 reflec-
tions for a Bragg angle of 85◦ which, in turn, will yield
136δso = 136 cos(φ) × 3.27 × 10−4 rad= 0.0473 rad (for

φ = 0), which is measureable. We were, in fact, able to
measure the change in the resultant magnitude of Pz due
to the cos(φ) dependence explicitly (see Sec. IV B).

The final magnitude of the Schwinger signal P tot
z after

transiting a slot with length/width ratio of L/dz is sur-
prisingly independent of θB. From Eq. (5) we see that the
spin-orbit scattering length for one reflection is propor-
tional to cot(θB) which implies that the Schwinger signal
after one reflection is also proportional to cot(θB). How-
ever, for a slotted crystal the total number of reflections
is

N tot(θB) = (L/dz)
1

cot θB
. (9)

Therefore, the dependence of P tot
z on θB is perfectly can-

celled by the product of the signal (∝ cot (θB)) with the
number of reflections (∝ 1/ cot(θB)). The only experi-
mental parameter to increase or decrease the Schwinger
signal using this technique is by using a crystal with a
different L/dz ratio.

III. METHOD AND APPARATUS

A. Overview

We show in Fig. 2 a diagrammatic layout of the appara-
tus and in Figs. 3 and 4 photographs of the apparatus as
installed at a Bragg angle θB = 85◦. The neutrons enter
the slot of the silicon crystal where they Bragg scatter off
opposing walls thereby amplifying the incremental spin-
orbit rotation of the polarization vector. This results in
a definitive z-component, P tot

z , when leaving the crystal
slot that is measured using a polarization analyzer. De-
tails of the method and the apparatus are described in
the following sections.

B. Silicon crystal

The slotted crystal was commercially fabricated from
a float-zone grown, perfect silicon crystal. The crystal
was 5.5 cm high x 3.0 cm wide x 14.0 cm long with a 1.0
cm wide x 4.0 cm deep slot machined down the center
along the long axis of the crystal (see Fig. 4) leaving
1.0 cm thick walls. In addition, 1.0 cm of the upstream
(downstream) wall was removed to allow the neutrons to
enter (leave), hence the slot length for multiple Bragg
reflections was 12.0 cm.

Subsequent to machining and etching the crystal was
received at NIST where measurements of the slot width
showed a substantial variation along the length of the
crystal (y-axis) and along the vertical (x-axis) as seen in
Fig. 5. A computer simulation of the neutron trajectories
down the fabricated slot for the 136 Bragg reflections
obtained at θB = 85◦ showed that the resultant spin-orbit
induced rotation of the polarization vector P tot

z would be
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FIG. 2: Layout of the apparatus for the study of the neutron spin-orbit interaction. The neutron beam travels from right to
left. The monochromatic neutron beam passes through a supermirror polarizer (enclosed in blue steel yoke), a vertical guide
field, precession coil π-flipper, another vertical guide field, and into the magnetic field region generated by the four axial coils.
At the center of this region (see Fig. 4) the beam passes through a collimator and a spin rotator, and is incident on the slotted
crystal. Most of the neutrons (denoted “direct beam”) pass through the crystal wall, whereas the small fraction within the
Darwin width is reflected (denoted “reflected beam”) and undergoes 136 reflections before exiting the slot. The supermirror
analyzer (enclosed in green steel yoke) can be translated to analyze the neutron polarization in either the reflected beam or the
direct beam. Each of these beams is detected by a 3He neutron detector.

≈ 75 % of what was expected from a crystal with parallel
walls.

C. Magnetic field

As mentioned in Sec. II, the crystal was placed in a
uniform magnetic field along the z-axis, perpendicular to
the (220) crystal planes (see Fig. 1). The magnetic field
was required to be uniform to a few parts per thousand
over the volume of the crystal and with no unwanted
transverse fields. The z-axis field, Bz, was obtained us-
ing two pairs of coils with spacings and relative currents
that were determined by computer modeling. To cancel
any transverse fields, coil pairs were employed along the x
and y axes. The design magnitude of the Bz field was ap-
proximately 1.8 mT (18 G). All eight coils were mounted
on a rigid aluminum frame. The coils are shown in Fig. 2
and the photograph in Fig. 3.

To measure field uniformity, a calibrated triple axis
Hall probe mounted on a long non-magnetic arm was
positioned at multiple points on a 3-D grid inside the
coil system using a programmable three-axis translation
stage. The magnetic field readings were taken at various
predetermined currents in the four axial coils. The mea-
sured Bz values were consistent with the calculations and
the field uniformity was within the established tolerances.
Using a flux gate magnetometer that was mounted on the
eight-coil magnet frame, we observed that the magnetic
field remained constant within our established tolerances.

The absolute magnetic field as a function of the cur-
rents in the coils at the crystal slot was determined to
an accuracy of order 0.01 % using a free induction de-
cay (FID) nuclear magnetic resonance [19] signal from a
cell of polarized 3He gas. The 5 cm diameter, 5 cm long
cell was placed in the location where the slotted crys-
tal normally resides. By translating the cell along the
y-axis and observing the frequency of the FID signal we
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FIG. 3: Photograph of the apparatus for study of the neutron
spin-orbit interaction. The beam travels from right to left.

