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Abstract 

A critical milestone on the path to useful quantum computers is the demonstration of a quantum 
computation that is prohibitively hard for classical computers – a task referred to as quantum supremacy. 
A leading near-term candidate is sampling from the probability distributions of randomly chosen quantum 
circuits, which we call Random Circuit Sampling (RCS). 

RCS was defined with experimental realizations in mind, leaving its computational hardness unproven. 
Here we give strong complexity-theoretic evidence of classical hardness of RCS, placing it on par with the 
best theoretical proposals for supremacy. Specifically, we show that RCS satisfies an average-case hard-
ness condition, which is critical to establishing computational hardness in the presence of experimental 
noise. In addition, it follows from known results that RCS also satisfies an anti-concentration property, 
namely that errors in estimating output probabilities are small with respect to the probabilities them-
selves. This makes RCS the first proposal for quantum supremacy with both of these properties. Finally, 
we also give a natural condition under which an existing statistical measure, cross-entropy, verifies RCS, 
as well as describe a new verification measure which in some formal sense maximizes the information 
gained from experimental samples. 

⇤
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Establishing the exponential advantage of quantum computers over their classical counterparts was a 
crucial development in launching the field of quantum computation. The first evidence came in the form 
of complexity theoretic proofs that certain computational problems (of no practical value) can be solved 
exponentially faster by quantum computers in the black box model [1, 2], thus calling into question the 
Extended-Church Turing thesis, a foundational principle of classical complexity theory. Soon thereafter 
Shor’s quantum factoring algorithm [3] provided a practically useful quantum speedup while at the same 
time giving a different type of evidence for the power of quantum computers — integer factorization is 
arguably the most well studied algorithmic problem — studied by number theorists going back to Fermat, 
and with particularly intense algorithmic efforts motivated by cryptography, including the RSA challenge. 

With the recent progress in experimental realization of “noisy intermediate-scale” quantum computers 
(NISQ) [4, 5, 6, 7], the field is again at the threshold of a key milestone: quantum supremacy, i.e., the  
experimental realization of a computational task that cannot be solved in a reasonable amount of time by 
any classical means. As in the earliest demonstrations of “theoretical quantum supremacy”, there is no 
requirement that the computational task be useful. The new challenge is that the computational task be 
experimentally realizable for near-term devices, thus ruling out standard computational tasks such as large-
scale factoring which NISQ devices will not be capable of performing. Instead, all proposals for quantum 
supremacy have focused on sampling problems (e.g., [8, 9]), since the raw output of a quantum computer is 
a sample from a probability distribution resulting from a measurement. This choice, however, has important 
ramifications for the challenge of establishing computational difficulty of the task for any classical computer 
— both  in  the  types  of  complexity theoretic  techniques  available  for proving hardness  and  the  relative  lack  
of experience with the algorithmic difficulty of specific sampling problems. 

Broadly speaking, we can classify supremacy proposals into two categories – those seeking to provide 
very strong complexity-theoretic evidence of classical intractability while hoping to be physically realized 
in the near term, versus those with excellent prospects for physical realization in the short term while 
providing weaker evidence of classical intractability. This paper shows that these categories intersect by 
providing strong complexity-theoretic evidence of classical intractability for the leading candidate from the 
latter category. 

More specifically, the first category of quantum supremacy proposals had their origins in the desire to 
obtain strong complexity-theoretic evidence of the power of quantum computers. A key insight was that fo-
cusing on the probability distributions quantum devices can sample from, rather than more standard notions 
of computing or optimizing functions, opens up the possibility of strong evidence of classical intractability. 
This perspective led to proposals such as BosonSampling [8] and IQP [10], together with proofs that the 
probabilities of particular quantum outcomes correspond to quantities which are difficult to compute. This 
allowed them to connect the hardness of classical simulation of such systems to well-supported hardness 
assumptions stemming from complexity theory. 

As an added bonus, Aaronson and Arkhipov realized that BosonSampling might be experimentally feasi-
ble in the near term, and helped jump-start the quest for quantum supremacy more than half a decade ago 
[11, 12, 13, 14]. More recently, BosonSampling experiments have faced experimental difficulties with photon 
generation and detector efficiency, making it challenging to push these experiments to the scale required to 
achieve supremacy (⇠ 50 photons) [15, 16]. It remains to be seen if such experiments can be implemented 
in the near future. 

