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Graphene and other 2D materials give a platform for electromechanical sensing of biomolecules in aqueous,
room temperature environments. The electronic current changes in response to mechanical deflection, indi-
cating the presence of forces due to interactions with, e.g., molecular species. We develop illustrative models
of these sensors in order to give explicit, compact expressions for the current and signal-to-noise ratio. Elec-
tromechanical structures have an electron transmission function that follows a generalized Voigt profile, with
thermal fluctuations giving a Gaussian smearing analogous to thermal Doppler broadening in solution/gas-
phase spectroscopic applications. The Lorentzian component of the profile comes from the contact to the
electrodes. After providing an accurate approximate form of this profile, we calculate the mechanical sus-
ceptibility for a representative two-level bridge and the current fluctuations for electromechanical detection.
These results give the underlying mechanics of electromechanical sensing in more complex scenarios, such as
graphene deflectometry.
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Nanoscale sensing devices capable of operating in aque-
ous, ionic environments are highly desirable for selective
molecular detection1–3, DNA sequencing4–13 and cell bi-
ology studies14. Due to their unique electromechanical
properties, graphene and other carbon-based nanostruc-
tures are ideal active components in nanoelectromechan-
ical switches15,16 and nanoscale sensors17–23. The design
of detection protocols requires a quantitative correspon-
dence between electron transport and mechanical deflec-
tion. In hot, wet environments, sensitive detection must
also account for the e↵ect of thermal fluctuations and
other sources of noise. These e↵ects are imprinted on the
average electronic transmission function, which depends
parametrically on the structural and electronic proper-
ties of the active sensing component, which is responsive
to environmental perturbations.

Transport properties in molecular electronic junctions
are also sensitive to inhomogeneities and thermal fluc-
tuations. Molecules in junctions and active materials
in nanoscale electromechanical sensors, follow similar
principles in their transport properties, and their re-
sponse to environmental perturbations is comparable.
Due to the heterogeneity in the structural configuration
of the molecule and electrode geometry in the formation
of molecular junctions, conductance measurements yield
di↵erent results in similar systems and follow a distribu-
tion, recorded in the form of histograms24,25. The peaks
in these distributions are ascribed to molecular conduc-
tance channels, while the spread results from di↵erent
sources, such as changes in tunneling length, substrate
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roughness, tip chemistry, presence of solvent, and exten-
sive tip usage26–28. In other words, on the whole, the con-
ductance distribution is not due to direct thermal fluctu-
ations of the constituents of the molecule, which happen
at a more rapid timescale and are averaged over in the
measurements. However, in some proposed sensors, such
as suspended graphene ribbons21,22, the fluctuations can
be very slow – on the order of nanoseconds– and commen-
surate with sensing. Moreover, they are well-separated
from the timescale for electron transport, allowing for a
Born-Oppenheimer treatment of their influence, which is
the approach we will take here.

We calculate the electronic transmission function for
representative model systems including the e↵ect of me-
chanical fluctuations of thermal origin. This permits us
to characterize the signal-to-noise ratio for electrome-
chanical sensing in nanoscale deflectometers, as well as
understand thermally induced broadening. Studies of
this kind, where di↵erent broadening mechanisms a↵ect
the output signal, are common in spectroscopy, where
Doppler e↵ects transform the Lorentzian lineshape into
a di↵erent distribution: the Voigt profile22,28. In the
context of nanoscale electronics, thermal fluctuations of
a single electronic level coupled to two fermionic baths
transform the transmission function into exactly the
Voigt profile. In the regime where thermal fluctuations
dominate the noise, this profile for the transmission func-
tion is a linear combination of a Gaussian and an er-
ror function22,29. For models beyond a single level, the
transmission function is a generalized Voigt profile, i.e.,
a Gaussian “bulk” with more complex, algebraic tails.
For these systems, we identify changes in the stationary
current as a function of mechanical deflection, as well as
characterize the linear response of the system in terms of
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the electromechanical susceptibility. This simplified set-
ting gives the underlying mechanics to electromechanical
detection of molecular forces and structural fluctuations.
Moreover, they provide new insights into the study of
mechanical stress and thermal contributions to molecu-
lar electronics30–32.