FIG. 4: Photograph showing the collimator, rotator coil. and
crystal. The beam travels from right to left. Cadmium lo-
cated just downstream of the crystal blocked neutrons scat-
tered during passage along the slotted crystal.

determined that the variation in the magnetic field was
only ≈0.03 % over the length of the slot. For a uniform
slot with a width of 9.952 mm, the maximum Schwinger
rotation is expected at a magnetic field B0

z=1.7672 mT
(17.672 G).

D. Alignment

The origin of the xyz coordinate system previously de-
fined was taken to be at the vertical (x) and horizontal
(y) center of the crystal slot and with z=0 at the surface
of the downstream wall of the slot. The x-axis points
upward out of the crystal slot and the y-axis is along
the slot in the direction of the neutron travel down the
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FIG. 5: Spatial variation of the slot width. The points show
measurements of the slot width and the lines show spline fits
that were employed for calculating the expected spin rotation.
The beam height is limited to the range −0.5 cm ≤ x ≤ 0.5 cm
by a 1 cm tall collimator located at the end of the crystal.
The error bars indicate the uncertainty from the coordinate
measuring apparatus employed.

slot. The initial alignments were done using a theodolite
and a laser system. Later, these alignments were fine-
tuned using neutrons in our direct beam. The aluminum
frame for the magnetic field coils was supported by a y-z
translation stage, a 2D (y and z) tilt stage, and a stage
that provided rotation about the x-axis; the last of which
permitted the coils and crystal to be co-rotated. The col-
limators, the upstream supermirror polarizer, the perma-
nent magnet guide fields, the rotator coil, the supermirror
analyzer detector, and the 3He detector were aligned for
the direct neutron beam to properly pass through each.
The location of the analyzer in the direct beam was per-
manently referenced so it could easily and accurately be
translated on a screw-driven stage between this position
and its location in the outgoing reflected beam. The axis
of the four-coil magnet system was aligned to be paral-
lel to the incoming neutron beam. The position of the
crystal was aligned so that the x-y center of the crystal
slot is located at the x-y-z center of the four-coil magnet
system.

With the crystal slot oriented perpendicular to the in-
coming beam the entire assembly was translated so the
incoming beam passed as close as possible to the up-
stream wall of the crystal to strike the downstream wall.
Therefore, the neutron beam transits into (and leaves
from) the four-coil field region along trajectories that are
displaced from the magnet center by half the crystal slot
length. In this orientation adjustments were made so that
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the axis of rotation of the entire assembly was parallel to
the x-axis and centered at the point where the neutron
beam strikes the downstream slot wall for the first re-
flection. All these alignments were then fixed so that
going forward there was no further motion of the crys-
tal relative to the four-coil magnet system. The crystal
and the four-coil magnet system (fixed together) were
rotated to the intended Bragg angle θB relative to the
incoming beam direction. This preserved the magnetic
field Bz direction to be perpendicular to the (220) planes.
The collimator and the vertical rotator coil seen in Fig. 4
remained aligned in the direct beam. Finally, the spin-
analyzer and a 3He filled neutron detector were aligned
with the reflected neutron beam that leaves the crystal
slot.

E. Neutron transport

1. To the slotted crystal

The NG-6 neutron beam was reflected by a 30 mm
x 30 mm x 10 mm pressed silicon (111) polycrystalline
monochromator to produce a monochromatic neutron
beam with a wavelength distribution that was centered
at 0.3833 nm and had a full width at half maximum
(FWHM) of 0.0017 nm. Because the (222) reflection
is forbidden, there is no component at half this wave-
length in the beam. Vertical and horizontal collimators
6 mm x 6 mm were located upstream of the polarizer
and a slit 1.4 mm wide and 13 mm tall was positioned 15
cm upstream of the first reflection off the silicon crystal.
As discussed in Sec. II, only neutrons within the narrow
Darwin width are reflected; for θB = 85◦, the wavelength
selected is 0.3825 nm which is well within the FWHM
provided by the monochromator.

A supermirror [20] polarized the neutron spin to be
parallel to the x-axis and was positioned just after the
upstream collimators. A guide field aligned with the po-
larizer field, made using two permanent magnets, was po-
sitioned between the x-axis polarizer field and the z-axis
field of the four-coil system. Between the two permanent
magnet assemblies was a precession coil π-flipper [20]
consisting of two aluminum windings that provided fields
in the vertical (cancellation) and transverse horizontal
(precession) directions; the current in the cancellation
coil was adjusted to cancel the guide field and the cur-
rent in the precession coil was adjusted to rotate the
neutron spin using Larmor precession. The precession
coil π-flipper was used to measure the flipping ratio [20],
which is defined as the ratio of the count rate detected by
a spin-polarization analyzer for the polarization directly
from the polarizer (flipper off) to the count rate with
the polarization reversed (flipper on). A larger flipping
ratio implies better alignment and higher efficiencies of
the polarizer and the analyzer as well as other compo-
nents affecting the spin transport. A flipping ratio of 23
was measured in the direct beam and is primarily due to

the polarizing efficiencies of the polarizer (Pp) and ana-
lyzer (Aa) supermirrors of ≈ 0.96. In a similar exercise
we measured a flipping ratio of 15 for neutrons reflected
down the crystal slot. This small reduction (note that the
product PpAa only decreases from 0.917 to 0.875) may
be due to a larger beam at the analyzer due to diver-
gence of the beam in the 136 cm of additional travel due
to the 136 reflections in the slot. Aside from these ini-
tial alignments and some systematic tests, the precession
coil π-flipper was not energized during typical Schwinger
measurements.

