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Abstract—Dynamic Spectrum Access (DSA) promises to be
a shared spectrum technology that can alleviate the artificial
spectrum crunch created by the static allocation of spectrum.
There have been many studies on DSA systems in the literature.
However, most of them are analyzed using simulation studies
rather than analytical modeling. Analytical models are useful in
evaluating performance of such systems quickly and easily. In
this paper, we present an analytical model of an opportunistic
DSA system. Using an alternating renewal process to represent
primary user traffic of the DSA system and applying theory from
survival analysis and stochastic process, we derive an expression
to compute the white space utilization (WSU) of a DSA system for
a general distribution of idle durations of primary traffic. Taking
the exponential distribution as an example, we validate our
analytical model by comparing its results to results obtained from
two simulation experiments. One experiment uses idle durations
generated from pseudorandom variates and the other uses data
collected from a real Long-Term Evolution (LTE) system whose
idle duration distribution is approximately exponential. Our
analytical WSU results match closely with those from the first
experiment and match reasonably well with those obtained from
the second experiment.

I. INTRODUCTION

Most of the spectrum in the sub 6 GHz frequency has been
allocated to incumbents. However, the utilization of spectrum
in some of these bands is low. Thus, the static allocation of
spectrum has led to inefficient use and artificial shortage of
spectrum in the sub 6 GHz band. Dynamic Spectrum Access
(DSA) promises to be a shared spectrum paradigm that can
make the spectrum usage more efficient and alleviate the
artificial shortage. In a DSA system, there are two types of
users. The incumbent is the Primary User (PU) of the system
and has the higher priority. Secondary Users (SUs) have lower
priority and access the channel opportunistically when it is
not being used by the PUs. However, the SUs have to vacate
the channel as soon as a PU starts to use the channel. There
are quite a few methods proposed in the literature to provide
access to the channel by an SU [1], [2], [3], [4]. One such
method was proposed in [5]. In this scheme, given an SU
request for transmission for a duration τ that arrives after an
idle period of duration t has elapsed, the DSA system accepts
the request if the probability that the idle period will last for
another τ units of time is above a predetermined threshold.
It uses the theory of survival analysis to make the decision
whether to accept or reject an SU request. One of the important
performance metrics of a DSA system is the proportion of
idle duration that is utilized by the SUs commonly referred

to as White Space Utilization (WSU). In the study presented
in [5] we used simulation experiments to calculate WSU of
the DSA system based on Long-Term Evolution (LTE) as the
PU system.

A. Motivation

Many previous works, including ours [5], have reported
performance of their respective DSA system through simulation
studies. While those studies have been helpful in understanding
different DSA systems and their performance, they lack
analytical modeling. In the absence of analytical models, if a
DSA service provider wants to evaluate the performance of its
system in a given PU system without installing it, then it has
to resort to simulation. A DSA service provider, for example,
may want to estimate the WSU achievable when operating in
a PU system. This information may be useful to the service
provider for making various business decisions. If an analytical
model is available, then a DSA service provider can quickly
and easily get the DSA system performance numbers (e.g.,
WSU). If a provider has to compare performance of its DSA
systems across multiple PU system locations, then obviously
using an analytical model can save cost.

Hence, in this work we present an analytical model for the
opportunistic DSA scheme proposed in [5], which is based
on survival analysis. Our analytical model uses an alternating
renewal process to model the PU traffic and uses theory and
methods from survival analysis and stochastic processes to
come up with WSU for the SUs. So, this can be a very useful
tool for the DSA service providers to compare the WSU of
SUs operating in different PU systems and pick the best PU
system in which to deploy the DSA system. For a given PU
system, if there are different traffic patterns at different times
of the day, then our analytical model can be used to find out
what time of the day gives the best performance in terms of
WSU and hence the SU traffic can be accordingly controlled.

II. RELATED WORK

A definition of channel occupancy and methods for mea-
suring it have been studied in [6]. Spectrum occupancy
models have been studied in the literature for quite some
time. Spectrum occupancy has been modeled using a two
state Discrete-Time Markov Chain (DTMC) in [7]. Time-
inhomogeneous DTMC models have been used [7] in place of
stationary DTMC models to overcome some of the limitation
of stationary DTMC. In [8], the authors used a semi-Markov



model to represent spectrum occupancy and model idle and
busy periods using a general distribution. Some works in
the literature have represented spectrum occupancy as an
Alternating Renewal Process [8], [4], since it has only two
states. Spectrum idle and busy periods have also been modeled
using Continuous-Time Markov Chain (CTMC). The studies
reported in [9], [10], [11] used semi-Markov CTMC to account
for non-exponential distribution of ON and OFF periods of
spectrum. A Two-dimensional Markov chain has been used to
model adjacent channel occupancy in [12], [13].