The Voigt Profile. Consider a single energy level
"p coupled to two metallic contacts. When each metal
acts approximately as a noninteracting fermionic wide-
band limit reservoir, the resulting coupling strength w

is energy independent and the level energy broadening
is given by a Lorentzian distribution. Beyond the wide-
band limit, the coupling strength depends on the energy "

according to the spectral function of the reservoir and the
energy brodeaning may follow other distributions. For
the present discussion, we restrict ourselves to the case in
which the wide-band limit is a reasonable approximation.
In addition, we take the same coupling strength w for
each contact. The transmission function T (") is therefore

T ("� "p) =wA("� "p), (1)

with

A("� "p) =
w

("� "p)2 + w2
. (2)

Thermal fluctuations introduce additional (inhomoge-
neous) broadening to the energy level. When these are
due to many independent sources, the energy level will
follow a Gaussian distribution g("p) centered at some
equilibrium value "̄p

g("p) =
1p
2⇡�2

e
� ("p�"̄p)2

2�2 , (3)

with standard deviation �. In terms of the transmission
function T , the stationary electronic current, which av-
erages over all thermodynamic fluctuations, is given by

hIi = 2e

h

Z
d"hT (")i[fL(")� fR(")], (4)

where fL/R(") = (exp[�(" � µL/R)] + 1)�1 is the Fermi
distribution function, � is the inverse temperature in
units of energy, µL(R) is the chemical potential in the
left (right) reservoir and hT (")i is the thermal average of
the transmission function given by

hT (")i =
Z

d"pT ("� "p)g("p) = T ⇤ g. (5)

In Eq. (4), the factor of 2 accounts for the spin. The
symbol ⇤ in Eq. (5) represents the convolution operation.
The expression in Eq. (5) is proportional to the Voigt
profile V (") = A(") ⇤ g(") frequently found in molecular
spectroscopy and di↵raction studies33,34, and takes on
the form (see Appendix A)

hT (")i =wRe

✓r
⇡

2�2
� J(E,�)

◆
e

E2

2�2

�
, (6)

a  b

FIG. 1. (Color online) Voigt profile for the thermally aver-

aged transmission function for a single level in contact with

two reservoirs. (a,b) The Voigt profile calculated from numer-

ical convolution (red, solid), the Gaussian component of hT i
(blue, dashed), and the algebraic tail (black, dotted) of hT i.
Parameters for this model are "̄p = 0.4 eV and w = 0.01 eV.

In (a), the thermally induced broadening – which is propor-

tional to 1/� – is �2
= 0.1 eV

2
and, in (b), �2

= 0.001 eV
2
.

When � > w, there is a clear separation of the Gaussian

and algebraic components in Eq. (6). The error bars in the

numerical integration are smaller than the line width.

with E = i("� "̄p) + w and

J(E,�) =
E

�2

Z 1

0
d↵e

�↵2E2

2�2 =

r
⇡

2
erf

✓
Ep
2�

◆
. (7)

Equation (6) is along the lines of previous expressions
for the Voigt profile in terms of the error function (erf)
and the Faddeeva function35,36. In Fig. 1, we compare
the transmission function obtained from numerical inte-
gration of Eq. (5) and the compact form, Eq. (6), which
separates the Gaussian bulk of the peak from the alge-
braic tails. Utilizing the factorial series for the error
distribution36 and Eq. (7), one can see that the lead-
ing term far from the peak comes from the error function
and is proportional to Re{1/E}, i.e., the Lorentzian tail.
The above takes a Born-Oppenheimer treatment by

employing an uncorrelated classical random variable.
This can be extended to account for correlations. In
the Supplemental Information (SI), we examine non-
Markovian e↵ects between a local vibration and the elec-
tronic site. This gives rise to an additional energy-
dependent correction on top of the Voigt profile. Inelastic
e↵ects – the emission/absorption of vibrational quanta by
transporting electrons37–44 – can also be included. How-
ever, for electromechanical sensors in solution at room
temperature, such as the graphene deflectometer22, the
relevant vibrational modes have small energies compared
to room temperature and are noisy due to the solution
environment. Thus, coherent e↵ects should not signifi-
cantly contribute.
Generalized Voigt profile. The electronic structure

of nanoscale systems, such as molecules and 2D materials,
are often taken as tight-binding models. In such models,
the system S is composed of noninteracting electronic
states with Hamiltonian