Neutrons that emerged from the upstream permanent
magnet guide fields where the polarization was in the x-
direction transition into the fringe field of the four-coil
system where their dipole moments were adiabatically
rotated [20] to be along the Bz-direction. The degree to
which the neutron spin follows the magnetic field is re-
lated to the ratio of the Larmor frequency to the rate of
change of the magnetic field vector experienced by the
neutron. The neutrons continued toward the crystal un-
til they encountered the vertical rotator coil immediately
after the collimator. The rotator coil was used to rotate
the neutron spin from parallel the z-axis to parallel with
the x-axis upon leaving the coil. The rotator was de-
signed to be 20 cm vertically long such that its return
field had a negligible effect on the overall magnetic field
gradient. The frame on which the coils were wound had
a rectangular hole in it to allow the neutrons to pass
through. The neutrons did pass through the copper wire
windings. The rotator coil was mounted from above, in-
dependent of the eight-coil magnet frame. The rotator
could be translated along the direction of the direct beam
that so that the orientation of the neutron polarization
on the first reflection at the crystal could be varied.

The rotator was designed to produce a field ~Br parallel
to the x-axis with a magnitude equal to Bz. The addi-
tion of these two fields would result in a magnetic field,
~Bnet, that was oriented at 45◦ with respect to the z-axis
in the x-z plane and had a magnitude of

√
2Bz. The

distance across the coil was chosen so that the transiting
neutrons will Larmor precess by π rad around the result-
ing field in the coil thereby rotating the polarization of
the neutron from the z-axis to the x-axis. Upon leaving
the rotator coil the neutrons precessed in the x-y plane
perpendicular to the Bz axis. In practice, once the coil
dimensions are fixed, this will work in this manner for
only one neutron wavelength (velocity) and for one Bz.
With this in mind the rotator was fabricated so the dis-
tance across the rotator was close to what was expected
for the intended neutron wavelength (velocity) and for
the expected Bz. Then, to achieve the desired change in
the neutron polarization the current in the rotator coil
was adjusted to produce a flipping ratio of unity, which
occurs when the neutron spin is transverse to the z-axis
as intended. This exercise was performed at two differ-
ent values of Bz: B0

z=1.7672 mT (17.672 G) and 1.710
mT (17.10 G). Although the rotator current would be ex-
pected to be directly proportional to Bz, we found that
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the ideal currents for these two field values differed by
5.0 % (rather than 3.6 %) We determined the desired
currents for other magnetic field values based on these
measurements. Any small error in the rotation of the
neutron spin will only produce a small component of the
polarization, Pz, to which the spin-orbit induced values
of Pz will be added. The orientation of the neutron po-
larization at the first reflection on the crystal was deter-
mined by the angle through which the neutron polariza-
tion rotates in the x-y plane after leaving the rotator coil.
This angle depends on the Larmor precession frequency,
the neutron velocity, and the distance from the rotator
coil to the crystal.

Setting the four-coil magnetic field to the desired value
for the Schwinger scattering measurement (described be-
low) and knowing the neutron wavelength and velocity
we calculated the Larmor precession period and the dis-
tance, Λ = 20.0 mm, that the neutron would travel in
one Larmor period. Separately, we also measured this
distance Λ in the direct beam by translating a second
rotator coil with the same current as the first rotator coil
and found it to agree with the calculated value Λ within
0.2 %.

As noted in Sec. II, the maximum Schwinger rotation
will be induced when the spin polarization at the time
of the first reflection from the crystal wall is parallel to
the y-axis. Therefore, the rotator coil was positioned so
that the distance from the exit of the coil to the first
reflection, Dr, was 55 mm from the first reflection, i.e.,
2.75 Λ corresponding to a spin precession of 2.75 × 2π.
(The choice of 55 mm was in part dictated by the range
of motion of the rotator coil.)

2. Reflected down the crystal slot

To fully understand the response from the neutron
multiple Bragg scatters down the crystal slot we system-
atically changed the polarization orientation in the x-y
plane at the first reflection. This was accomplished by
varying the distance Dr from the rotator coil to the crys-
tal face over a distance of 21 mm, slightly more than
Λ=20.0 mm. It was expected that a plot of P tot

z vs Dr

would be sinusoidal.

In addition, the measurements described in the preced-
ing paragraph were repeated with different values of Bz.
Our simulations predicted that the resulting P tot

z should
be very sensitive to the magnitude Bz because when the
Bz is not at its optimum value to produce the required
π precession of the polarization vector when crossing the
crystal slot the resulting size of the spin-orbit interac-
tion on succeeding reflections will become progressively
weaker as the orientation of the polarization vector at
encounters with the walls drifts further away from the
y-axis. Details of these measurements are described in
section IV.

3. From the crystal to the analyzer

Following the last Bragg reflection at the end of the
crystal slot the spin of the neutrons continued to precess
around Bz. The polarization now had two components: a
large component transverse to Bz (in the x-y plane) and
a smaller component P tot

z along the z-axis. The rotat-

ing polarization vector ~P traced out a cone with a large
opening angle.

As the neutrons transitioned from the four-coil mag-
netic field to the vertical (x-direction) fringe field of the
supermirror spin-analyzer magnet, seen in Fig. 2, their
spin was adiabatically rotated so that P tot

z would align
with the vertical field. In the absence of a Schwinger in-
teraction, the neutron spin would be precessing around
this vertical axis, yielding half the count rate as compared
to if the neutron’s spin were aligned with this axis of the
analyzer. The Schwinger signal P tot

z thus modulated this
otherwise constant count rate.

