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Abstract 
Can small-displacement-based solution algorithms be used to predict large displacement 
responses, such as at collapse or near-collapse? Framed structures often experience large 
displacement with significant nonlinear response prior to collapse. To capture the nonlinearity in 
structural response, both geometric and material nonlinearities must be considered in the 
analysis. The implementation of geometric and material nonlinearities in solution algorithms 
among various software packages is not treated consistently, where different assumptions are 
made in the formulations without the users’ knowledge. For example, large-displacement-based 
solution algorithms use finite element formulations that update geometry at every time step, 
which is significantly different from other structural analysis solution algorithms that use small 
displacement theory with constant geometric stiffness matrix. These different assumptions 
introduce levels of uncertainty in the structural response prediction, especially when one solution 
algorithm predicts structural collapse while another solution algorithm predicts that the structure 
remains standing. To quantify these uncertainties associated with different small-displacement-
based solution algorithms, this research investigates the dynamic instability of framed structures 
by quantitatively comparing the responses predicted among the associated software packages 
with a large-displacement-based software package that is more capable of predicting large 
displacement responses. The focus is placed on how each software package implements 
geometric nonlinearity for analyzing steel framed structures. Comparing the simulated response 
history results shows that the mean percentage differences between small-displacement-based 
and large-displacement-based solution algorithms range from 10 % to 30 % at near-collapse 
based on the use of seven earthquake ground motions. The outcome of this research provides 
insights to questions that have often been raised in terms of the precision of small-displacement-
based solution algorithms in predicting large displacement response and structural collapse. 
 
 
1. Introduction 
Performance-based seismic engineering is a useful tool for designing new structures and 
improving the seismic performance of existing structures. Modeling of these structures and 
simulation of responses for determining the seismic demands up to collapse is an essential part of 
the engineering process. While the seismic demands are compared with the corresponding 
seismic capacity in design, the analysis behind the process for determining the seismic demands 
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may be sensitive to the software package and the associated solution algorithm used to conduct 
the analysis. Many of the seismic analysis solution algorithms used today employ small-
displacement theory to solve a wide-variety of nonlinear structural dynamic problems, up to and 
including structural collapse. Examples of using small-displacement-based software packages to 
solve collapse problems in recent years can be found for steel structures (Guo et al. 2015, Tirca 
et al. 2015, Fathieh and Mercan 2016, Wang et al. 2017), concrete structures (Arabzadeh and 
Galal 2017, Mulas and Martinelli 2017), and wood structures (Pang and Shirazi 2013).  
 
Being able to capture structural collapse or near collapse requires software packages to handle 
significant coupling between geometric and material nonlinearities. Since steel structures are 
more susceptible to the adverse effects from geometric nonlinearity due to the use of slender 
members, most research has been focused on understanding the collapse behavior of these 
structures, especially for moment-resisting frames (Lignos et al. 2011, Grigorian and Grigorian 
2012, Eads et al. 2013, Domizio et al. 2015); these studies are all based on results obtained using 
small-displacement-based solution algorithms. These software packages, either commercially 
available or research-oriented, have typically been developed to give reasonable results when 
analyzing models with material nonlinearities and separately when analyzing models with 
geometric nonlinearities. However, the complexity of nonlinear analysis can lead to inconsistent 
results when the analysis requires significant coupling between geometric and material 
nonlinearities. This coupling between yielding components for material nonlinearity and member 
stability for geometric nonlinearity makes the problem difficult to solve, and therefore 
addressing this nonlinear coupling in solution algorithms remains a challenge.   
 
This paper presents recent research concerning the evaluation of several small-displacement-
based software packages based on various geometric nonlinearity and material nonlinearity 
formulations to understand how each solution algorithm handles the coupling to capture large-
displacement structural dynamic responses up to collapse. Numerical simulations are performed 
to simulate the nonlinear structural dynamic responses of an eight-story steel moment-resisting 
frame based on four different geometric nonlinearity formulations of small-displacement-based 
solution algorithms. The simulated responses are compared with those obtained using a large-
displacement-based finite element analysis software package. Through this study, the 
applicability and limitations of using small-displacement-based software packages in simulating 
large displacement responses and structural collapse are examined with uncertainties quantified. 
 
2. Small-Displacement-Based Stiffness Matrix for Geometric and Material Nonlinearities 
The original theory of incorporating geometric nonlinearity based on small displacement was 
first developed for elastic columns in the 1960’s (Timoshenko and Gere 1961, Bazant and 
Cedolin 2003) without any consideration of yielding and formation of plastic hinge. But it found 
limited application because of its complexity in the closed-form solution as compared to those 
methods of using either the P- stiffness approach (Powell 2010) or the geometric stiffness 
approach (Wilson 2010). However, when large lateral deflections in framed structures are 
expected, excessive geometric nonlinearity is coupled with excessive material nonlinearity, and 
the first-order or second-order approximation of the geometric nonlinearity may not be able to 
capture the nonlinear behavior accurately. Therefore, the original theory that included geometric 
nonlinearity is rederived here with the incorporation of material nonlinearity. This is done by 
using a column member with plastic hinges at both ends and subjected to a compressive force.  
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Here, four degrees of freedom (DOFs) and two plastic hinge locations (PHLs) are used to 
describe the movements at the two ends of a column member in a moment-resisting frame. These 
movements at the two ends include lateral displacement ( (0)v  and ( )v L ), rotation ( (0)v  and 

( )v L ), and plastic rotations at the two plastic hinges ( a  and b ). To compute the member 
stiffness matrix ik , each of these 4 DOFs and 2 PHLs is displaced independently by one unit as 
shown in Fig. 1 while subjected to an axial compressive load P. Here, 1sV , 1sM , 2sV , and 2sM  
represent the required shear forces and moments at the two ends of the member to cause the 
prescribed pattern, where 1, ,6s    represents the six cases of unit displacement patterns of the 
member’s movements, and asM  and bsM  represent the moment at plastic hinges ‘a’ and ‘b’, 
respectively, due to the prescribed pattern. Note that subscript ‘1’ denotes the near end and 
subscript ‘2’ denotes the far end for the calculated shears and moments. Therefore, the ‘1’ end 
coincides with plastic hinge ‘a’ and the ‘2’ end coincides with plastic hinge ‘b’. 
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Figure 1: Six cases of unit displacement patterns and the corresponding fixed-end forces and hinge moments 
 