A prediction scheme for SU spectrum access based on
the expected remaining idle time of spectrum is proposed
in [2]. Zhao et al. have proposed a Partially-Observable
Markov Decision Process (POMDP) based model for SU
spectrum access in [1]. In [8], the authors use a two-state semi-
Markov process to model PU channel occupancy and try to
maximize spectrum opportunities by sensing period adaptation
and minimize the delay in finding an available channel. The
authors in [3] have proposed a spectrum access scheme for SUs
which limits the maximum bound on probability of interference
to the primary user (PU). A SU spectrum access scheme based
on the residual idle time distribution of PU traffic which is
modeled as an Alternating Renewal Process is presented in
[4]. In [5], [14], authors proposed a DSA scheme based on
survival analysis. The scheme uses a non-parametric estimate
of cumulative hazard function to predict remaining idle time.
An SU is then given access to the spectrum based on this
prediction, subject to the constraint that the probability of the
SU successfully finishing the transmission is above a preset
threshold. Opportunistic channel access schemes based on the
Restless Multiarm Bandit model have been proposed in [15],
[16]. Pattern mining of spectrum occupancy data has also been
used to provide spectrum opportunity to SUs [17], [18].

III. ANALYTICAL MODEL

A. PU Traffic Process

We assume that there are two categories of users accessing a
single communications channel. A user may be either a primary
user (PU) or a secondary user (SU). PUs are the incumbent
of the channel and have higher priority. The SUs have lower
priority and access the channel opportunistically when it is not
being used by the PUs. Consider a period of time, [0, T ], over
which the channel is observed for PU traffic. The channel starts
out in an idle state and alternates between idle and busy periods.
We record all the successive lengths of idle and busy periods as
I = (I1, I2, . . . , In) and B = (B1, B2, . . . , Bn), respectively.
It is assumed that the random vectors (Ij , Bj), j = 1, 2, . . . are
independent with the same joint distribution, having marginal
distribution functions F (x) and G(x), respectively and with
means µidle and µbusy.

This PU traffic model generates an alternating renewal
process [19]. Let random variables Yj = Ij + Bj represent
interarrival times between renewals (consecutive idle and busy
periods). Let Sn = Y1 + Y2 + · · · + Yn denote the length of
time for n renewals to occur. Note that each renewal ends
in a busy period. Let FY (t) = F ∗ G(t) be the convolution

distribution of Yj . The number of renewals in the time interval
(0, t] is given by

Mt = max{n : Sn ≤ t} t ≥ 0 (1)

The process Mt, t ≥ 0 is called an renewal process. The current
life of the renewal system at time t, γt = t−SMt

, is the elapsed
time since the last busy period. Except in the case of a few
distributions, e.g., the exponential, no closed form expression
for the distribution Ct(s) of γt exists. In the limit, (see [20])
as t→∞

P [γt > s]→ 1

µidle + µbusy

∫ ∞
s

F̄Y (y)dy (2)

where F̄Y (s) = 1−FY (s). This asymptotic distribution is often
used to approximate C̄t(s). For the special case of exponential
Ij and Bj , the current life has distribution function [20]

Ct(s) =

{
1− e−(µidle+µbusy)s 0 ≤ s ≤ t
1 s > t

B. SU Channel Access Scheme

Using the above PU traffic model, an SU channel access
scheme was presented in [5] that is based on survival analysis.
When an SU requests τ units of time to transmit during an
idle period and the channel has been observed idle for s ≥ 0
units of time, then the decision to allow the SU to transmit
is based on the hazard function of F (s). By definition, the
hazard function h(s), measures how likely an idle period of
unknown length I will end in the next instance, given it has
lasted for s units of time and is given by

h(s) = lim
ds→0

Pr[s ≤ I < s+ ds | I ≥ s]
ds

=
f(s)

1− F (s)
(3)

where f(s) = dF (s)/ds. The SU is allowed to transmit if the
probability that the current idle period I will last for additional
duration τ given that it has been idle for duration s (when the
SU request arrived) is more than a given threshold p. Thus,
the SU is allowed to transmit if the following condition is
satisfied.