4. Neutron detection

Neutrons were detected using 12.7 mm diameter, 3He
proportional counters which have nearly 100 % detection
efficiency. Each detector was encased in boron carbide
shielding with a small opening to accept the neutrons
from the intended source while limiting the solid angle
available for background neutrons to be counted. Three
3He detectors were used: one for measurement of neu-
trons exiting the slot, one to monitor changes in back-
ground rates, and lastly one to measure the direct beam
rate. All data collected in the reflected beam were nor-
malized to the corresponding direct beam counts to cor-
rect for any variations in the incident neutron flux. A
fission chamber located just downstream of the pressed
silicon monochromator was used to monitor reactor fluc-
tuations.

To continuously monitor for any changes in ambient
neutron background due to neighboring apparatus, a par-
tially shielded 3He background detector was located near
the reflected beam detector. The actual background in
the reflected beam detector was determined by register-
ing the count rate in the reflected beam detector when
the beam shutter was open and the crystal was rotated
to θB = 90◦ so that no neutrons were reflected down the
slot but could scatter off of the silicon bulk. The back-
ground was found to be nearly constant as a function of
time.

F. Computer simulation of Schwinger scattering in
the slotted crystal

In a perfect slotted crystal with parallel walls separated
by 10 mm we expect to have a Schwinger spin-orbit rota-
tion of the neutron MDM vector of δso = 3.27×10−4 rad
on each neutron Bragg reflection and total rotation of
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NRδso = 0.0473 rad after NR = 136 consecutive identical
Bragg scatters. This assumes that the neutron MDM vec-
tor is properly aligned with the y-axis on the first reflec-
tion and Bz is set to produce a π-rotation on each cross-
ing so that for all reflections the MDM vector is aligned
with the y-axis producing the maximum Schwinger rota-
tion. If, however, the crystal walls are not perfectly paral-
lel such that the distance across the slot varies and/or Bz

is not set to produce a π-rotation on each crossing then
the MDM vector on reflection will not be aligned with the
y-axis. The effect of this is to reduce the magnitude of
the total Schwinger spin-orbit rotation by a factor cos(φ)
where φ is the angle between the MDM vector and the
y-axis, i.e. δso cos(φ).

As seen in Fig. 5, the walls of our crystal are not prop-
erly parallel. To estimate the expected δso cos(φ) for each
reflection for this crystal we wrote a computer simula-
tion that took as input splines of the measured distance
across the crystal slot as a function of location along the
slot. The neutron beam vertical acceptance in the crystal
was 1 cm that was centered vertically in the crystal slot.
The simulation followed 11 horizontal neutron trajecto-
ries separated vertically by 1 mm down the crystal slot
reflecting off opposing walls, for which the separation was
determined from the measured distance across the slot at
each reflection position y(i). The small vertical beam di-
vergence (defined by the 6 mm aperture located 170 cm
upstream of the crystal and the 10 mm aperture just
downstream of the crystal) was neglected. The distance
dy(i) traveled in the y-direction during slot crossing i can
be written as

dy(i) = vz cot(θB) ∗ tslot(i) (10)

where

tslot(i) =
dz(i)

vz
. (11)

dz(i) is the distance across the slot at that y-location
and tslot is the time it takes the neutron to cross the
slot. The distance across the slot for a given trajectory
is found by interpolation from the measured slot widths
shown in Fig. 5. For the Bragg scatter i the new value
of the angle φ(i) is

φ(i) = φ(i− 1) + ωtslot(i) (12)

where ω is the Larmor precession frequency. Therefore,
for this Bragg scatter we have δso(i) = cos[φ(i)]× 3.27×
10−4 radians.

For all 136 reflections we have for each jth trajectory

δ136
so(j) =

136∑
i=1

δso(i) =

136∑
i=1

cos[φ(i)]× 3.27× 10−4 (13)

and

δ136
so(tot) =

11∑
j=1

δ136
so(j) (14)

for all 11 trajectories.
From Eq. 14, we expect to have a Schwinger spin-orbit

rotation compared to an ideal crystal that is

S =
δ136
so(tot)

11× 0.0473
(15)

At the optimum setting for Bz for this crystal the nor-
malized amplitude is S=0.76. Based on uncertainties in
the slot width and considering beam non-uniformity and
divergence, we estimate the accuracy in the simulated
amplitude to be ≤ 1 %. In addition we were able to
use different values of the initial φ0 at the first reflec-
tion by setting the position of the rotator coil to be at
different distances Dr from the first reflection. These
predictions from the simulation were then compared to
measurements of S for different settings of Bz and φ0.

IV. MEASUREMENTS AND SYSTEMATIC
UNCERTAINTIES

A. Data collection

The established pattern for data collection in the re-
flected beam was to map out the Schwinger signal P tot

z

at eight selected distances between the spin rotator coil
and the first reflection on the silicon crystal, covering the
full 20.0 mm described above. Because the count rates at
each location were very modest it was decided to collect
these data in 5 or more full passes of the eight rotator lo-
cations and then add together the data when the 5 passes
had completed. The entire process, including precisely
translating the rotator coil, starting and stopping data
collection and storage, and also recording the monitor-
ing data, was fully automated and took nearly 5 days to
complete the data collection for one setting of Bz. This
process was performed for different values of Bz around
the initial value of B0

z . In addition, repeated measure-
ments at identical settings were taken for several values
of Bz to test the reproducibility of our measurements.