 
Using the classical Bernoulli-Euler beam theory with homogeneous and isotropic material 
properties, where the moment is proportional to the curvature and plane sections are assumed to 
remain plane based on small displacements, the governing equilibrium equation describing the 
deflected shape of the member can be written as 
 
 ( ) 0EIv Pv     (1) 
 
where E is the elastic modulus, I is the moment of inertia, v is the lateral deflection, P is the axial 
compressive force on the member, and each prime represents taking derivatives of the 
corresponding variable with respect to the x-direction of the member. By assuming EI is constant 
along the member, the solution to the fourth-order ordinary differential equation given in Eq. 1 
becomes: 
 
 sin cosv A kx B kx Cx D     (2) 
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where 2k P EI  and A, B, C, and D are constants to be determined by imposing different 
boundary conditions. Let kL   to simplify the derivations, where L is the length of the 
member. The following cases of boundary conditions are now considered. Note that Cases 3 and 
4 are first derived because of their simplicity in the solutions to the differential equation. 
 
2.1 Case 4 
For Case 4 as shown in Fig. 1, imposing the boundary conditions (0) 0v  , (0) 0v  , ( ) 0v L  , 

( ) 1v L  , and 0a b      on Eq. 2 gives 
 
 (0) 0v  : 0B D   (3a) 
 (0) 0v  : 0kA C   (3b) 
 ( ) 0v L  : sin cos 0A B CL D       (3c) 
 ( ) 1v L  : cos sin 1kA kB C      (3d) 
 
Solving simultaneously for the constants in Eq. 3 gives 
 

 
 

 
 

 
1 cos sin

, , ,
sin 2cos 2 sin 2cos 2

L L
A B C kA D B

   
     
           

 (4) 

 
Therefore, Eq. 2 along with the constants in Eq. 4 gives the deflected shape for Case 4. The 
shears (i.e., 14V  and 24V ) and moments (i.e., 14M  and 24M ) at the two ends of the member (see 
Fig. 1) are then evaluated using the classical Bernoulli-Euler beam theory formula: 
 
 ( )M x EIv     ,      ( )V x EIv Pv    (5) 
 
Now taking derivatives of Eq. 2 and substituting the results into Eq. 5 while using the constants 
calculated in Eq. 4, the shears and moments at the two ends of the member (i.e., the four DOFs) 
for Case 4 in Fig. 1 are calculated as: 
 
 2

14 ˆˆ(0)M EIv EIk B scEI L     (6a) 

 3 2
14 (0) (0) 0V EIv Pv EIk A P sEI L         (6b) 

  2
24 ˆ( ) sin cosM EIv L EIk A B sEI L        (6c) 

  3 2
24 ( ) ( ) cos sin 1V EIv L Pv L EIk A B P sEI L             (6d) 

 
where ŝ , ĉ , and s  are the stability coefficients computed by the formula 
 

 
 sin cos

ˆ
2 2cos sin

s
   


   

   ,     
sin

ˆ
sin cos

c
  


  

   ,     
 2 1 cos

ˆ ˆˆ
2 2cos sin

s s sc
  

  
   

 (7) 

 
The minus signs appear in front of the equations for 14M  in Eq. 6a and 24V  in Eq. 6d because 
there is a difference in sign convention between the classical Bernoulli-Euler beam theory and 
the theory for the stiffness method of structural analysis. 
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Finally, the moments at the two PHLs can be evaluated by recognizing that these moments must 
equal to the end moments by equilibrium, i.e., 4 14aM M  and 4 24bM M . Therefore, 
 
 4 14 ˆ ˆaM M scEI L      ,      4 24 ˆbM M sEI L   (8) 

 
2.2 Case 3 
For Case 3 as shown in Fig. 1, imposing the boundary conditions (0) 0v  , (0) 0v  , ( ) 1v L  , 

( ) 0v L  , and 0a b      on Eq. 2 gives 
 
 (0) 0v  : 0B D   (9a) 
 (0) 0v  : 0kA C   (9b) 
 ( ) 1v L  : sin cos 1A B CL D       (9c) 
 ( ) 0v L  : cos sin 0kA kB C      (9d) 
 
Solving simultaneously for the constants in Eq. 9 gives 
 

 BDkACBA 








 ,,
2cos2sin

cos1
,

2cos2sin

sin
 (10) 

 
These constants in Eq. 10 are used to give the deflected shape in Eq. 2 for Case 3. Now 
substituting Eq. 2 into Eq. 5 and using the constants calculated in Eq. 10, the shears and 
moments at the four DOFs for Case 3 in Fig. 1 are calculated as: 
 
 2 2

13 (0)M EIv EIk B sEI L      (11a) 

 3 3
13 (0) (0) 0V EIv Pv EIk A P s EI L           (11b) 

  2 2
23 ( ) sin cosM EIv L EIk A B sEI L         (11c) 

  3 3
23 ( ) ( ) cos sin 0V EIv L Pv L EIk A B P s EI L             (11d) 

 
where s  is the fourth and final stability coefficient given by the formula 
 

 
3

2 sin
2

2 2cos sin
s s

     
    

 (12) 

 
Finally, the moments at the two PHLs are evaluated by equilibrium as 
 
 2

3 13aM M sEI L       ,      2
3 23bM M sEI L    (13) 

 
2.3 Case 2 
For Case 2 as shown in Fig. 1, by imposing the boundary conditions (0) 0v  , (0) 1v  , 

( ) 0v L  , ( ) 0v L  , and 0a b      on Eq. 2, solution can be obtained via the same procedure 
presented above while solving for a different set of constants. On the other hand, a more direct 
solution can be obtained by recognizing that Case 2 is exactly the same as ‘rotating’ Case 4 by 
180. Doing so, the solution becomes 
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 2
12 24V V sEI L       ,      2