HS =
X

i2S
"iĉ

†
i ĉi +

X

i 6=j

vij ĉ
†
i ĉj , (8)
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where ĉi (ĉ†i ) is the annihilation (creation) operator for
an electron in the i

th state, with corresponding single
electron energy "i and tunneling constant vij . The elec-
tronic structure of each metallic region, on the left (L)
and right (R), is a fermionic reservoir with Hamiltonian
HL/R =

P
k2L/R "k ĉ

†
k ĉk. Here, "k is the corresponding

single particle energy for an electron in state k of the
reservoir, and ĉk (ĉ†k) is the corresponding annihilation
(creation) operator. The coupling between the system
and the reservoirs is given by the bilinear form

HI =
X

k2L,R,i2S
vik ĉ

†
i ĉk + v

⇤
ik ĉ

†
k ĉi, (9)

where vik is the coupling between the ith orbital in S and
k
th state in L,R.

The stationary current originating from an applied bias
eV = µL � µR has the form of Eq. (4) in terms of the
thermally broadened transmission function hT (")i = T ⇤g

a

b

FIG. 2. (Color online) Thermal broadening of the electron

transmission function for a two-level system. (a,b) hT i in

linear and logarithmic scale obtained directly from numeri-

cal convolution (red, solid), and from the analytic result in

Eq. (15) (black, dotted). Inset: schematic representation of

the system. Two identical energy levels localized at di↵erent

positions, at a relative distance x, are coupled to two leads

with the same coupling constant w. The electron tunnel-

ing strength v between the two levels depends parametrically

on x according to Eq. (12). Thermal fluctuations and lo-

cal forces modify x, a↵ecting the transport properties of the

system. Parameters are such that they reproduce the first

transmission peak and its electromechanical response for sus-

pended graphene nanoribbons
22
: � = 0.047 nm, x̄ = 0.14 nm,

w = 1.3 meV,  = 1400 eV/nm
2
, vo = 0.153 eV, "̄p = 0,

µ = 0, and at 300 K . The Lorentzian broadening w is such

that w ⌧ � holds for this system.

with

T (") =Tr{�R(")G
r(")�L(")G

a(")}, (10)

where Tr is the trace and g is the thermal dis-
tribution function. In Eq. (10), the retarded
(advanced) Green function G

r (Ga) for the sys-
tem and the coupling matrices �L/R, are given by
[�L/R]ij = 2⇡

P
k2L/R vk,iv

⇤
k,j�("� "k),

G
r(") =["I �HS + (i/2)(�L(") + �R("))]�1

, (11)

and G
a(") = G

r(")†, with I the identity matrix.
Mechanical and thermal fluctuations modify the inter-

atomic distances xij in the active region, rendering them
with stochastic dynamics and a statistical distribution g

around equilibrium values x̄ij . These, in turn, influence
the tunneling constants vij according to

vij = v
o
ije

�(xij�x̄ij)/�ij , (12)

where �ij is the characteristic electronic decay
length45,46. Importantly, x̄ij , and consequently vij , are
responsive to local forces.
We can gain further insight into the e↵ects on the

transmission function due to thermal fluctuations and lo-
cal stress by considering the two-level bridge in the inset
in Fig. 2a. For this model, setting v12 ⌘ v, voij = vo, the
transmission function is

T (") =
w

2
v
2

[("� iw/2)2 � v2][("+ iw/2)2 � v2]
. (13)

The interparticle distance x influences v and is subject to
thermal fluctuations around its equilibrium value x̄. As a
result, the transmission function fluctuates in time, and
its average hT (")i over the distribution of configurations
g(x) is given by the convolution integral T ⇤ g. For weak
interparticle vibrations, we can take this as harmonic –
with characteristic force constant , and minimum at x̄