Pr[I ≥ s+ τ | I ≥ s] > p (4)

This threshold p, 0 < p < 1, is the probability of successful
transmission by the SU. It is shown in [5] that

P [I ≥ s+ τ | I ≥ s] = exp(−[H(s+ τ)−H(s)]) (5)

where H(s) =
∫ s

0
h(t)dt, s ≥ 0 is the cumulative hazard

function. Using (4) and (5), it can easily be deduced that an
SU is allowed to transmit if the change in the cumulative hazard
function over the time period [s, s+ τ ], H(s+ τ)−H(s), is
below a certain value θ = (− ln p), i.e., H(s+ τ)−H(s) < θ.
Thus, an SU request at time t is evaluated using the following
criteria,

Request is

 Denied if channel is busy
Granted if channel is idle and H(γt + τ)−H(γt) < θ
Denied if channel is idle and H(γt + τ)−H(γt) ≥ θ

(6)



In practice, the cumulative hazard function H(·) is estimated
from an observed sample of idle time lengths Ij , j = 1, . . . , n.
The cumulative hazard function is estimated by

Hn(s) =
∑

j:I(j)≤s

1

n− j + 1
(7)

where I(1) ≤ I(2) ≤ · · · ≤ I(n) are the ordered Ij , j = 1, . . . , n.
Since Hn(s)→ H(s), for large n, this estimate of cumulative
hazard function Hn(s) is then used in (6) to decide if an SU
request should be granted or denied.

From an SU’s perspective, the utilization of available idle
time, commonly called white space utilization, is an important
metric. For the scheme proposed in [5] the proportion of the
white space utilized in the time interval [0, T ] by a sequence
of SU requests that arrive according to a Poisson process,
N(t), t ≥ 0 with intensity λ is determined. An SU requests τ
units of channel time to transmit. It is assumed that transmission
times requested by SUs vary sufficiently such that τ can be
reasonably assumed to be a random variable with distribution
function K(x), i.e.,

K(x) = P [τ ≤ x] (8)

Furthermore, they are assumed to be independent of one another
and independent of the alternating renewal process. In this study,
we assume that the probability of arrival of SU requests during
an ongoing SU transmission is negligible. In the next subsection
we derive a closed form approximation for the proportion of
the white space utilized by the SUs.

C. White Space Utilization

Let the random variable RT denote the total amount of time
the channel is idle (i.e., no PUs are transmitting) in the interval
[0, T ] and the random variable WT denote the total amount of
time in RT when SUs are transmitting. Then the fraction of
white space utilized is given by

ρws =
WT

RT
. (9)

To estimate RT , we use a well-known result from the theory
of alternating renewal processes [19],

lim
T→∞

RT
T

=
µidle

µidle + µbusy

= q (10)

where q, 0 ≤ q ≤ 1, represents the mean proportion of time
the system is idle. Thus, the total white space in [0, T ] can be
approximated by

RT ≈ Tq. (11)

In addition to RT , an approximation for WT is needed. The
fraction of white space utilized is then approximated by

ρ̂ws = E[WT ]/Tq (12)

where E[·] denotes the expectation operator. Next, we need
a closed form expression for E[WT ] using the SU channel
access scheme presented above.

We use the theory of “thinning” or decomposition of the
Poisson SU request arrival process, N(t) having rate λ [21],

[22] . When a SU request arrives, the channel is either idle
or busy. It is idle with asymptotic probability q, see (10), and
busy with asymptotic probability (1 − q). The first thinning
occurs here. Requests made when the system is idle form a
Poisson process, N1(t), with rate λ1 = λq.

For the second thinning we need the probability that a
request is granted for an SU to transmit when the system is
idle at time t. Since Hn(t)→ H(t), for large n, the following
approximation is used.

Pt(θ) = P [H(γt + τ)−H(γt) < θ]

=

∫ ∞
0

P [H(s+ τ)−H(s) < θ | γt = s]dP [γt ≤ s]

=

∫ ∞
0

P [H(s+ τ)−H(s) < θ]dP [γt ≤ s]

=

∫ ∞
0

LH(s)ct(s)ds (13)

where ct(s) denotes the density function of γt and

LH(s) = P [H(s+ τ)−H(s) < θ] (14)

So, an SU request that arrives during an idle period is granted
with probability Pt(θ) or equivalently rejected with probability
(1−Pt(θ)). Thus thinning of N1(t) occurs here. The sequence
of times the SUs are allowed to transmit when the channel
is idle forms a nonhomogeneous Poisson process, N2(t) with
rate λ2(t) = λ1Pt(θ) = λqPt(θ) and probability of m arrivals
in [0, t]:

P [N2(t) = m] =
e−

∫ t
0
λ2(s)ds(

∫ t
0
λ2(s)ds)m

m!
m = 0, 1, . . .