22 14V V sEI L     (14a) 

 12 24 ˆM M sEI L      ,      22 14 ˆ ˆM M scEI L   (14b) 

 2 4 ˆa bM M sEI L      ,      2 4 ˆ ˆb aM M scEI L   (14c) 
 

 
2.4 Case 1 
For Case 1 as shown in Fig. 1, by imposing the boundary conditions (0) 1v  , (0) 0v  , 

( ) 0v L  , ( ) 0v L  , and 0a b      on Eq. 2, solution can be obtained via the same procedure 
presented above while solving for a different set of constants. On the other hand, a more direct 
solution can be obtained by recognizing that Case 1 is exactly the same as ‘flipping’ Case 3 by 
180. Doing so, the solution becomes 
 
 3

11 33V V s EI L      ,      3
21 13V V s EI L    (15a) 

 2
11 23M M sEI L       ,      2

21 13M M sEI L    (15b) 

 2
1 3a bM M sEI L       ,      2

1 3b aM M sEI L    (15c) 
 

 
2.5 Case 5 
For Case 5 as shown in Fig. 1, by imposing the boundary conditions 1a  , 0b  , and 

(0) (0) ( ) ( ) 0v v v L v L      on Eq. 2, solution can be obtained via direct comparison of Case 2 
and Case 5, where a unit plastic rotation at hinge ‘a’ gives the same displacement pattern as a 
unit rotation at the ‘1’ end. It follows that the forces and moments at the four DOFs and two 
PHLs are the same for both cases, i.e., 
 
 2

1 12aV V sEI L      ,      2
2 22aV V sEI L    (16a) 

 1 12 ˆaM M sEI L      ,      2 22 ˆ ˆaM M scEI L   (16b) 

 2 ˆaa aM M sEI L      ,      2 ˆ ˆba bM M scEI L   (16c) 
 

 
2.6 Case 6 
Finally, for Case 6 as shown in Fig. 1, by imposing the boundary conditions 0a  , 1b  , and 

(0) (0) ( ) ( ) 0v v v L v L      on Eq. 2, solution can be obtained via direct comparison of Case 4 
and Case 6, where a unit plastic rotation at hinge ‘b’ gives the same displacement pattern as a 
unit rotation at the ‘2’ end. It follows that the forces and moments at the four DOFs and two 
PHLs are the same for both cases, i.e., 
 
 2

1 14bV V sEI L      ,      2
2 24bV V sEI L    (17a) 

 1 14 ˆ ˆbM M scEI L      ,      2 24 ˆbM M sEI L   (17b) 

 4 ˆ ˆab aM M scEI L      ,      4 ˆbb bM M sEI L   (17c) 
 

 
2.7 Stiffness Matrices 
In summary, based on Eqs. 6, 8, 11, and 11-17 for the above six cases, the small-displacement-
based member stiffness matrix of the ith member SF

ik  for bending becomes 
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2 2 2 2

2 2 2 23

2 2 2 2

2 2 2 2

(0)

ˆ ˆˆ ˆ ˆˆ (0)

( )

ˆˆ ˆ ˆˆ ˆ ( )

ˆ ˆˆ ˆ ˆˆ

ˆˆ ˆ ˆˆ ˆ

SF
i

a

b

vs sL s sL sL sL

vsL sL sL scL sL scL

v Ls sL s sL sL sLEI
v LsL scL sL sL scL sLL

sL sL sL scL sL scL

sL scL sL sL scL sL

   
   

       
    

   
 

  

k  (18) 

 
where the superscript ‘SF’ is used to denote that the member stiffness matrix ik  is obtained by 
using the stability functions method that is computed based on the stability coefficients ŝ , ĉ , 
and s  in Eq. 7 and s  in Eq. 12.  
 
Linearization of Eq. 18 can be performed by using Taylor series expansion on each term of the 
member stiffness matrix and truncating higher-order terms. Doing so gives 
 

 
2 2

3

2 2

12 6 12 6 6 5 10 6 5 10 (0)

6 4 6 2 10 2 15 10 30 (0)

12 6 12 6 6 5 10 6 5 10 ( )

6 2 6 4 10 30 10 2 15 ( )

GS
i

L L P L P P L P v

L L L L P PL P PL vEI

L L P L P P L P v LL

L L L L P PL P PL v L

     
           
         
          

k  (19) 

 
where the first matrix in Eq. 19 represents that classic stiffness matrix without considering any 
geometric nonlinearity, and the second matrix represents the geometric stiffness. The superscript 
‘GS’ is used to denote that the member stiffness matrix ik  is computed by using the geometric 
stiffness method. Note that the member stiffness matrices in Eq. 19 are 4×4 matrices, where the 
rows and columns associated with a  and b  are dropped. This is because solution algorithms 
among various software packages that incorporate geometric nonlinearity using the geometric 
stiffness method usually adopt a different and independent algorithm for material nonlinearity. 
 
Finally, the member stiffness matrix in Eq. 20 can be further simplified by retaining only the 
large P- effect while ignoring the small P- effect. This is done by removing all the geometric 
nonlinear terms associated with bending. Doing so gives 
 

 
2 2

3

2 2

12 6 12 6 0 0 (0)

6 4 6 2 0 0 0 0 (0)

12 6 12 6 0 0 ( )

6 2 6 4 0 0 0 0 ( )

PD
i

L L P L P L v

L L L L vEI

L L P L P L v LL

L L L L v L

     
         
       
        

k  (20) 

 
where the superscript ‘PD’ is used to denote that the member stiffness matrix ik  is computed by 
using the P- stiffness method.  
 