– such that g(x) is normally distributed as

g(x) =
1p
2⇡�2

e
� (x�x̄)2

2�2 , (14)

with variance given by thermal fluctuations �2 = (�)�1.
The equilibrium interparticle distance x̄ varies as x̄ !
x̄+ F/ when a local force, F , is present.
When the characteristic decay length � is larger than

the standard deviation for the interparticle distance fluc-
tuation (i.e., � > �), the thermally broadened transmis-
sion function is well approximated by (see Appendix A
for details)

hT (")i ⇡w
2

X

k2{�1,1}

Re


C

✓r
⇡

2�̄2
+ J(Ek, �̄)

◆
e

E2
k

2�̄2

�
.

(15)

In Eq. (15), C = (1/8)(i"�1 + 2w�1), Ek = i("+ kvo)�
w/2, and the standard deviation �̄ = �vo/�. Equa-
tion (15) is similar to Eq. (6) but accounts for the ex-
plicit e↵ect of mechanical fluctuations in the transmission
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function. This result indicates that when thermal fluc-
tuations are the main broadening mechanism (w < �),
the variance in the observed distribution �̄

2 is propor-
tional to the temperature and inversely proportional to
the square of the the characteristic decay length �. In
Figs. 2a,b, we compare Eq. (15) to the exact numerical
convolution T ⇤ g for parameters representative of sus-
pended graphene nanoribbons47. This illustrates that
the approximate analytic expression provides excellent
agreement when w < �. As in the case of the single level,
the generalized Voigt profile in Eq. (15) has a Lorentzian
decay for energies far from both peaks.

Sensing and current fluctuations. Now we address
the problem of detection of local forces upon measure-
ment of stationary current in model electromechanical
sensors. We search for conditions to maximize the di↵er-
ence in stationary current between the deflected and un-
deflected system �I, as well as the signal-to-noise (SNR)
ratio

SNR =
|�I|
�I

, (16)

where �I is the standard deviation in the current.

Fluctuations in the current �I(t) = I(t) � Ī originate
from static and dynamical sources. For the model sys-
tem with a single level described in Eqs. (1)-(6), current
fluctuations are due to the energy level fluctuations �"p,
which are captured by the local distribution of energies
g(") in Eq. (3). Up to second order in �"p

48, �2
I = h�I2i

takes the form

�
2
I = �

2
�
@"pI

�2
+ �

4

✓
@"pI @

3
"pI +

1

2

⇣
@
2
"pI

⌘2
◆����

"p="̄p

.

(17)

Before proceeding further, we make the remark that this
approach may fail to describe the current statistics when
large fluctuations are present, such as in the case of DNA
sequencing with transverse transport where log-normal
histrograms have been predicted4–7,49 and observed11. In
this case, the relevant fluctuations are in the contact be-
tween the molecules and the electrodes, which are not
covalently bonded.

Local perturbations inducing a small but controlled
shift in the energy level, "̄p ! "̄p + �"p, modify the
stationary current as I("̄p) ! I("̄p) + �I following the
linear relation �I = �"�"p, with susceptibility

�" =
2e

h

Z
d"

⌧
d

d"̄p
T (")

�
[fL(")� fR(")]. (18)

Significantly, to first order in the energy shift �" =
@"pI|"p="̄p and, therefore, the SNR in Eq. (16) under

ba 

c d

FIG. 3. (Color online) Transport and electromechanical sens-

ing with the two-level system in Fig. 2a. (a) Energy shift in

the transmission function induced by a local force: F = 0 pN

(red, solid) and F = 100 pN (blue, dashed). (b) Absolute

di↵erence in stationary current (red, solid) and utilizing Eq.