The second category of supremacy results is directly inspired by the dramatic experimental progress 
in building high-quality superconducting qubits (e.g., [4, 9]). These groups defined the natural sampling 
task for their experimental context, which we call Random Circuit Sampling (RCS). The task is to take an 
(efficient) quantum circuit of a specific form, in which each gate is chosen randomly, and generate samples 
from its output distribution. This proposal promises to be more readily scaled to larger system sizes in the 
near term. In particular, the group at Google/UCSB plans to conduct such an experiment on a 2D array 
of 49 qubits in the very near term [17]. However, RCS lacks some of the complexity-theoretic evidence that 
made BosonSampling so theoretically compelling – essentially because the quantum system is of a generic 
form which does not directly connect with complexity. To put this another way, usually the difficulty of 
simulating quantum algorithms comes from carefully engineered constructive and destructive interference 
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patterns. However RCS by definition only reproduces “generic” interference patterns, and there is thus far 
no evidence that these are difficult to reproduce classically. 

Our main result gives strong complexity-theoretic support to this experimentally driven proposal. In 
particular, we rely on a characterization of the output distribution of quantum circuits using Feynman path 
integrals as a stepping stone to showing that computing output probabilities of random quantum circuits 
is computationally hard. These tools are directly relevant to the upcoming superconducting experiment 
of Google/UCSB but will be useful to understand the capabilities of many other near-term experiments. 
Taken in combination with recent results establishing a subsequent piece of evidence for hardness for such 
systems [18, 19], our result puts RCS on par with the strongest theoretical proposals for supremacy including 
BosonSampling. 

There is one more ingredient of a quantum supremacy proposal such as RCS, namely verifying that 
an experimental realization of Random Circuit Sampling has performed RCS faithfully. The two leading 
proposals for verification, cross-entropy and Heavy Output Generation (HOG), are only known to work 
under strong, and distinct assumptions. Cross-entropy verifies supremacy under a very strong assumption 
about the error model, and HOG verifies supremacy under a strong complexity assumption. Here we show 
how to greatly relax the assumptions under which cross-entropy verifies supremacy. In particular, we show 
that if the entropy of the device’s output distribution is greater than the ideal entropy, then cross-entropy 
verifies supremacy, through our complexity arguments. This condition would follow assuming some natural 
local noise models. 

It turns out that, viewed from the correct perspective, cross-entropy and HOG are more similar than it 
appears at first sight. This perspective allows us to formulate a new verification measure – Binned Output 
Generation (BOG), a common generalization of the two and has the property that it works if either does. 
In addition, it is the optimal verification measure in a certain formal sense. 

1 Average-case hardness 

Proposals for quantum supremacy have a common framework. The computational task is to sample from the 
output distribution D of some experimentally feasible quantum process or algorithm (on some given input). 
To establish quantum supremacy we must show 

1. Hardness: no efficient  classical  algorithm  can  sample  from  any  distribution  close  to  D, and  

2. Verification: an  algorithm  can  check  that  the  experimental  device  sampled  from  an  output  distribution  
close to D. 

This need for verifiability effectively imposes a robustness condition on the difficulty of sampling from D. For  
example, the ability to sample one particular output x of a quantum circuit with the correct probability D(x) 
is known to be hard for classical computers, under standard complexity assumptions, e.g. [10, 20, 21, 22, 23]. 
But this is not a convincing proof of supremacy – for one, under any reasonable noise model, this single 
output probability D(x) might not be preserved. Moreover, this single output x is exponentially unlikely to 
occur – and would therefore be extremely difficult to verify. Accordingly, any convincing proof of quantum 
supremacy must establish that D is actually uniformly difficult to sample from. That is, the computational 
difficulty must be embedded across the entire distribution, rather than concentrated in a single output. 

The starting point for the BosonSampling proposal of Aaronson and Arkhipov consisted of three observa-
tions: (1) In general, for sufficiently hard problems (think #P-hard), showing a distribution D is uniformly 
difficult to sample from corresponds to showing that for most outputs x, it  is  hard  to  compute  D(x). In 
complexity theory, this is referred to as “average-case” rather than “worst-case” hardness. (2) The output 
probabilities of systems of noninteracting bosons can be expressed as permanents of certain n ⇥ n matrices. 
(3) By a celebrated result of Lipton [24], computing permanents of random matrices is #P-hard, or truly 
intractable in the complexity theory pantheon. Together, these gave convincing evidence of the hardness 
of sampling typical outputs of a suitable system of noninteracting bosons, which could be experimentally 
feasible in the near term. 
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Specifically, they proved that no classical computer can sample from any distribution within inverse-
exponential total variation distance of the ideal BosonSampling output distribution. Formally extending 
these results to experimentally relevant noise models, such as constant total variation distance, seems to re-
quire approximation robust average-case hardness that is beyond the reach of current methods. Nevertheless, 
their average-case hardness results are important as they establish a necessary foundation for noise-tolerant 
quantum supremacy of BosonSampling. 