(15)
m = 0 means no request is made and the requested transmission
time is defined to be zero when this happens.

Let us say there are exactly m transmission requests granted
to the SUs in duration [0, T ],m = 0, 1, 2, . . ., i.e., N2(T ) = m,
occurring at 0 < t1 < t2 < . . . < tm ≤ T for m ≥ 1
(see Figure 1). Then the amount of white space utilized is
(τ1 + · · ·+ τm) if (tm + τm) ≤ T and is (τ1 + · · ·+ τm−1 +
(T − tm)) if (tm−1 + τm−1) < tm < T < (tm + τm), where
τk, k = 1, . . . ,m are requested transmission durations.

The average amount of white space utilized is

E[WT ] =

∞∑
m=0

E[WT | N2(T ) = m]P [N2(T ) = m]

=

∞∑
m=1

E[(

m−1∑
i=1

τi) + Jm | N2(T ) = m]P [N2(T ) = m]

=

∞∑
m=1

[
(m− 1)E[τ ]P [N2(T ) = m]+

E[Jm | N2(T ) = m]P [N2(T ) = m]
]

(16)

where

Jm =

{
τm if tm + τm < T
T − tm otherwise (17)



Fig. 1. Schematic of exactly m successful transmissions by SUs. The shaded regions represent PU transmissions. ti, i = 1, . . . ,m denote all the request
times distributed according to the nonhomogeneous Poisson process N2(t)

Now

E[Jm | N2(T ) = m]

= E[JmI[tm + τm < T ] | N2(T ) = m]+

E[JmI[tm + τm ≥ T ] | N2(T ) = m]

= E[τmI[tm + τm < T ] | N2(T ) = m]+

E[(T − tm)I[tm + τm ≥ T ] | N2(T ) = m] (18)

To complete this computation, we need the following result
about nonhomogeneous Poisson processes [19].

Theorem: If {N2(t), t ≥ 0} is a nonhomogeneous Poisson
process with intensity function λ2(t), then given N2(T ) =
m,T ≥ 0, its m arrival times, t1, t2, . . . , tm have the
same distribution as the order statistics from a sample of
m independent and identically distributed random variables
having distribution function, F2(x) given by

F2(x) =

{
Λ2(x)
Λ2(T ) x ≤ T
1 x > T

(19)

where Λ2(x) =
∫ x

0
λ2(s)ds, 0 ≤ x ≤ T . Thus, given N2(T ) =

m, tm is distributed as max{t∗1, t∗2, . . . , t∗m} where the t∗i are
the order statistics from a sample with distribution function
F2(x) and furthermore

P [tm ≤ x] = P [max{t∗1, t∗2, . . . , t∗m} ≤ x] = P [t∗m ≤ x] =

Fm2 (x), 0 ≤ x ≤ T (20)

This is analogous to a well known result for homogeneous
Poisson processes which says given, N(t) = m, the m
occurrence times are distributed as the order statistics from a
uniform (0, t] distribution [19].

Using the Theorem, the two terms in (18) can be evaluated
by conditioning on τm as follows.

E[τmI[tm + τm < T ] | N2(T ) = m] =

E[τmI[t∗m < (T − τm)]] =∫ ∞
0

τFm2 (T − τ)dK(τ) (21)

and,

E[(T − tm)I[tm + τm ≥ T | N2(T ) = m] =

E[(T − t∗m)I[t∗m + τm ≥ T ]] =∫ ∞
τ=0

E[(T − t∗m)I[t∗m + τ ≥ T ]]dK(τ) =∫ ∞
τ=0

∫ ∞
t=0

(T − t)I[t ≥ (T − τ)]dFm2 (t)dK(τ) =∫ ∞
τ=0

∫ T

t=(T−τ)

(T − t)dFm2 (t)dK(τ) (22)

where F2(t) is given by (19).
Using (21) and (22) in (16) we have

E[WT ] = E[τ ]