(15) (blue, dashed) as a function of µL (µR = 0). (c) Sta-

tionary current under symmetric bias µL = µ + 0.025 eV,

µR = µ�0.025 eV as a function of the Fermi energy µ and me-

chanical stress: F = 0 pN (red, solid) and F = 100 pN (blue,

dashed). The absolute di↵erence |�I| is also shown scaled by

a factor of 40 (solid, black), such that the |�I|max ⇡ 0.64 nA.

(d) Exact (blue, dashed) and approximate, Eq. (22) (solid,

red), SNR for the sensing protocol in (c). Other parameters

are as in Fig. 2.

small shifts in energy level takes the form

SNR ⇡
��@"pI�"p

��

�

s
�
@"pI

�2
+ �2

✓
@"pI @

3
"pI +

1
2

⇣
@2
"pI

⌘2
◆

����������
"p="̄p

.

(19)

This approches |�"|/� whenever � or @2
"pI are small. As

a consequence, in this limit the SNR improves with the
energy shift �" and worsens with energy level fluctua-
tions originating from interactions with the environment.
We can extend the above analysis to the case of systems

with mechanical deflections, such as the two-level bridge
in Fig. 2. We consider the situation in which mechani-
cal fluctuations dominate and the stochastic dynamics of
the interparticle distance x is described by, for example,
a Langevin equation. From this consideration, and for
small perturbations in x̄, current and mechanical fluctu-
ations are approximately related by

�
2
I ⇡ (@xI)

2

�
+

@xI @
3
xI +

�
@
2
xI

�2

(�)2

�����
x=x̄

, (20)

with �
2 = (�)�1 as in Eq. (14).
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Next we consider the linear mechanical suceptibility of
the sensor. In general, by considering linear deviations
from equilibrium interatomic distances �xij in Eq. (4),
we obtain the linear response in the stationary current in
the form �I = ~� ·�~x with

~� =
2e

h

Z
d"hrT (")i[fL(")� fR(")]. (21)

For the two-level system and to first order in the me-
chanical fluctuation hrT i = @xT (x̄) and � = @xI(x̄)
and, consequently, the SNR is approximately given by

SNR ⇡
p
�|@xI�x|r

(@xI)
2 + 1

�

⇣
@xI @

3
xI + (@2

xI)
2
/2
⌘

��������
x=x̄

.

(22)
We notice that the SNR asymptotically approaches the
limit

p
�|�x| when @

2
xI(x̄) is small or when  is large.

In such cases, it is clear that temperature deteriorates
the SNR. Increasing the sti↵ness of the active material,
though, improves the SNR.

In Fig. 3 we illustrate the electromechanical properties
of the two-level bridge studied in Fig. 2. We notice in Fig.
3a that under mechanical deflection the thermally broad-
ened transmission function shifts. This shift manifests in
the absolute di↵erence in the stationary current between
the deflected and undeflected sensor (Fig. 3b). By modu-
lating the Fermi energy at a fixed symmetric bias, we find
in Fig. 3c a protocol for sensing local forces with maximal
detection signal �I near Fermi energies corresponding to
the maximum in the derivative of I with respect to µ.
This result can be understood in light of the first order
approximation to the susceptibility, � = @xI. Indeed,
@xI = (dv/dx)@vI and therefore the linear susceptibility
is proportional to the derivative of the current with re-
spect to the system energy, as the latter is determined by
v. Consequently, �I ⇠ @µI whenever the modulation of
µ a↵ects the system energy in an equivalent manner to v.
Figure 3d compares the exact50 SNR with the approxi-
mate form in Eq. (22), as a function of the Fermi energy
and for the same protocol studied in Fig. 3c. This result
shows that Eq. (22) is a reliable approximation to the
SNR at room temperature. Moreover, we find that the
limit value of

p
�|�x| ⇡ 0.104 is achieved at the tails

of the current profile. The visible deviation is solely due
to the fact that in the representative parameter regime,
there are e↵ects beyond linear response (see SI). The ef-
fect of finite sampling time, electrostatic fluctuations in
models with a larger number of degrees of freedom that
explicitly include mechanical fluctuations will be the sub-
ject of future investigations.