3. Structural Model 
To investigate the coupling effects of geometric nonlinearity and material nonlinearity on the 
structural dynamic responses among solution algorithms, consider an eight-story, three-bay steel 
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moment-resisting frame as shown in Fig. 2a. The structural model of this frame consists of 8 
lateral degrees of freedom (DOFs) and 112 plastic hinge locations (PHLs) as shown in the figure. 
Let the mass be 74 075 kg on each floor. No leaning column is used in the analytical model in 
order to accommodate some limitations in certain solution algorithms, and therefore gravity 
loads acting on the frame have been slightly magnified to reflect the additional gravity load that 
would have otherwise been acting on the leaning column. The magnified gravity load is shown in 
Fig. 2b, and geometric nonlinearity of the columns is considered due to this gravity load. The 
resulting initial periods (without consideration of geometric nonlinearity by setting 0P   in Eq. 
19 or 20) and elastic periods (with consideration of geometric nonlinearity due to gravity loads 
based on the member stiffness formulation in Eq. 18) for the eight modes of vibration, labeled as 
T1 to T8, are summarized in Table 1. Assume all 112 plastic hinges exhibit elastic-plastic 
behavior to eliminate the differences in simulated responses caused by different implementation 
of hardening and strength loss rules in the solution algorithms. All plastic hinges are assumed to 
have 152 mm offset from the center of the beam-column connection, and panel zones are not 
modeled to simplify the analysis. Let the elastic modulus be 200 GPa and yield stress of steel be 
345 MPa for all members. A detailed explanation of the structural model for the implementation 
of each solution algorithm is discussed in the following subsections. 
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Figure 2: Eight-story three-bay steel moment frame with gravity loads 
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Table 1: Periods of vibration using different stiffness representations of the eight-story frame 
Stiffness T1 T2 T3 T4 T5 T6 T7 T8 

Initial 1.70 s 0.62 s 0.34 s 0.22 s 0.16 s 0.12 s 0.10 s 0.08 s 
Elastic 1.81 s 0.65 s 0.36 s 0.23 s 0.16 s 0.12 s 0.10 s 0.08 s 

 
3.1 A Small-Displacement-Based Algorithm Using P-Delta Stiffness Formulation (PD) 
The investigated PD solution algorithm is embedded in a commercial nonlinear structural 
analysis software package that is commonly used in professional practice to perform nonlinear 
static and dynamic analyses. For this reason, various features have been automatically included 
in the model development to simplify the input process, such as elastic shear deformation and 
yielding of column plastic hinges due to axial force and moment interactions. Including shear 
deformations in the structural model reduces the initial stiffness that is based on flexure only, and 
therefore the mass on each floor of the frame is reduced to 69 487 kg (a 6.2 % reduction) to give 
consistent periods of vibration of the frame as summarized in Table 1. In addition, this PD 
solution algorithm uses the P-Delta stiffness formulation presented in Eq. 20 that considers only 
large P- effects while ignoring small P- effects. The target for damping is to achieve a 
Rayleigh damping having a mass proportional constant of 0.25 and a stiffness proportional 
constant of 0.0. However, because the PD solution algorithm automatically adds numerical 
damping to the analysis when geometric nonlinearity is considered, the damping constants are 
calibrated and scaled down in this case such that Rayleigh damping with mass proportional 
constant of 0.2132 and a stiffness proportional constant of 0.0 is used in the model.  
 
3.2 A Small-Displacement-Based Algorithm Using Geometric Stiffness Formulation (GS) 
The investigated GS solution algorithm is embedded in a commercial nonlinear structural 
analysis software package that is commonly used in professional practice to perform structural 
design. For this reason, various features have also been automatically included in the model 
development to simplify the input process, such as elastic shear deformation. However, including 
shear deformations in the structural model reduces the initial stiffness that is based on flexure 
only, and therefore the shear area of the model is intentionally set to zero in order to give 
consistent periods of vibration of the frame as summarized in Table 1. In addition, this GS 
solution algorithm uses geometric stiffness formulation presented in Eq. 19 that considers both 
large P- and small P- effects. Rayleigh damping having a mass proportional constant of 0.25 
and a stiffness proportional constant of 0.0 is used. Lumped plasticity is selected to model the 
yielding of plastic hinges, but the GS solution algorithm allows only the yield moment as input 
without consideration of axial force and moment interaction. In order to match the yielding 
characteristics of GS with those defined in PD, the yield moments of the plastic hinges are 
therefore adjusted accordingly based on the column axial forces from gravity loads. 
 
3.3 A Small-Displacement-Based Algorithm Based on Stability Functions Formulation (SF) 
The investigated SF solution algorithm is based on the nonlinear structural dynamic analysis 
theory to address material nonlinearity in a dynamic context (Li and Wong 2014) and uses the 
stability functions formulation presented in Eq. 18 with both large P- and small P- effects 
included for the geometric nonlinearity formulation. This algorithm requires damping inputs be 
in the form of modal damping, where the periods of vibration are based on the elastic stiffness of 
the frame as shown in Table 1. To achieve the target of Rayleigh damping having a mass 
proportional constant of 0.25 and a stiffness proportional constant of 0.0, the damping ratios are 
calculated by performing eigenvalue and eigenvector analyses and found to be 3.41 %, 1.22 %, 
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0.67 %, 0.43 %, 0.31 %, 0.23 %, 0.18 %, and 0.15 % among the eight modes of vibration. The 
material nonlinearity options of the SF solution algorithm are the least sophisticated among all 
the algorithms used in this study. Only a bilinear backbone curve with kinematic hardening is 
available for the model with a pre-defined yield moment. Therefore, in order for the yielding 
characteristics of the model to be compatible with those defined in PD, the yield moments of the 
plastic hinges are computed based on the column axial forces due to the gravity loads, which is 
similar to the computation performed for the GS solution algorithm. 
 
3.4 A Small-Displacement-Based Algorithm Based on Corotation Formulation (CR) 
The investigated CR solution algorithm is embedded in a research-oriented nonlinear structural 
analysis software package. This algorithm provides the option to choose between the P-Delta 
stiffness formulation or the corotation formulation (Belytschko and Hsieh 1973, Sivaselvan and 
Reinhorn 2002) that considers large rigid-body displacement with small strains, both of which 
considers only large P- effects while ignoring small P- effects. The corotation formulation has 
been selected for this study to investigate whether large rigid body displacement is needed for 
the nonlinear analysis of structure that is fixed to the ground. This CR solution algorithm takes 
Rayleigh damping as inputs, and therefore Rayleigh damping having a mass proportional 
constant of 0.25 and a stiffness proportional constant of 0.0 is used. Lumped plasticity is selected 
to model the yielding of plastic hinges, but similar to the GS and SF solution algorithms it allows 
only the yield moment as input without consideration of axial force and moment interaction. In 
order to match the yielding characteristics of CR with those defined of PD, the yield moments of 
the plastic hinges are therefore computed based on the column axial forces from gravity loads. 
 