Permanents have a special structure enabling their average-case hardness – an ingredient which is thus 
far missing in other supremacy proposals. Technically, average-case hardness is established by creating a 
“worst-to-average-case reduction”. We will show such a reduction for RCS. At a high level, such reductions 
are based on error-correcting codes, which are becoming more prominent across diverse areas of physics (see 
e.g., [25]); just as an error-correcting code allows one to recover an encoded message under the corruption 
of some of its entries, a worst-to-average-case reduction allows one to recover a worst-case solution from an 
algorithm that works most of the time. More formally, such reductions involve showing that the value of a 
worst-case instance x can be efficiently inferred from the values of a few random instances r1, . . . , rm. For  
this to be possible at all, while the r

k might be individually random, their correlations must depend upon 
x (which we shall denote by r0). Typically such reductions rely on a deep global structure of the problem, 
which makes it possible to write the value at r

k as a polynomial in k of degree at most m. For  example,  
the average-case property of permanents is enabled by its algebraic structure – the permanent of an n ⇥ n 
matrix can be expressed as a low degree polynomial in its entries. This allows the value at r0 = x to be 
computed from the values at r

k by polynomial interpolation. 
An astute reader may have noticed that randomizing the instance of permanent corresponds to starting 

with a random linear-optical network for the BosonSampling experiment, but still focusing on a fixed output. 
Our goal however was to show for a fixed experiment that it is hard to calculate the probability of a random 
output. These are equivalent by a technique called “hiding”. By the same token, it suffices for RCS to show 
that it is hard to compute the probability of a fixed output, 0, for a  random circuit  C. 

To show this average-case hardness for quantum circuits, we start with the observation that the probability 
with which a quantum circuit outputs a fixed outcome x can be expressed as a low degree multivariate 
polynomial in the parameters describing the gates of the circuit, thanks to writing the acceptance probability 
as a Feynman path integral. Unfortunately, this polynomial representation of the output probability does 
not immediately yield a worst-to-average-case reduction. At its core, the difficulty is that we are not looking 
for structure in an individual instance – such as the polynomial description of the output probability for a 
particular circuit above. Rather, we would like to say that several instances of the problem are connected in 
some way, specifically by showing that the outputs of several different related circuits are described by a low 
degree (univariate) polynomial. With permanents, this connection is established using the linear structure 
of matrices, but quantum circuits do not have a linear structure, i.e. if A and B are unitary matrices, then 
A+ B is not necessarily unitary. This limitation means one cannot directly adapt the proof of average-case 
hardness for the permanent to make use of the Feynman path integral polynomial. 

Here is a more sophisticated attempt to connect up the outputs of different circuits with a polynomial: 
Suppose we take a worst-case circuit G = G

m . . . G1, and  multiply  each  gate  G
j by a Haar-random matrix 

H
j . By  the  invariance  of  the  Haar  measure,  this  is  another  random  circuit  –  it  is  now  totally  scrambled.  

Now we invoke a unique feature of quantum computation, which is that it is possible to implement a fraction 
of a quantum gate. This allows us to replace each gate H

j with H
j e i✓hj , where h

j = i log H
j and ✓ is a 

small angle, resulting in a new circuit G(✓). If ✓ = 1  this gives us back the worst-case circuit G(1) = G, but  
if ✓ is very tiny the resulting circuit looks almost uniformly random. One might now hope to interpolate 
the value of G(1) from the values of G(✓

k

) for many small values of ✓
k

, thus  effecting  a  worst-to-average  
case reduction. Unfortunately, this doesn’t work either. The problem is that e i✓hj is not a low degree 
polynomial in ✓, and  therefore  neither is  G(✓), so we have nothing to interpolate with. 

i✓hj i✓hjThe third attempt, which works, is to consider using a truncated Taylor series of e in place of e 
in the above construction. The values of the probabilities in this truncation will be very close to those 
of the proposal above – and yet by construction we have ensured our output probabilities are low degree 
polynomials in theta. Therefore, if we could compute most output probabilities of these “truncated Taylor” 
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relaxations of random circuits, then we could compute a worst-case probability. 