In conclusion, we have obtained an analytic expression
for the inhomegeneous broadening due to thermal fluc-
tuation in the transmission function and the mechanical
susceptibility. This generalized Voigt profile and the
dynamical current fluctuations analyzed here provide
a reliable mathematical description of the thermal

contributions to the dispersion of conductivity mea-
surements in electromechanical sensors and molecular
junctions, whenever the mechanical deviations are small.
Importantly, the generalized Voigt profile is the molec-
ular electronics analog of the gas-phase spectroscopic
lineshape. It thus allows one to understand measured
currents and formulate protocols for electromechanical
sensing at room temperature.

SUPPLEMENTARY MATERIAL

See supplemental information for an extended analysis
of our approximations to the current, fluctuations, and
SNR, as well as a detailed study of the Voigt profile for
a single level coupled to a local vibration.
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Appendix A: Derivation of equations Eq. (6) and Eq. (15)

We analytically integrate Eq. (5) by writing T as a par-
tial fraction decomposition T = (w/2)

�
E

�1 + E
⇤�1

�
,

with E = i("� "p) + w and utilizing the identity

1

E
=

Z 1

0
da e

�aE
, (A1)

which leads to the expression

hT i =
Z 1

0
da

Z
d"pg("p)

⇣
e
�aE + e

�aE⇤
⌘
. (A2)

The latter can be integrated, first with respect to
"p and then with respect to a to give the result in
Eq. (6). In the case of the two-level bridge, we
implement the same methodology with an additional
step. First notice that T can be approximated by
T ⇡

P
k2{�1,1} w

2(CE
�1
k + C

⇤
E

⇤�1
k ) when � > �,

such that

g(")

("� iw)± v12[x]
⇡ g(")

("� vo � iw)⌥ vo(x� x̄)/�
(A3)

holds. This assumption is valid for the system investi-
gated in Figs. 2 and 3.
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I. THE CURRENT I(x).

Here, we further investigate the approximate forms for
the current and fluctuations. We start by considering the
expression for the current I(x), as a Taylor expansion
near x = x̄, i.e., near the equilibrium value. Up to third
order

I(x) ⇡I(x̄) + �x @xI(x̄) +
�x

2

2
@
2
xI(x̄) +

�x
3

6
@
3
xI(x̄),

(S1)

where �x = x� x̄ is the displacement from x̄. Figure S1
shows the approximate and exact values of the current
versus �x. Within the parameter region of interest, we
notice that the first and second order approximations dif-
fer from the exact value for displacements that have a sig-
nificant probability density. In order to correctly account
for the contribution of these configurations at moderate
�x, we must consider the approximate expansion up to
third order.

Next, we examine the behavior of the average current
and the current fluctuations. From Eq. (S1) and con-
sidering Gaussian thermal fluctuations in x, such that
h�xi = h�x3i = 0, we find

Iapp = I(x̄) +
�
2

2
@
2
xI

����
x=x̄

(S2)

with �
2 = (�)�1. In Fig. S2, we observe that the di↵er-

ence between the exact thermally-averaged current hIiex
and the approximation in Eq. (S2) increases with tem-
perature up to a maximum value. This behavior is ex-
pected since higher temperatures increase the probability
of large fluctuations. The decrease in the di↵erence is ob-
served, as a result of a decrease in the absolute current
hIi. Figure S2 also shows the current variance for the
deflected and undeflected structure studied in Fig. 3c.
This result indicates that the definition in Eq. (16) of
the signal-to-noise ratio, in terms of the variance for the
undeflected structure, can also be given in terms of the
current variance of the deflected structure with only mi-
nor di↵erences. This holds only for systems undergoing
weak forces or small local deflections.