B. Data analysis

In a typical polarization analysis experiment [20], one
would measure the count rates for opposite spin polar-
izations and compute the asymmetry in the count rate,
(N+−N−)/(N+ +N−), where N+ and N− correspond to
spin up and spin down, respectively. These spin orienta-
tions could be established using the upstream precession
coil π-flipper described in Sec III E 1. Instead the ex-
periment was conducted as described in Secs. III E 2 and
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III F by changing the distance between the rotator coil
and the first Bragg reflection, Dr, which changes the spin
orientation, φ0, on the first reflection. Hence by varying
distances Dr over the full 20 mm spatial Larmor period
we were able to measure the effect of the spin-orbit inter-
action over a 2π range of φ0 values. The resulting count
rates for the reflected beam as a function of Dr yielded
a sinusoidal oscillation around the average count rate,
which we refer to as the Schwinger oscillation. The aver-
age count rate was the observed count rate for the rotator
locations that position the neutron spin along the x-axis
(φ0 = π/2, 3π/2), for which the spin-orbit interaction is
zero.

Empirically, for each value of Dr we computed ∆(Dr),
which is the deviation from the mean number of reflected
counts

∆(Dr) =
[R(Dr)−B0]/M(Dr)− (R0 −B0)/M0

(R0 −B0)/M0
, (16)

where R(Dr) and M(Dr) are the number of counts in the
reflected and direct beam detectors for a given rotator
location, respectively, B0 is the number of background
counts (see Sec. III), and R0 and M0 are the mean num-
ber of counts in the reflected and direct beam detectors
averaged over all rotator locations, respectively. The un-
certainties in each ∆(Dr) are also calculated.
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FIG. 6: Typical data obtained from the reflected beam by
translating the rotator coil, shown as solid red circles. ∆(Dr)
is defined in Eq. (16). The magnetic field was B0

z=1.7672 mT
(17.672 G). The error bars indicate the standard uncertainty
due to counting statistics only. The solid blue line shows a fit
to Eq. (17).

Fig. 6 shows typical data obtained by translating the
rotator coil. For a typical 6000 s period, R0 ≈ 1000,
B0 ≈ 120, and M0 ≈ 3.1 × 106. The ∆(Dr) values for

8 such periods were averaged to obtain the data shown.
As the rotator position is scanned through the spatial
Larmor period, the neutron spin direction incident on
the crystal is rotated in the x-y plane. The data are then
fitted to

∆(Dr) = O + SNRδ
′
so sin[2π(Dr − z0)/Λ] (17)

The expected amplitude of the Schwinger oscillation
for a perfect crystal slot with the optimum Bz for a spin
precession of π rad on each crossing of the slot would
be S=1 and NRδ

′
so = 136δ′so. For our measurements

136 δ′so = 136 δsoPpAa, where PpAa = 14/16 for the
measured instrumental flipping ratio of 15 and 136 δso=
0.0473 rad is the total Schwinger rotation after 136 Bragg
reflections in a perfect slotted silicon crystal. In Eq. 17
O, S and z0 are free parameters in the fit to measured
data. For our (geometrically imperfect crystal, S is ex-
pected to be 0.76. The offset parameter O allows for
any difference between the value of (R0 − B0)/M0 em-
ployed and the value that yields the best fit to a sinu-
soid. The parameter z0(2π/Λ) is a phase factor, where
z0 is in units of millimeters and 2π of actual phase cor-
responds to the spatial Larmor period of Λ = 20.0 mm.
At a magnetic field B0

z , O and z0 are expected to be near
zero. For the data shown in Fig. 6, O = 0.0074± 0.0055,
S = 1.20± 0.18, and z0 = (−0.31± 0.52) mm, where the
uncertainties are determined from the fit.

To see if the sense of the observed change in the count
rate is consistent with what we expect given the applied
magnetic fields we look in detail at the interaction of the
neutron MDM (which points opposite to the neutron
spin vector) with the various relevant magnetic fields as
the neutron transits from the polarizer to the analyzer
and detector. The magnetic field points down (−x̂
direction) in the polarizer, rotator and analyzer and it is
pointed upstream (−ẑ direction) in the four-coil system.
The supermirror polarizer transmits a neutron with
its MDM pointed down (−x̂ direction), which rotates
to be pointed upstream (−ẑ direction) in the four-coil
system. The resultant field in the rotator coil, Bnet, is
pointed downward at ≈ 45◦ angle with components in

the −x̂ and −ẑ directions, so that the torque ~µn × ~Bnet

on the MDM is in the ŷ direction and thus the MDM
rotates to be pointed down (−x̂ direction). Past the
rotator the field is again upstream (−ẑ direction) and
the torque on the MDM is in the −ŷ direction implying
that the MDM will rotate counterclockwise about the
−ẑ direction. For Dr= 55 mm, the MDM rotates
by 2.75×2π to be pointed along the +ŷ direction at
the first reflection, as seen in Fig. 1. The spin-orbit

interaction is proportional to ~v × ~E, where the relevant
component of the neutron velocity, ~v, is along the

+ŷ direction and the electric field ~E is along the −ẑ
direction at the first reflection, hence from Eq. (1) the

induced effective magnetic field ~Beff is pointed down (−x̂
direction) and the torque on the MDM is downstream
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(ẑ direction). This torque rotates the MDM towards
the ẑ direction, ie opposite to the magnetic field in
the four-coil system. Upon entering the analyzer, this
ẑ component adiabatically rotates to become an x̂
component. Since the analyzing supermirror transmits
neutrons with MDM along −x̂ (as for the polarizer), the
count rate decreases, in agreement with our observations.