∞∑
m=1

(m− 1)P [N2(T ) = m]+

∞∑
m=1

∫ ∞
0

τFm2 (T − τ)dK(τ)P [N2(T ) = m]+

∞∑
m=1

∫ ∞
0

[ ∫ T

T−τ
(T − t)dFm2 (t)

]
dK(τ)P [N2(T ) = m]

(23)
= E1 + E2 + E3

where E1, E2 and E3 are the three terms in (23) respectively.
We know that for the nonhomogeneous Poisson process

N2(T ),

P [N2(T ) = m] = e−Λ2(T ) (Λ2(T ))m

m!
m = 0, 1, . . . (24)

So,

E1 = E[τ ]
[ ∞∑
m=1

(m− 1)e−Λ2(T ) (Λ2(T ))m

m!

]
= E[τ ]e−Λ2(T )

[ ∞∑
m=1

(m− 1)
(Λ2(T ))m

m!

]
= E[τ ]e−Λ2(T )

[ ∞∑
m=1

m
(Λ2(T ))m

m!
−
∞∑
m=1

(Λ2(T ))m

m!

]
= E[τ ](Λ2(T )− 1 + e−Λ2(T )) (25)

Note that we have used the power series definition of expo-
nential function in the derivation of (25). Using (15) and (19)



in the expression for E2, we have

E2 =

∫ ∞
0

τ
[ ∞∑
m=1

Fm2 (T − τ)e−Λ2(T ) (Λ2(T ))m

m!

]
dK(τ)

= e−Λ2(T )

∫ ∞
0

τ(eF2(T−τ)Λ2(T ) − 1)dK(τ)

= e−Λ2(T )

∫ ∞
0

τ(eΛ2(T−τ) − 1)dK(τ) (26)

To compute E3, note that dFm2 (t)/dt = mf2(t)Fm−1
2 (t) and

f2(t)Λ2(T ) = λ2(t).

E3 =

∫ ∞
0

[ ∫ T

T−τ
(T − t)

∞∑
m=1

mf2(t)Fm−1
2 (t)

e−Λ2(T ) (Λ2(T ))m

m!
dt
]
dK(τ)

= e−Λ2(T )

∫ ∞
0

[ ∫ T

T−τ
(T − t)f2(t)

( ∞∑
m=1

mF2(t)m−1

(Λ2(T ))m

m!

)
dt
]
dK(τ)

= e−Λ2(T )

∫ ∞
0

[ ∫ T

T−τ
(T − t)f2(t)Λ2(T )eF2(t)Λ2(T )

dt
]
dK(τ)

= e−Λ2(T )

∫ ∞
0

[ ∫ T

T−τ
(T − t)λ2(t)eΛ2(t)dt

]
dK(τ)

= e−Λ2(T )
[ ∫ ∞

0

(∫ T

T−τ
Tλ2(t)eΛ2(t)dt

)
dK(τ)−∫ ∞

0

(∫ T

T−τ
tλ2(t)eΛ2(t)dt

)
dK(τ)

]
(27)

By a change of variables in the first integral and an integration
by parts in the second, we get

E3 = e−Λ2(T )
[ ∫ ∞

0

(
T (eΛ2(T ) − eΛ2(T−τ))−(

TeΛ2(T ) − (T − τ)eΛ2(T−τ) +

∫ T

T−τ
eΛ2(t)dt

))
dK(τ)

]
= e−Λ2(T )

[ ∫ ∞
0

(
− τeΛ2(T−τ) −

∫ T

T−τ
eΛ2(t)dt

)
dK(τ)

]
=

∫ ∞
0

[
− τeΛ2(T−τ)−Λ2(T )−∫ T

T−τ
eΛ2(t)−Λ2(T )dt

]
dK(τ) (28)

Thus, from (23)

E[WT ] = E[τ ](Λ2(T )− 1 + eΛ2(T ))+

e−Λ2(T )

∫ ∞
0

τ(eΛ2(T−τ) − 1)dK(τ)

+

∫ ∞
0

[
− τeΛ2(T−τ)−Λ2(T )−∫ T

T−τ
eΛ2(t)−Λ2(T )dt

]
dK(τ) (29)

In this study, we take the simple case of SUs sending requests
to transmit for a constant duration, i.e., τ is a constant. Then
the expression for E[WT ] reduces to

E[WT ] = τ(Λ2(T )− 1 + e−Λ2(T )) + τe−Λ2(T )(eΛ2(T−τ) − 1)

− τeΛ2(T−τ)−Λ2(T ) −
∫ T

T−τ
eΛ2(t)−Λ2(T )dt

= τ(Λ2(T )− 1)−
∫ T

T−τ
eΛ2(t)−Λ2(T )dt (30)

D. Exponential Idle Times Distribution

In this section we take the exponential distribution as an
example distribution for idle times (of PU traffic) to illustrate
our analytical model. We then compare simulation based results
with the results from our analytical model to validate the
correctness of our model.