a)Electronic mail: mpz@nist.gov

We also find deviations of the approximate SNR ex-
pression from the exact values at high temperatures. In
Figs. S3a,b, we investigate this by considering the two-
level system at two temperatures: 200 K and 500 K.
These results suggest that the approximate form in
Eq. (22), is very accurate at low temperatures and close
to the main feature (the depression at the molecular en-
ergy level) in the SNR. At high temperatures, the SNR
is overestimated. Figure S3d shows that this is because
Eq. (20) underestimates the magnitude of the current
fluctuations in this regime. The local approximation to
the signal �I, in terms of the current derivative at x̄,
@xI, and the net displacement, �x, is also more accu-
rate at low temperatures (Figs. S3e,f). However, even
at moderate and low temperatures, we notice that this
approximation leads to small di↵erences far from the de-
pression at the molecular level energy. In Figure S4, we
show that this is due to the linear approximation of the
�I), by plotting the SNR at 300 K with �I calculated
from Eq. (S2) (i.e., hI(0)i � hI(F )i). Consequently, bet-
ter estimates of the SNR most account for higher order
terms in the Taylor expansion of susceptibility (Eq. (18)).

Last, in Fig. S5, we show that the SNR, calculated at
300 K for the two-level system from Eq. (22), is still in
good agreement with the exact results for more rigid, as
well as more flexible, systems.

a b c

FIG. S1. (Color online) Electronic current as function of the

displacement �x for the two-level system in Fig. 2. The nu-

merically exact (blue, dashed) and approximate (red, solid)

values for I(x) with three di↵erent approximations. In (a),

only the first order term in the expansion is considered, while,

in (b) and (c), the approximation includes terms up to sec-

ond and third order, respectively. The Gaussian probability

distribution g (black, dotted) shows the range of values acces-

sible to the system through interactions with the environment

at 300 K. The bias is symmetrically applied about the Fermi

level at µ = 0.1 eV. Other parameters for this system are as

in Figs. 2 and 3c.
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a b

FIG. S2. (Color online) Assessment of the approximate cur-

rent and fluctuations. (a) Relative error, (Iex � Iapp), versus
temperature for the approximation in Eq. S2. The bias is

applied symmetrically with Fermi level µ = 0.12 eV. (b) Cur-

rent standard deviation as a function of the Fermi level µ for

the two level system in Figs. 2 and 3, when undeflected (blue,

dashed) and deflected (red, solid) by a force of F = 100 pN.

Other parameters are as in Fig. 3.

a b

c d

fe

FIG. S3. (Color online) Signal-to-noise ratio (SNR), �I and

�I for the two-level system and at two di↵erent temperatures.

(a,b) SNR, (c,d) �I , and (e,f) �I. Figures in (a,c,e) corre-

spond to the system at 200 K, while in (b,d,f) it is 500 K. In

every case, numerically exact (dashed, blue) and approximate

calculations (red, solid) are shown. Other parameters are as

in Fig. 3c.

ba

FIG. S4. (Color online) SNR from two di↵erent approxima-

tions of the signal �I. In (a), we adopt �I = �x @xI(x̄) and,
in (b), �I = hI(F = 0)i�hI(F = 100 pN)i, with hIi given by

Eq. (S2). Parameters for this model are the same as in Fig.

3d.

a b

FIG. S5. (Color online) SNR for the two-level system inves-

tigated in Fig. 3d, with modified spring constant . Nu-

merically exact (blue, dashed) and approximate (red, solid)

are shown. In (a)  = 5160 eV/nm
2
and in (b)  = 3440

eV/nm
2
. Other paremeters are as in Fig. 3d.

II. VIBRATIONAL COUPLING

In this section, we investigate the influence of vibra-
tions on the Voigt profile and sensing protocols. We con-
sider a junction consisting of a single level "p coupled to
a harmonic oscillator of frequency !o, and Hamiltonian

H(t) =!oâ
†
â+ "pĉ

†
ĉ+M(â† + â)ĉ†ĉ, (S3)

where â
† (â) is the vibrational creation (annhilation)

operator, and M is the coupling parameter. Utilizing
the equation of motion (EOM), we find the EOM in
the Keldysh contour for the electronic Green function
G(⌧1, ⌧2) = �ihĉ(⌧1)ĉ†(⌧2)i in terms of the higher order
correlation �ih(â+ â

†)(⌧1)ĉ(⌧1)ĉ†(⌧2)i.
In order to compute the higher order correlation func-

tion, we adopt a semiclassical approximation in two steps.
First, the retarded projection of this correlation function,
in real time, is factorized in terms of lower order correla-
tions functions as