3 1Theorem 1 (Simplified) It is #P-hard to exactly compute | h0|C 0|0i|2 with probability + over the 4 poly(n) 

choice of C 0, where each gate of C 0 is drawn from any one of a family of discretizations of the Haar measure. 

These truncated circuit probabilities are slightly different from the average-case circuit probabilities but 
are exponentially close to them (even in relative terms). However, they are essentially the same from the 
perspective of supremacy arguments because quantum supremacy requires that computing most output 
probabilities even approximately remains #P-hard, and our perturbations to the random circuits fall within 
this approximation window. Therefore, we have established a form of worst-to average-case reduction which 
is necessary, but not sufficient, for the supremacy condition to remain true. This is directly analogous to 
the case of permanents, where we know that computing average-case permanents exactly is #P-hard, but 
we do not know this reduction is sufficiently robust to achieve quantum supremacy. For more details, see 
the Methods (Section 3.1). 

RCS does satisfy an additional robustness property known as “anti-concentration”. Anti-concentration 
states that the output distribution of a random quantum circuit is “spread out” – that most output proba-
bilities are reasonably large. Therefore, any approximation errors in estimating these probabilities are small 
relative to the size of the probability being computed. Once one has established a worst-to-average-case 
reduction, anti-concentration implies that there is some hope for making this reduction robust to noise – 
intuitively it says that the signal is large compared to the noise. 

Of the numerous quantum supremacy proposals to date which are conjectured to be robust to noise 
[8, 9, 19, 26, 27, 28, 29, 30, 31, 32], only two have known worst-to-average-case reductions: BosonSampling 
and FourierSampling [8, 26]. However, it remains open if these proposals also anti-concentrate. On the 
other hand, many supremacy proposals have known anti-concentration theorems (see e.g., [9, 19, 27, 29, 30, 
31, 32]), but lack worst-to-average-case reductions. We note, however, that anti-concentration is arguably 
less important than worst-to-average case reductions, as the latter is necessary for quantum supremacy 
arguments, while the former is not expected to be necessary. In the case of RCS, anti-concentration follows 
from prior work [18, 19]. Therefore, our work is the first to show that both can be achieved simultaneously. 

The leading quantum supremacy proposals 

Proposal 
Worst-case 
hardness 

Exact 
average-case 

hardness 

Approximate 
average-case 

hardness 
Anti-

concentration 
Feasible 

experiment? 
BosonSampling

a 

FourierSampling

b 

IQP

c 

Random Circuit Sampling

d 

X 
X 
X 

X 

X 
X 

X 

X 

X X 

a[8]. b[26]. c[10, 27, 29]. d[9, 19, 33, 34]. 

Table 1: Here we list the leading quantum supremacy proposals and summarize their known complexity-theoretic 
properties. 

2 Statistical verification of Random Circuit Sampling 

We now turn to verifying that an experimental realization of Random Circuit Sampling has performed RCS 
faithfully. Verification turns out to be quite challenging. The first difficulty is that computing individ-
ual output probabilities of an ideal quantum circuit requires exponential classical time. However, current 
proposals leverage the fact that near-term devices with around n = 50 qubits are small enough that it is 
feasible to perform this task on a classical supercomputer (inefficiently), but large enough that the quan-
tum devices solves an impressively difficult problem. While this might seem contradictory to the claim of 
quantum supremacy, note that the task which is (barely) feasible with an inefficient algorithm is only to 
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compute individual probabilities. In contrast, naïvely simulating the sampling experiment would require far 
more – either computing all the probabilities or computing a smaller number of conditional probabilities. 
The second difficulty is that one can only take a small number of samples from the experimental quantum 
device. This means there is no hope of experimentally observing all 250 outcomes, nor of estimating their 
probabilities empirically. The challenge is therefore to develop a statistical measure which respects these 
limitations, and nevertheless verifies quantum supremacy. 