C. Magnetic field dependence
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FIG. 7: The value of the fitted function S sin[2π(Dr − z0)/Λ]
determined from the fitted values of S and z0 and evaluated
at Dr = 55 mm for each Bz. The central magnetic field is
B0

z = 1.7672 mT (17.672 G). The data are shown by solid
red circles and the simulation for our crystal slot is shown
by the solid blue line. The error bars represent the combined
standard uncertainty determined from the uncertainties in the
fit parameters S and z0. In addition, the simulation for a slot
with uniform width is shown as a black, dashed line.

It was noted in Sec. III E 2 that this method of using
repeated Bragg scatters down the crystal slot for study-
ing the Schwinger spin-orbit effect depends sensitively on
matching the four-coil axial magnetic field to the Larmor
precession of the neutron crossing the slot. To study this
dependence, data such as shown in Fig. 6 were taken
at eight different values of the magnetic field Bz varied
around B0

z=1.7672 mT (17.672 G). The fit of Eq. 17 to
each of these data at differentBz yielded ∆(Dr) each with
its amplitude S and phase z0. In Fig. 7 we have plotted
the value of S sin[2π(Dr − z0)/Λ] determined from the
fitted values of S and z0 and evaluated at Dr = 55 mm
for each Bz. We also show the predicted value simulated
as described in Sec. III F. For comparison, this same sim-
ulation was done for the case of a crystal with a uniform

slot with a width matched to the magnetic field B0
z . As

seen in Fig. 7 for this uniform slot S sin[2π(Dr−z0)/Λ] is
unity at B0

z and is symmetric about B0
z . This plot shows

convincingly that to find the Schwinger signal one must
set Bz to have the correct Larmor precession frequency
to within 1 %.
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FIG. 8: The variation of S from the fit of Eq. 17 to data
collected in the reflected beam at different values of Bz. The
central magnetic field is B0

z = 1.7672 mT (17.672 G). The
data are shown by solid red circles and the simulation is shown
by the solid blue line. The error bars represent the standard
uncertainties in the fit parameter S.

Fig. 7 shows the amplitudes S at Dr=55 mm, which
were determined from the fits shown in Fig. 6. In Figs. 8
and 9 we show the both the data and the simulation
for the individual amplitude and phase parameters.
Fig. 8 shows the measured dependence of S on the
magnetic field Bz produced by the four-coil assembly.
Comparing the measured values to the predictions
in Figs. 7 and 8 shows qualitatively good agreement.
However, quantitatively the measured values, especially
near the signal maximum, are systematically larger than
predicted. As the magnetic field is varied around B0

z ,
the resulting phase of the Schwinger oscillation changes
as shown in Fig. 9. The phase data follow the curve
obtained using the simulation, but are generally more
positive. However, we estimate a fixed, systematic
uncertainty of 1 mm in all values of Dr (not shown in
Fig. 9), associated with the uncertainty in the orien-
tation of the MDM at the first reflection from the crystal.



11

-10

-8

-6

-4

-2

0

2

4

6

8

10

-0.012 -0.008 -0.004 0 0.004 0.008 0.012

phase [mm]
simulation

z 0 [m
m

]

(Bz - Bz
0)/Bz

0

FIG. 9: The variation of z0 from the fit of Eq. 17 to data
collected in the reflected beam at different Bz. The central
magnetic field is B0

z = 1.7672 mT (17.672 G). The values of
z0 extracted from the data are shown as red solid circles and
the calculation is shown as a solid blue line. The error bars
represent the standard uncertainties in the fit parameter z0.

D. Systematic tests and uncertainties

1. Systematic tests

As discussed in Sec. II, the value of P tot
z is independent

of Bragg angle. We performed measurements at Bragg
angles of 86.5◦ (194 reflections) and 85◦ (136 reflections)
and observed that the amplitude of the Schwinger
spin-orbit rotation for 86.5◦ was consistent with that
measured at 85◦ (see Fig. 10).

Figs. 10 and 11 show the results of repeated mea-
surements obtained at B0

z = 1.7672 mT (17.672 G) and
0.9975B0

z over a period of several months. In Fig. 10 one
data point was obtained with the rotator coil current re-
versed. In this case we expect the oscillation in the asym-
metry to invert and indeed we found z0 = (10.2 ± 0.6)
mm for this datum, which corresponds to Λ/2 within un-
certainties.