3.5 A Large-Displacement-Based Algorithm Using Large Displacement Formulation (LD) 
The investigated LD solution algorithm is embedded in a commercial finite element analysis 
software package that is based on a large displacement formulation (Belytschko and Liu 2014, 
Reddy 2015). This formulation expresses equilibrium in its deformed state that can couple with 
significant inelastic deformation, thereby capturing both geometric nonlinearity and material 
nonlinearity in every element. The drawback is that each member must be subdivided into many 
finite elements to capture the displacement profile. In the structural model, 10 elements are used 
to model each column member and 18 elements used to model each beam member, resulting in a 
significant increase in computational efforts. This LD solution algorithm takes Rayleigh damping 
as inputs, and therefore Rayleigh damping having a mass proportional constant of 0.25 and a 
stiffness proportional constant of 0.0 is used. For the yielding of plastic hinges, the interaction 
between the axial force and moments is considered at the integration points of the cross-section 
of each element, and therefore the yield stress for the members must be calibrated to match the 
yielding characteristics used in PD, GS, SF, and CR. The yield stress for beams are calibrated to 
354 MPa for having no interaction with the axial force P, while the yield stresses for columns are 
calibrated at every two floors. These calibrated yield stresses are 365 MPa, 379 MPa, 386 MPa, 
and 400 MPa, respectively, from the columns at the bottom two floors up to the columns at the 
top two floors. 
 
3.6 Summary 
Table 2 summarizes the different modeling techniques used among the five solution algorithms 
(PD, GS, SF, CR, and LD) for developing consistent models of the eight-story frame shown in 
Fig. 2.  
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Table 2: Modeling techniques among each solution algorithms 
 PD GS SF CR LD 

Geometric 
Nonlinearity 

P-Delta 
Stiffness 

Geometric 
Stiffness 

Stability 
Functions 

Corotation Finite Element 

Damping Rayleigh Rayleigh Modal Rayleigh Rayleigh 

Shear 
Deformation 

Yes No No No Yes 

Material 
Nonlinearity 

P-M 
interaction 

Moment at P 
due to Gravity 

Moment at P 
due to Gravity 

Moment at P 
due to Gravity 

Yield Stress at 
Integration Points 

 
4. Nonlinear Response History Analyses 
A total of 7 earthquake ground motions is used to excite the eight-story frame in Fig. 2, and these 
ground motion time histories are presented in Fig. 3. Various scaling factors are used to intensify 
each earthquake ground motion to cause collapses among the five solution algorithms. 
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Figure 3: Investigated earthquake ground motions 

 
First consider the Kobe earthquake with a scaling factor of 0.6, Fig. 4a shows the second floor 
displacement responses of the frame considering only geometric nonlinearity, and Fig. 4b shows 
the same responses considering both geometric and material nonlinearities. As shown in Fig. 4a 
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where only geometric nonlinearity is considered, all solution algorithms give similar responses, 
indicating that modeling parameters used in Table 2 for the PD, GS, SF, CR, and LD solution 
algorithms produce consistent results. However, as shown in Fig. 4b where both geometric and 
material nonlinearities are considered, the GS solution algorithm indicates collapse when all the 
other solution algorithms show minimum yielding with small amount of residual drifts. This 
suggests that there is a fundamental issue with the GS solution algorithm related to the coupling 
between geometric nonlinearity and material nonlinearity that causes numerical instability in the 
solution algorithm. Therefore, the GS solution algorithm is dropped from the subsequent study.  
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Figure 4: Displacement responses due to 0.6 × Kobe using different solution algorithms 

 
The scaling factor continues to increase until collapse of the frame is observed, and Fig. 5 shows 
the roof displacement responses due to two different scaling factors of the Kobe earthquake. The 
left chart of Fig. 5 shows at least one solution algorithm indicates that the frame collapses at a 
scaling factor of 2.2. Using this scaling factor to indicate collapse, a slightly reduced scaling 
factor of 2.0 is used to cause the frame to reach the point of having large displacement but 
remains standing and stable, and the roof displacement responses due to this scaling factor is 
shown in the right chart of Fig. 5. The procedure is used here to define the scaling factor that 
causes near collapse. Corresponding to this level of displacements at near collapse (i.e., due to 
2.0 × Kobe), the inter-story drifts of each floor is shown in Fig. 6. Table 3 summarizes the 
maximum inter-story drift of each floor for PD, CR, and SF and the corresponding percentage 
difference from the LD solution algorithm. In addition, the smallest percentage difference among 
each inter-story drift is highlighted in yellow for each row. Finally, the maximum inter-story drift 
among all eight floors using the LD solution algorithm is highlighted in orange. 
 

-0.5

0

0.5

1

1.5

2

0 5 10 15 20

R
oo

f D
is

pl
ac

em
en

t 
(m

)

Time (s)

PD
SF
CR
LD

2.2 × Kobe

-0.5

0

0.5

1

1.5

2

0 5 10 15 20

R
oo

f D
is

pl
ac

em
en

t 
(m

)

Time (s)

PD
SF
CR
LD

2.0 × Kobe

 
Figure 5: Roof responses of the eight-story frame at and near-collapse due to Kobe 



 13

-0.2

-0.1

0

0.1

0.2

0 5 10 15 20

D
rif

t 
-

G
ro

un
d 

to
 2

nd
 (m

)

Time (s)

PD
SF
CR
LD

2.0 × Kobe

-0.2

0

0.2

0.4

0.6

0.8

0 5 10 15 20

D
rif

t 
-

5t
h 

to
 6

th
 (

m
)