In this case we assume Ij ∼ Exp(α) and Bj ∼ Exp(β)
where µidle = 1/α and µbusy = 1/β and the SU requests
arrive as per a Poisson process with parameter, λ. Then,

q =
1/α

1/α+ 1/β
(31)

and RT ≈ Tq (see (11)). In the exponential case, the hazard
function of the idle time distribution F (x) is a constant, viz,
h(t) = α and thus H(t + τ) − H(t) = τα. The criteria for
granting a SU request becomes

Request is

 Denied if channel is busy
Granted if channel is idle and τα < θ
Denied if channel is idle and τα ≥ θ

(32)
α can be estimated as 1/Īn, where Īn = (I1 +I2 + · · ·+In)/n
is the sample means estimate of µidle and n denotes the sample
size of observed values. Hence, the SU request grant criteria
becomes

Request is

 Denied if channel is busy
Granted if channel is idle and τ

θ < Īn
Denied if channel is idle and τ

θ ≥ Īn
(33)

In this case

Pt(θ) = p(θ) = P [I1 + · · ·+ In > n
τ

θ
] (34)

When the Ij’s are exponential, I1 + · · · + In has a gamma
distribution [19, pp. 35] and

p(θ) =

n−1∑
j=0

e−αnτ/θ(αnτ/θ)j/j! (35)

In this case, N2(t) is a homogeneous Poisson process, with
parameter λ2 = qλp(θ) and Λ2(t) = λ2t. Using these values
in (30) we have

E[WT ] = τλ2T − τ −
1

λ2
(1− e−λ2τ ) (36)
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Fig. 2. Comparison of WSU computed using analytical model and simulation

Hence, using (12) an approximation of white space utilization
is obtained as

ρ̂ws =
τλ2T − τ − 1

λ2
(1− e−λ2τ )

Tq

=
τ

q
λ2 −

1

Tq
(τ +

1

λ2
(1− e−λ2τ )) (37)

IV. EXPERIMENTS AND RESULTS

To validate our analytical formulation we ran two types
of experiments as follows. In the first set of experiments we
simulate an alternating renewal process which represents PU
traffic. The idle and busy durations of the PU traffic were
generated using pseudorandom exponential variates whose
means were 10 and 5 units respectively, i.e., µidle = 10 and
µbusy = 5. Then a sequence of SU request arrival times are
generated with pseudorandom exponential interarrival times.
The requested transmission duration (τ ) was set to 0.3 units
and the probability of successful transmission (p) was set to 0.9.
The simulation was run for a duration T = 10 000 units. An
SU request is granted or denied based on the criteria outlined
in (32). If a request is granted, then τ units are added to the
white space utilized. Figure 2 plots approximation of WSU as
per our analytical model (ρws) and the simulated WSU as a
function of the mean interarrival times of SU requests. The
results for the analytical model match very closely with those
from the simulation.

In the second set of experiments, we used the I/Q samples
collected at a location in the metro Philadelphia area on the
CityScape spectrum monitoring system [23] on September 9th,
2017 at around 17:55 hours for a duration of 30 minutes. After
carrying out additional processing of the collected I/Q samples
and applying the noise threshold to which the CityScape
Software Defined Radios (SDRs) were calibrated, the dataset
was converted into binary occupancy sequences. We chose
channels 15 and 16 for our simulation. Some important statistics
of collected data for those two channels are listed in Table I. The
first step to run our simulation was to estimate the cumulative
hazard of the given channel using (7) over the collected idle
time duration data of the channel. We then simulated arrival of
SU requests to transmit for 1 ms (τ = 1 ms) as per a Poisson
process. The request is granted or denied as per (6) using
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Fig. 3. Q-Q plot of the collected channel 15 data