2. Spin transport oscillation

The primary systematic error is associated with the
upstream spin alignment. As described in Sec III E 1,
the neutrons transitioning from the upstream permanent
magnet guide fields are presumed to adiabatically align
with the magnetic field in the four-coil system, Bz and
then travel to the rotator coil. If this adiabatic transition
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FIG. 10: A series of measurements of the Schwinger oscillation
(magnetic field was 1.7672 mT (17.672 G)). Data obtained at
θB = 85◦ are shown by red filled circles, at θB = 85◦ with
the rotator coil current reversed by a red filled square, and
at θB = 86.5◦ by red open circles. The error bars shown
represent the fit uncertainties for each measured Schwinger
oscillation. The red line shows a fit of the seven points to a
flat line, yielding S = 1.027 ± 0.078 with a reduced χ2 = 1.1.
See the text for further discussion.

is not complete, a residual component of the neutron spin
will be transverse to Bz. The result will be a component
along the z-direction after the neutron passes through
the rotator coil and this will be added to the Schwinger
spin-orbit induced z-component. To study this we car-
ried out a series of measurements in the direct beam by
moving the analyzer into the direct beam. We observed a
small oscillation in the analyzer count rate as the rotator
coil was moved. As shown in Fig. 12 the oscillation had a
periodic length of 20.0 mm, consistent with what would
be expected from a Larmor precession in the 1.7672 mT
(17.672 G) four-coil magnetic field. We refer to this as the
spin transport oscillation (STO). We found that the am-
plitude of the STO was sensitive to physical adjustment
of the guide field arrangement. We could not completely
eliminate the STO, hence we tried replacing the guide
field arrangement with a longitudinal coil to simplify and
potentially improve the spin transport from the super-
mirror polarizer to the four-coil magnetic field. However,
even after adjusting the current in this coil the minimum
amplitude of the STO was unchanged. It corresponded
to the neutron spin at an angle of 0.0096 rad, hence the
spin transport efficiency was cos(0.0096) = 0.99995. If we
assume that the STO is preserved in the reflected beam,
it would yield, in the absence of any Schwinger oscilla-
tion, an oscillation with an amplitude S = 0.24 but an
unknown phase. This systematic effect would combine
with the Schwinger oscillation. Most simply considered,
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FIG. 11: A series of measurements of the Schwinger oscil-
lation (magnetic field was 0.9975*1.7672 mT (0.9975*17.672
G)). Data were obtained with the permanent magnet guide
field (red solid circles), the longitudinal coil with currents be-
tween 2.0 and 3.0 A (red open squares), and with polarized
3He neutron spin filters (green diamonds)(see Sec. IV D 3).
(The relevant averages of the first six data points, which were
obtained with the permanent magnet guide field, correspond
to the data points shown in Fig. 7, 8, and 9.) The error bars
shown represent the standard uncertainties in the fitted am-
plitudes for each measured Schwinger oscillation. The red line
shows a fit of the 12 points obtained with supermirrors to a
flat line, yielding S = 1.201 ± 0.048 with a reduced χ2 = 1.1.
The green line shows a fit of the 8 points obtained with neu-
tron spin filters, yielding S = 0.960 ± 0.109 with a reduced
χ2 = 0.7. See the text for further discussion.

the two worst case scenarios would be direct addition (in
phase) or subtraction (opposite phase) of the Schwinger
oscillation and the STO, which would have the maximum
effect on the fitted amplitude but no effect on the phase.
If the STO and the spin-orbit oscillation have any other
relative phase, a smaller net amplitude in the reflected
beam would occur and the phase of this net oscillation
would be affected.

The effects of this issue were studied by varying the
current in the longitudinal coil. See Fig. 12 for a typ-
ical STO that was obtained with a current of 2.5 A.
For a range of currents between 2 A and 3 A we found
that the amplitudes of STOs were similar. However, the
phases were different, which would be expected to af-
fect the fitted amplitude of the reflected beam oscillation
differently. Still, the effect on the fitted amplitude of
the reflected beam oscillation at different currents in this
range was observed to be within the fitted uncertainties
(see Fig. 11).

We also decreased the current so as to degrade the
spin transport and thereby increased the amplitude of
the STO to a value that would correspond to S = 0.9
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FIG. 12: Plots of the fractional deviation from the mean count
rate with an analyzer in the direct beam. The red solid cir-
cles show the typical spin transport oscillation (STO) using
supermirrors, obtained with a current of 2.5 A in the longi-
tudinal coil. The red line shows a fit to a sinusoid that has
an amplitude of 0.0096 ± 0.0010. In contrast, the green solid
diamonds show the absence of this systematic effect when po-
larized 3He-based spin filters were employed to polarize and
analyze the neutron beam; in this case the fit (not shown)
yields an amplitude consistent with zero (−0.0006 ± 0.0006).
The error bars represent the standard uncertainty due only
to counting statistics.

if it were observed in the reflected beam in the absence
of a spin-orbit effect. The changes in the amplitudes ob-
served in the reflected beam were consistent with what
would be expected from the larger STO amplitudes, and
phase shifts were also observed. We have assigned a sys-
tematic uncertainty in S of 0.18 due to the uncertainty
in the effect of the STO. This value was obtained from
the standard deviation in the range of fitted amplitudes
that results when a simulated STO with an amplitude
of 0.24 and a range of phases were added to a simulated
Schwinger oscillation.

In Fig. 11 the first six measurements were obtained
with the permanent magnet guide field arrangement and
the last six were obtained using the longitudinal coil at
six currents of between 2.0 A and 3.0 A. For the latter,
we found the STO amplitudes to be similar but with
different phases. The reduced χ2 is 1.1.