Time (s)

PD
SF
CR
LD

2.0 × Kobe

 

-0.2

-0.1

0

0.1

0 5 10 15 20

D
rif

t 
-

2n
d 

to
 3

rd
 (m

)

Time (s)

PD SF
CR LD

2.0 × Kobe

-0.2

0

0.2

0.4

0.6

0.8

0 5 10 15 20

D
rif

t 
-

6t
h 

to
 7

th
 (

m
)

Time (s)

PD
SF
CR
LD

2.0 × Kobe

 

-0.1

0

0.1

0 5 10 15 20

D
rif

t 
-

3r
d 

to
 4

th
 (

m
)

Time (s)

PD SF

CR LD

2.0 × Kobe

-0.2

0

0.2

0.4

0 5 10 15 20

D
rif

t 
-

7t
h 

to
 8

th
 (

m
)

Time (s)

PD
SF
CR
LD

2.0 × Kobe

 

-0.1

0

0.1

0.2

0 5 10 15 20

D
rif

t 
-

4t
h 

to
 5

th
 (

m
)

Time (s)

PD
SF
CR
LD

2.0 × Kobe

-0.1

0

0.1

0.2

0 5 10 15 20

D
rif

t 
-

8t
h 

to
 R

oo
f (

m
)

Time (s)

PD
SF
CR
LD2.0 × Kobe

 
Figure 6: Inter-story drifts of the eight-story frame at near-collapse due to 2.0 × Kobe earthquake 
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Table 3: Maximum inter-story drift of 8-story frame due to 2.0 × Kobe earthquake at near-collapse 
Location LD PD CR SF 

Drift (m) Drift (m) % Diff Drift (m) % Diff Drift (m) % Diff 

Ground – 2nd 0.149 0.167 12.2 % 0.164 9.8 % 0.155 3.7 % 
2nd – 3rd 0.092 0.102 10.0 % 0.102 10.0 % 0.101 9.9 % 
3rd – 4th 0.078 0.084 7.5 % 0.084 8.1 % 0.084 8.1 % 
4th – 5th 0.092 0.086 6.7 % 0.080 12.7 % 0.081 11.8 % 
5th – 6th 0.441 0.493 11.9 % 0.603 36.9 % 0.487 10.6 % 
6th – 7th 0.455 0.506 11.3 % 0.604 32.7 % 0.496 9.1 % 
7th – 8th 0.279 0.293 5.1 % 0.239 14.1 % 0.289 3.8 % 

8th – Roof 0.167 0.166 0.4 % 0.149 10.5 % 0.171 2.5 % 

 
Similar analyses are performed for the remaining six earthquake ground motions to identify the 
scaling factors that cause near collapse, and the results are shown in Figs. 7 to 12 with the 
maximum inter-story drifts at near collapse shown in Tables 4 to 9. It can be seen from the 
response history figures that the responses during the first few seconds among the four solution 
algorithms are nearly identical, indicating that the structural models are consistent. 
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Figure 7: Roof responses of the eight-story frame at and near-collapse due to Sylm earthquake 
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Figure 8: Roof responses of the eight-story frame at and near-collapse due to Mulh earthquake 
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Figure 9: Roof responses of the eight-story frame at and near-collapse due to Imp1 earthquake 
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Figure 10: Roof responses of the eight-story frame at and near-collapse due to Nis2 earthquake 
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Figure 11: Roof responses of the eight-story frame at and near-collapse due to Koca earthquake 
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Figure 12: Roof responses of the eight-story frame at and near-collapse due to Loma earthquake 
 
 

Table 4: Maximum inter-story drift of 8-story frame due to 1.8 × Sylm earthquake at near-collapse 
Location LD PD CR SF 

Drift (m) Drift (m) % Diff Drift (m) % Diff Drift (m) % Diff 

Ground – 2nd 0.329 0.188 42.8 % 0.296 10.1 % 0.189 42.6 % 
2nd – 3rd 0.142 0.134 5.4 % 0.142 0.2 % 0.138 2.6 % 
3rd – 4th 0.104 0.108 3.8 % 0.105 1.3 % 0.111 6.8 % 
4th – 5th 0.123 0.114 6.8 % 0.104 15.2 % 0.104 15.5 % 
5th – 6th 0.159 0.129 18.9 % 0.139 12.4 % 0.127 19.7 % 
6th – 7th 0.135 0.130 3.1 % 0.128 5.3 % 0.124 7.6 % 
7th – 8th 0.104 0.106 2.0 % 0.102 2.0 % 0.104 0.2 % 

8th – Roof 0.070 0.075 7.7 % 0.074 5.6 % 0.073 4.7 % 

 
 

Table 5: Maximum inter-story drift of 8-story frame due to 3.5 × Mulh earthquake at near-collapse 
Location LD PD CR SF 

Drift (m) Drift (m) % Diff Drift (m) % Diff Drift (m) % Diff 

Ground – 2nd 0.144 0.136 5.3 % 0.160 11.1 % 0.140 2.9 % 
2nd – 3rd 0.099 0.105 6.6 % 0.103 4.6 % 0.101 1.9 % 
3rd – 4th 0.101 0.101 0.2 % 0.093 8.0 % 0.093 7.5 % 
4th – 5th 0.135 0.119 12.0 % 0.123 9.2 % 0.128 5.4 % 
5th – 6th 0.253 0.261 3.1 % 0.240 4.9 % 0.229 9.4 % 
6th – 7th 0.234 0.242 3.2 % 0.220 6.3 % 0.212 9.6 % 
7th – 8th 0.173 0.190 9.6 % 0.154 11.2 % 0.151 12.9 % 