A leading statistical measure proposed for verification is the “cross-entropy” measure [9, 35, 34], which, 
for a pair of distributions D and D0 is defined as: 

✓ 
1 

◆ 
CE(D, D0

) =  
X 

D(x) log . 
D0

(x) 
x2{0,1}n 

For RCS it is being used as a measure of the distance between the output distribution of the experimental 
device tuned to perform the unitary U , denoted  p

dev

, and  the  ideal  output  distribution  of  the  random  circuit  
under U , denoted  p

U . 
A useful feature  of  this  measure  is  that  it can  be  estimated  by taking  a few  samples  x

i from the device and 
computing the average value of log(1/p

U (xi

)) using a classical supercomputer. By concentration of measure 
arguments this converges very quickly to the true value. 

Ideally, we would like to connect the cross-entropy measure to the rigorous complexity-theoretic arguments 
in favor of quantum supremacy developed in Section 1, which require closeness in total variation distance 
to the ideal. Without any assumptions as to how the device operates, it is easy to see that cross-entropy 
cannot verify total variation distance directly, as the latter requires exponentially many samples to verify. 

However, we show that there is a natural assumption under which the cross-entropy measure certifies 
closeness in total variation distance. Namely, if one assumes that the entropy of the experimental device is 
greater than the entropy of the ideal device, then scoring well in cross-entropy does certify closeness in total 
variation distance: 

Claim 2 If H(p
dev

) H(p
U ), then achieving a cross-entropy score which is ✏-close to ideal, i.e., |CE(p

dev

, p
U ) 

H(p
U )|  ✏, implies that kp

dev p
U k  p

✏/2. 

The proof of this fact follows from Pinsker’s inequality. A similar observation was recently independently 
obtained by Brandão (in personal communication). This assumption would follow from a number of natural 
noise models – such as local depolarizing noise, but not others – such as forms of erasure. Therefore, to 
understand the utility of cross-entropy it is crucial to characterize the noise present in near-term devices. 
We also use this as intuition to construct distributions which score well on cross-entropy but are far in total 
variation distance – we start with the ideal distribution and lower entropy. 

A concurrent proposal of Aaronson and Chen, known as “Heavy Output Generation” or HOG, studied 
a different avenue to supremacy. Aaronson and Chen conjectured that given a randomly chosen quantum 
circuit C, it is difficult to output strings which have “above median” mass in C’s output distribution. This 
proposal connects directly to a statistical test for verification, and the hardness of this task was connected 
to a non-standard complexity-theoretic conjecture known as QUATH. 

To generalize these verification proposals, we describe a new statistical measure which we call BOG 
(“Binned Output Generation”) which is a common ancestor to both cross-entropy and HOG and yet which is 
still easy to estimate from experimental data. In particular, this means that BOG verifies supremacy if either 
the entropy assumption or QUATH holds. Indeed viewed from the right perspective, these measures are more 
similar than it appears at first sight. In some formal sense BOG maximizes the amount of information one 
gains in the course of computing HOG or cross-entropy, and is therefore the optimal verification measure 
if one can only take polynomially many samples from the experimental device. For more details, see the 
Methods (Section 3.2). 
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3 Methods 

3.1 Worst-to-average-case reduction 

Our first result gives evidence that approximating average-case output probabilities of random quantum 
circuits remains difficult. It is well known that computing output probabilities of worst-case quantum 
circuits is #P-hard. Our goal is, therefore, to establish that computing output probabilities of average-case 
random quantum circuits is just as difficult. We achieve this by giving a worst-to-average-case reduction for 
computing output probabilities of random quantum circuits. That is, we show that if one could compute 
average-case quantum circuit probabilities, then one could infer the value of worst-case quantum circuit 
probabilities. Therefore, computing average-case probabilities is also #P-hard. 

Establishing average-case hardness is surprisingly subtle. It will be useful to first recall the worst-to-
average-case reduction for the permanent of matrices over the finite field F

q [24], where q is taken to be a 
sufficiently large polynomial in the input parameter. In the case of permanents, the structure which connects 
the values of random permanents is low-degree polynomials. The permanent of an n⇥ n matrix, 

nY 

i=1 

X
perm(A) = A

i, (i) 

2Sn 

Y 

is a polynomial of degree n in the n2 matrix entries. Let X be a random n⇥n matrix over F
q , where q n+2. 