p = 0.9. Each successful SU transmission is counted towards
total white space usage of the SU. Then the WSU of the
channel is computed as the ratio of total white space usage of
the SU to total idle duration of the channel. The histograms of
idle duration of channels 15 and 16 are shown in Figure 4 and
Figure 5 respectively. The two histograms look approximately
exponentially distributed, so we used a quantile-quantile (Q-
Q) plot using the data from channel 15 to verify this visual
observation. For the Q-Q plot of channel 15 shown in Figure 3,
a kernel density estimate was used to smooth the idle duration
data. Then, the kth, k = 1, 2, . . . , 10, deciles (10-quantiles)
of the kernel density were calculated and plotted against the
same deciles for the exponential distribution with parameter
λdata. The mean of the kernel density is 1/λdata. If the idle
time data are generated from this exponential distribution, then
these pairs of quantiles should follow the 45◦ line. The plot
in Fig 3 indicates that the distribution of the data is close to
an exponential. Using the mean idle time of the channels as
the parameter for exponential distribution, we then use (37)
to calculate analytical WSU. Figure 6 and Figure 7 compare
the WSU obtained by simulation and by the analytical method
for channels 15 and 16 respectively. For both the channels
the difference between the analytical and simulation results is
insignificant for an SU request inter-arrival time of 5 ms or
more. During simulation, some SU requests fall into the current
SU transmission interval, in which case that request is ignored
and one or more exponential inter-arrival times are generated
until an SU request arrives after the current SU transmission
ends. As the request inter-arrival time become smaller, more
SU requests fall within an SU transmission duration. Since this
phenomenon is not accounted for in the analytical model, the
model allows SU requests that arrive during an ongoing SU
transmission to be admitted. Thus, the WSU of the analytical
model is higher than the WSU of simulation when the SU
request inter-arrival time is small. Since idle lengths of the
collected data only approximate an exponential distribution,
this also contributes to the discrepancy between analytical and
simulation WSU.



channel mean idle duration mean busy duration total idle duration observed duration
number (µidle) (ms) (µbusy) (ms) (ms) (T) (ms)

15 11.175 1.1527 1 631 690 180 000
16 11.341 1.1454 1 634 880 180 000

TABLE I
STATISTICS OF COLLECTED DATA
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Fig. 4. Idle Duration Histogram of Channel 15 of Collected
Data
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Fig. 5. Idle Duration Histogram of Channel 16 of Collected
Data
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Fig. 6. WSU vs Mean SU Request Inter-arrival time for Channel
15 (τ = 1 ms)
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Fig. 7. WSU vs Mean SU Request Inter-arrival time for Channel
16 (τ = 1 ms)

V. DISCUSSION

We presented an analytical model for the opportunistic DSA
scheme proposed in [5] that is based on survival analysis. The
PU traffic was modeled as an alternating renewal process.
Applying theory and methods from survival analysis and
stochastic process, we derived an expression to compute the
WSU of the DSA system for any general distribution of idle
duration of PU traffic. We used an exponential distribution
of idle duration as an example to validate our model. The
WSU computed using our analytical model was compared
against the WSU obtained from two simulation experiments.
In one simulation experiment the idle durations were generated
from pseudorandom variates whereas in the other the idle
durations were taken from data collected from a real LTE

system whose idle durations are approximately exponentially
distributed. Our analytical results closely match the results
from the first experiment and match reasonably well with those
obtained from the second experiment.

In this work, we have modeled PU Idle and Busy periods
as stationary distributions. In practice, it may not be the case.
One way to address this issue is to assume that PU traffic
distributions do not change appreciably during a certain period
of a day and therefore have different PU traffic distibutions
at different time of the day. Based on the time of the day
corresponding PU traffic distributions can be used in our
analytical model to compute WSU.

In our analytical formulation we assumed that the probability
of arrival of SU requests during an ongoing SU transmission



is negligible. While this assumption is valid for high SU
request inter-arrival times, it does not hold for low inter-arrival
times. Hence, we would like to update our model to remove
this assumption so that it rejects SU requests arriving during
an ongoing SU transmission. We plan to derive analytical
expression to compute the WSU for a few other distributions
of idle durations. The Generalized Pareto Distribution (GPD)
has been used to model the idle and busy durations of a
channel [24], [25]. We will take up GPD as the next example
distrubtion. Apart from WSU, the Probability of Interference
(PoI) is also an important performance metric for DSA systems.
Hence we plan to develop an analytical model of PoI for
the DSA system. Also, we will validate the model using SU
distributions other than the exponential, potentially including
mixture distributions.
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