3. Measurements with polarized 3He spin filters

The persistent issue with spin transport motivated us
to employ nuclear-spin polarized 3He-based neutron spin
filters (NSFs) [19, 21] to polarize and analyze the neu-
tron beam. These devices rely on the strong spin depen-
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dence of the absorption of neutrons by 3He to transmit
primarily one spin state. We employed spin-exchange op-
tical pumping (SEOP), in which electronic polarization
is produced in a Rb/K vapor by optical pumping with
high power diode lasers and and transferred to the 3He
nuclei via spin-exchange collisions.

Since it was not practical to perform SEOP continu-
ously in this apparatus, cells were polarized externally
and then transported to the apparatus. One cell was
located in the incident beam immediately upstream of
the spin rotator and the other cell in the reflected beam
just downstream of the end of the slotted crystal. Be-
cause the cells selected neutron spin along the four-coil
magnetic field axis Bz, no spin rotations were required.
The absence of spin rotations avoided the issues with im-
perfect spin transport in the supermirror scheme. The
supermirrors were translated out of the neutron beam.
Fig. 12 shows that there was no discernable STO using
spin filters. We found it was necessary to replace both
the polarizer and the analyzer supermirrors with neutron
spin filters to eliminate the STO.

The cells had intrinsic relaxation times for spin po-
larization of the 3He gas of between 400 h and 520 h,
which were not substantially compromised by magnetic
field gradients due to the high homogeneity of our four-
coil magnetic field. Some gradient-induced relaxation
was observed for the polarizer cells, which were required
to be further from the field center because of the rotator.
The typical relaxation times observed in actual opera-
tion were between 370 h and 520 h for analyzer cells and
310 h for the polarizer cells. Typical initial 3He polariza-
tion values were between 76 % and 84 %. Despite these
excellent values for both 3He polarization and relaxation
times, the initial overall transmission was still roughly a
factor of two below that of the supermirror approach, and
it declined by another factor of three during the course
of a 5-day run cycle. Hence we focused on obtaining
sufficient data with the 3He cells at Bz = 0.9975B0

z for
comparison with the results obtained with the supermir-
ror polarizer and analyzer.

Due to the time dependence of the 3He polarization,
data acquired for 6000 s at each rotator location were
corrected for the declining overall transmission and flip-
ping ratio. The initial and final 3He polarizations and
thus the relaxation times were determined by neutron
transmission measurements on each cell at the start and
end of the typical 5 day run cycles. From these data
the overall time-dependent transmission and flipping ra-
tio were determined. The typical initial and final flipping
ratios were ≈ 17 and ≈ 6, respectively. We directly mon-
itored the decay of the polarizer transmission by tracking
the direct beam count rate. The decay of the analyzer
transmission was also monitored via the ratio of the re-
flected beam count rate to the direct beam count rate.
The background rate was higher than that obtained with
the supermirrors due to shielding of the detector by the
analyzing supermirror and its yoke. To reduce the back-
ground, an array of polyethylene blocks was employed to

surround the neutron beam near the detector, yielding a
typical rate of BNSF

0 = 175 counts in a 6000 s run, about
1.5 times higher than that obtained with the supermir-
rors. The combined uncertainty in S from the determina-
tion of background, 3He polarization, and 3He relaxation
time were negligible compared to the uncertainty in the
fit to Eq. 17.

NSFs were employed for six run cycles at a magnetic
field 0.9975*1.7672 mT (0.9975*17.672 G) . The fits to
Eq. 17 yielded S = 0.960 ± 0.109 with a reduced χ2

of 0.74 (see Fig. 11), consistent with the value of 1.201
± 0.048 (statistical) ± 0.18 (systematic) obtained with
supermirrors.

V. CONCLUSION

We have successfully demonstrated the technique of
measuring the Schwinger spin-orbit induced polarization
rotation in multiple Bragg reflections to study the neu-
tron spin-orbit interaction. The dependence of both the
amplitude and phase of the Schwinger oscillation ob-
served by translating the spin rotator are consistent with
predictions.

Data obtained with supermirrors to polarize and an-
alyze the neutron beam were affected by a systematic
effect associated with spin transport. An uncertainty
was assigned for this systematic by measurements in
the direct beam and also by varying the spin trans-
port. In addition, the effect was completely eliminated
using neutron spin filters and the results in this con-
figuration were consistent within uncertainties with the
supermirror-based results. The total uncertainty for the
supermirror-based result is dominated by the systematic
uncertainty whereas the total uncertainty for the spin fil-
ter based result is dominated by statistical uncertainty.

Our results for the magnitude of the induced Schwinger
oscillation measured by the parameter S are a factor of
1.26 (spin filters) to 1.58 (supermirrors) larger than was
calculated in Sec. II based on the description of the spin-
orbit interaction in Refs. [1, 8]. The origin of this discrep-
ancy is unknown. In the context of the existing theory,
our results would indicate that the electric field sensed
by the neutron in its passage through multiple Bragg
reflection is higher than that given by the screening fac-
tor. Experimental values and Hartree-Fock and density
functional theory calculations of the atomic screening fac-
tor for the silicon 220 reflection agree within better than
1 % [17, 22, 23]. However, these calculations do not con-
sider crystal imperfections and impurities. The results
of Finkelstein [10] indicated a factor of 1.18 larger spin-
orbit effect in silicon than expected; our results show the
same trend but to a larger degree.

An improved experiment would require an efficient
apparatus for longitudinal polarization and a slotted
crystal with higher reflectivity and a uniform slot.
The former could be accomplished with continuously
operating neutron spin filters.
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