�ih(â+ â
†)(t1)ĉ(t1)ĉ

†(t2)i

⇡
Z

dth(â+ â
†)(t1 � t)iGr(t, t2). (S4)

This retains a memory of a vibrational interaction with a
transporting electron. Next, the expectation h(â+ â

†)(t)i
is calculated starting from the Langevin equation for a
dissipative harmonic oscillator, such that

h(â† + â)(t)i ⇡
r

2m!o

~ x(t), (S5)

together with

d
2

dt2
(x(t)� x̄) =!

2
o(x(t)� x̄)� ⌘

d

dt
x(t) +

F (t)

m
. (S6)

In Eqs. (S5) and (S6), m is the mass of the oscillator, ⌘
is the friction coe�cient originating on several relaxations
mechanisms, and R(t) is a random force due to environ-
mental fluctuations. The Fourier transform of x(t)� x̄ is
therefore

X (") =
F("/~)/m

!2
o � ("/~)2 � i⌘"/~ , (S7)
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FIG. S6. (Color online) Transmission function for a single

level coupled to a harmonic oscillator with (blue, solid) and

without energy-level fluctuations (red, solid). We also show

the T (") for the uncoupled energy level (black, dashed) at

"̄p. The vibration gives an additional peak in the transmis-

sion function close to the harmonic oscillator’s characteristic

frequency. We asume a white noise, with R(!) = 1 eV/m .

Parameters for this model are "̄p = 80 meV, !o = 15 meV,

m = 12 amu, M = 0.015 meV, ~⌘ = 4 meV, � = 42 meV.

The frequency !o in this model is larger than the relevant

vibrational modes for graphene deflectometry.

leading to the retarded electronic Green Function G
r(")

that e↵ectively accounts for the vibrational coupling,

G
r(") =

1

"� ("p +M 0ReX (")) + i(w �M 0ImX ("))
,

(S8)

with M
0 = M

p
2m!o/~. Consequently,

T (", "p) =
w

2

("� "p �M 0ReX )2 + (w �M 0ImX )2
. (S9)

Notice that in the abscence of coupling (M = 0), the
electronic transmission function in Eq. (S9) coincides
with the form derived in Eq. (2). In the weak electron-
phonon coupling regime (M ⌧ w), and when environ-
mental fluctuations induce broadening to the energy level
"p, in the form described in Eqs. (3)-(5), the thermally
broadened electronic transmission function assumes the
same functional form than Eq. (6) with E replaced by
E

0 = i("�M
0ReX� "̄p)+w�M

0ImX . We notice that by
writing the transmission function in Eq. (S9) as a trun-
cated Taylor expansion to first order, we can decompose

the current in the form I ⇡ Io + Ivib, with

Ivib ⇠ M
0
Z

d"

2⇡
T (")2ImX . (S10)

Figure S7 shows the Voigt profile for the electronic trans-
mission function of a single level weakly coupled to the
local vibration. While an additional channel to transport
is imprinted in the Voigt profile, at room temperature,
the net contribution of these currents may not notably
a↵ect the general profile of the current under bias (see
Fig. S7). Also, as described in Ref. 37, the linewidth
of the spectral peak in inelastic spectra carry intrinsic
smearing with a width at half maximum proportional to
1/�, limiting its detectability at room temperature. A
similiar limiting factor will occur here.

a b

dc

FIG. S7. (Color online) Current (a,b) and associated inelas-

tic spectrum (c,d) for a noninteracting single level (red, solid)

and coupled to a local vibration (blue, dashed) with coupling

strength M = 0.015 meV. Bias µL is applied to the left con-

tact with µR = 0. The results in (a,c) where obtained at

10 K and assuming no fluctuations in the level energy "p,
while (b,d) are calculated at 300 K with an energy variance

� = 42 meV. Other parameters for this system the same as

in Fig. S7. This result illustrates that vibrationally-assisted

currents are most significant at lower temperatures. See also

Ref. 37.