8th – Roof 0.122 0.137 11.9 % 0.120 2.2 % 0.113 7.4 % 

 
As shown in Figs. 5 and 7 to 12 for the responses at both collapse and near collapse, the 
amplitudes and frequencies of oscillations for post-yield responses among the four solution 
algorithms are about the same, but that the centers of oscillation (i.e., residual drifts) have been 
shifted due to yielding. This is particularly evident in Fig. 10 where significant differences for 
the center-of-oscillation on the right chart is observed among the solution algorithms toward the 
end of the 30-second analysis. This suggests that the amplitudes and frequencies of oscillations 
have been captured consistently by the “dynamic” solvers among the four solution algorithms, 
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but the “nonlinear” solvers among each algorithm are unable to capture consistent residual drifts 
that result in different offsets for the center-of-oscillation. This observation highlights the 
differences in how the coupling between geometric nonlinearity and material nonlinearity in the 
nonlinear solver among each algorithm affects the simulated responses. Based on the 
observations of residual drifts in the figures and using LD results as the comparison standard, SF 
matches LD very well for Kobe (Fig. 5), Imp1 (Fig. 9), and Nis2 (Fig. 10), while CR matches LD 
very well for Sylm (Fig. 7). PD consistently produces different residual drifts from LD, but it 
matches LD the best for Mulh (Fig. 8) and Loma (Fig. 12). Finally, none of the three algorithms 
matches LD for Koca (Fig. 11). This suggests that SF is more suitable for capturing large 
displacement responses among the solution algorithms in terms of residual drifts. 
 
 

Table 6: Maximum inter-story drift of 8-story frame due to 2.8 × Imp1 earthquake at near-collapse 
Location LD PD CR SF 

Drift (m) Drift (m) % Diff Drift (m) % Diff Drift (m) % Diff 

Ground – 2nd 0.207 0.297 43.7 % 0.279 35.0 % 0.235 13.7 % 
2nd – 3rd 0.123 0.152 23.6 % 0.138 11.9 % 0.131 6.8 % 
3rd – 4th 0.099 0.113 13.8 % 0.103 4.1 % 0.103 3.7 % 
4th – 5th 0.078 0.078 0.9 % 0.070 10.5 % 0.071 9.1 % 
5th – 6th 0.099 0.095 3.6 % 0.104 5.4 % 0.102 3.5 % 
6th – 7th 0.120 0.122 2.0 % 0.124 3.4 % 0.123 3.0 % 
7th – 8th 0.097 0.108 10.7 % 0.106 8.8 % 0.106 9.0 % 

8th – Roof 0.077 0.085 10.8 % 0.081 4.6 % 0.080 4.0 % 

 
 

Table 7: Maximum inter-story drift of 8-story frame due to 2.8 × Nis2 earthquake at near-collapse 
Location LD PD CR SF 

Drift (m) Drift (m) % Diff Drift (m) % Diff Drift (m) % Diff 

Ground – 2nd 0.180 0.138 23.6 % 0.311 72.8 % 0.214 18.8 % 
2nd – 3rd 0.097 0.078 19.6 % 0.127 31.2 % 0.125 29.6 % 
3rd – 4th 0.069 0.067 3.1 % 0.074 6.3 % 0.076 9.2 % 
4th – 5th 0.057 0.059 4.7 % 0.056 1.4 % 0.057 0.5 % 
5th – 6th 0.073 0.076 4.1 % 0.074 2.0 % 0.073 0.6 % 
6th – 7th 0.098 0.102 3.7 % 0.097 1.0 % 0.097 1.0 % 
7th – 8th 0.117 0.122 4.4 % 0.114 2.0 % 0.113 2.8 % 

8th – Roof 0.093 0.096 3.0 % 0.094 0.3 % 0.094 1.1 % 

 
 

Table 8: Maximum inter-story drift of 8-story frame due to 1.7 × Koca earthquake at near-collapse 
Location LD PD CR SF 

Drift (m) Drift (m) % Diff Drift (m) % Diff Drift (m) % Diff 

Ground – 2nd 0.256 0.327 27.8 % 0.334 30.8 % 0.334 30.6 % 
2nd – 3rd 0.159 0.192 20.4 % 0.191 19.6 % 0.197 23.4 % 
3rd – 4th 0.125 0.133 6.5 % 0.137 10.0 % 0.140 11.8 % 
4th – 5th 0.102 0.105 2.3 % 0.106 3.8 % 0.108 5.9 % 
5th – 6th 0.108 0.113 4.4 % 0.115 6.7 % 0.117 8.3 % 
6th – 7th 0.108 0.113 4.6 % 0.115 7.2 % 0.117 8.4 % 
7th – 8th 0.103 0.109 5.7 % 0.109 6.5 % 0.109 6.3 % 

8th – Roof 0.071 0.074 5.3 % 0.075 5.5 % 0.074 4.9 % 
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Table 9: Maximum inter-story drift of 8-story frame due to 3.0 × Loma earthquake at near-collapse 
Location LD PD CR SF 

Drift (m) Drift (m) % Diff Drift (m) % Diff Drift (m) % Diff 

Ground – 2nd 0.110 0.160 46.1 % 0.226 106.2 % 0.208 89.6 % 
2nd – 3rd 0.093 0.130 39.5 % 0.160 72.3 % 0.157 69.4 % 
3rd – 4th 0.110 0.127 15.1 % 0.139 25.9 % 0.142 28.3 % 
4th – 5th 0.118 0.140 18.6 % 0.137 15.9 % 0.142 20.3 % 
5th – 6th 0.252 0.241 4.4 % 0.241 4.1 % 0.249 1.2 % 
6th – 7th 0.263 0.251 4.6 % 0.247 6.0 % 0.259 1.5 % 
7th – 8th 0.219 0.220 0.7 % 0.198 9.4 % 0.211 3.4 % 

8th – Roof 0.142 0.151 6.0 % 0.124 12.6 % 0.135 4.7 % 

 
 

Besides residual drift, another method of comparing the solution algorithms is by looking at the 
maximum inter-story drifts. Tables 3 to 9 summarize the PD, CR, and SF maximum inter-story 
drifts of each floor at near-collapse of the 8-story frame and the percentage differences from 
those computed by the LD solution algorithm. Here, the LD results are again used as the 
comparison standard. It can be seen from these tables that both PD and SF record the smallest 
percentage difference (i.e., counting the number of highlighted yellow cells) 23 times, and CR 
records the smallest percentage difference 11 times. This suggests that both PD and SF are more 
suitable for capturing large displacement responses in terms of counting the number of 
percentage differences. A more objective way of comparing Tables 3 to 9 is via uncertainties as 
shown in Table 10, where the means and standard deviations of the percentage differences are 
evaluated at near-collapse of the frame. This table shows the PD solution algorithm simulates 
responses that have only 10.6 % differences from the LD responses with a standard deviation of 
11.0 %, This is followed by the SF solution algorithm with a mean of 11.6 % and finally by CR 
with a mean of 14.1 %. This suggests that the PD solution algorithm simulates the maximum 
inter-story drifts with the least uncertainty. 
 
 

Table 10: Uncertainties in percentage differences of maximum inter-story drifts 
 PD CR SF 

Mean 10.6 % 14.1 % 11.6 % 
Standard Deviation 11.0 % 19.1 % 15.7 % 

 
 

A careful consideration of the values in Tables 3 to 9 indicates that there can be biases toward 
maximum inter-story drifts that are not important. For example, as shown in Table 9 for the 
maximum inter-story drift between the ground and second floor, LD predicts only a drift of 
0.110 m, while the maximum inter-story drift occurs between the sixth and seventh floors at 
0.263 m. The CR result shows that predicting the maximum inter-story drift between the ground 
and second floor gives a percentage difference of over 100 %, while predicting the maximum 
inter-story drift between sixth and seventh floor gives a percentage difference of only 6.0 %. 
This means that computing the mean using data points with such a high percentage difference 
but at some unimportant locations may not accurately reflect the precision of the solution 
algorithms. Therefore, an alternate approach is here considered to look at only the floor having 
the largest value of maximum inter-story drifts for the LD responses (i.e., the rows with LD 
responses highlighted in orange). These largest values are extracted from Tables 3 to 9 for each 
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earthquake and summarized in Table 11. The corresponding means and standard deviations of 
the percentage differences are also calculated and shown in the table. Results show the SF 
solution algorithm simulates responses that have only 17.9 % differences from the LD responses 
with a standard deviation of 13.1 %, This is followed by the PD solution algorithm with a mean 
of 22.4 % and finally by CR with a mean of 27.5 %. This suggests that the SF solution algorithm 
simulates the largest values of maximum inter-story drifts with the least uncertainty, which is 
where these drifts matter most. 
 
 

Table 11: Maximum inter-story drift of 8-story frame at near-collapse 
Earthquake/ 
(Inter-story) 

LD PD CR SF 
Drift (m) Drift (m) % Diff Drift (m) % Diff Drift (m) % Diff 

2.0 × Kobe (6-7) 0.455 0.506 11.3 % 0.604 32.7 % 0.496 9.1 % 
1.8 × Sylm (G-2) 0.329 0.188 42.8 % 0.296 10.1 % 0.189 42.6 % 
3.5 × Mulh (5-6) 0.253 0.261 3.1 % 0.240 4.9 % 0.229 9.4 % 
2.8 × Imp1 (G-2) 0.207 0.297 43.7 % 0.279 35.0 % 0.235 13.7 % 
2.8 × Nis2 (G-2) 0.180 0.138 23.6 % 0.311 72.8 % 0.214 18.8 % 
1.7 × Koca (G-2) 0.256 0.327 27.8 % 0.334 30.8 % 0.334 30.6 % 
3.0 × Loma (6-7) 0.263 0.251 4.6 % 0.247 6.0 % 0.259 1.5 % 

Mean  22.4 %  27.5 %  17.9 % 
Standard Deviation  15.6 %  22.1 %  13.1 % 

 

 
5. Conclusions 
Different small displacement formulations make different assumptions in their solution 
algorithms to produce nonlinear structural dynamic responses. In this study, different forms of 
geometric nonlinearity have been investigated by selecting four small-displacement-based 
software packages using P-Delta stiffness formulation (PD), geometric stiffness (GS), corotation 
formulation (CR), and stability functions formulation (SF). While SF, GS, and PD are similar in 
the derivation based on Bernoulli-Euler beam theory but use different approximations for 
equilibrium in the deformed state, CR considers rigid body motion in its formulation while 
writing equilibrium according to its rigid-body state. These differences in geometric nonlinearity 
are coupled with each inherent material nonlinearity assumptions, producing nonlinear solvers 
that are quite different among each small-displacement-based solution algorithm. This results in 
output responses that are quite different and often quite difficult to track. To study the 
differences, a consistent 8-story steel moment-resisting frame model has been developed using 
PD, GS, CR, and SF, and the output inter-story drift responses due to seven earthquake ground 
motions are compared with those obtained from LD, a large-displacement-based finite element 
analysis software package that is assumed to produce the most precise responses for the given 
model. Comparison of responses shows that consistency is obtained in the amplitudes and 
frequencies of oscillations among the solution algorithms except for GS, suggesting that the 
dynamic solvers among each solution algorithm are reasonably consistent. The inconsistency 
occurs in the center-of-oscillations (i.e., residual drifts) predicted by each solution algorithm, 
suggesting that the nonlinear solvers for handling coupled material and geometric nonlinearities 
are the source of inconsistency. 
 
Uncertainties due to the inconsistency among the small-displacement-based PD, CR, and SF 
solution algorithms are also quantified. Based on comparisons with LD responses, results show 
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the mean percentage differences range from 10 % to 30 % at near-collapse based on the use of 
seven earthquake ground motions. Between the small-displacement-based solution algorithms, 
results show that SF has better performance based on residual drifts, while PD has better 
performance based on maximum inter-story drifts and SF has better performance based on the 
largest values of maximum inter-story drifts. From this study, can small-displacement-based 
solution algorithms be used to predict large displacement responses at near collapse? The answer 
should be ‘yes’ because both small-displacement-based and large-displacement-based solution 
algorithms produce global dynamic responses with similar vibration characteristics. Differences 
lie in how each solution algorithm handles material nonlinearity, particularly during the 
transition from elastic to inelastic response or vice versa. This suggests that further research on 
improving the material nonlinearity models and the associated solution algorithms is necessary. 
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