Moreover, suppose our goal is compute the permanent of a worst-case matrix Y . We  first  consider  the  line  
A(t) =  Xt + Y ; note  that  for  t 6 .= 0, A(t) is uniformly distributed over Fn⇥n If we are able to calculate 

q 
1 Fn⇥n

perm(R) with probability 1 over R ⇠U , then  by  the  union  bound, we  could  compute  A(t)3(n+1) q 

correctly at n+1 different values of t with bounded error probability. This is possible because the union bound 
holds despite A(t) being correlated with one another – it only requires that the marginal distribution on each 
one is uniform. So standard polynomial interpolation techniques on {(t

j , perm(A(t
j ))}j=1,...,n+1 allow us to 

learn the function perm(A(t)) and therefore, perm(Y ) =  perm(A(0)). With  more  rigorous  analysis  –  but  the  
same intuition – one can argue that we only need to be calculate perm(R) with probability 3/4 + 1/poly(n) 
[36, 37]. 

Therefore, polynomial interpolation allows us to compute permanents of every matrix 2 Fn⇥n if we can 
q 

compute the permanent on most matrices. A “random survey” of permanent values can be used to infer the 
value of all permanents. Combined with the fact that the permanent problem is worst-case #P-hard [38], 
this implies that computing permanents in Fn⇥n on average is #P-hard. Formally, the following result was 

q 
obtained. 

Theorem 3 (Average-case hardness for permanents [24, 37]) The following is #P-hard: For suffi-
3 1ciently large q, given a uniformly random matrix M 2 Fn⇥n, output perm(M) with probability + .

q 4 poly(n) 

To establish worst-to-average-case reductions for random circuits, we need to find a similar structural 
relation between the circuit whose output probability we wish to compute, and average-case circuits in which 
each gate is chosen randomly. A first observation is that there is indeed a low-degree polynomial structure 
– stemming from the Feynman path-integral – which allows us to write the probability of any outcome as a 
low-degree polynomial in the gate entries. This polynomial is fixed once we fix both the outcome and the 
architecture of the circuit, and the degree is twice the number of gates in the circuit (where the factor of 2 
accounts for the Born rule for output probabilities) which is a polynomial in the input parameter. 

Fact 4 (Feynman path integral) Let C = C
m

C
m 1 . . . C2C1, be a circuit formed by individual gates C

i 

acting on n qubits. Then 

mX
hy

m

| C |y0i = hy
j | Cj |yj 1i . 

y1,y2,...,ym�12{0,1}n 
j=1 
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There are two subtleties we need to address. The first is that the value of this polynomial is the probability 
of a fixed output y

m

. Our analysis will therefore focus on the hardness of estimating the 

def 
p0(C) = |h0n|C|0ni|2 

probability for C drawn from HA, rather  than  the  hardness  of  approximating  the  probability  of  a  random  
y
m

. These can be proven equivalent using the “hiding” property of the HA distribution: we can take a 
circuit drawn from this distribution, append Pauli X gates to a uniformly chosen subset of output qubits, 
and remain distributed via HA. We  discuss  hiding  in  more  detail  in  Section  1.5  of  the  Supplementary  
Information. 

The second subtlety is that this is a polynomial over the complex numbers, instead of F
q

. Bridging  
this gap requires considerable technical work. We note that Aaronson and Arkhipov have given a worst-
to-average-case reduction for computing the permanent with complex Gaussian entries [8]. However, our 
reduction will be quite different, due to structural differences between quantum circuit amplitudes and 
permanents. Indeed, in proving the reduction for permanents of matrices over finite fields, we leveraged the 
fact that A(t) =  Xt + Y will be randomly distributed across Fn⇥n since X is uniformly random and Y is

q 
fixed. To leverage a similar property for random circuit sampling, we need, given a (possibly worst-case) 
circuit C, a  polynomial  C(t) over circuits such that (1) C(0) = C and (2) C(t) is distributed like a HA. To  
be more precise, for a fixed architecture A, we will we hope to say that the p0(C) probability for a circuit 
C ⇠ HA is hard to compute on average. 

A naïve approach to doing this is to copy the proof for the permanent. If we could perturb each gate in 
a random  linear direction,  then  we could  use polynomial interpolation  to perform the worst-to-average-case  
reduction as above. That is, consider taking a worst-case circuit A and adding a random circuit B (gate by 
gate) to obtain A + tB. It is true that p0(A + tB) is a low-degree polynomial in t, so  one  might  hope  to  
use interpolation to compute the worst-case value at t = 0. Unfortunately,  this  idea  does  not  work  because  
quantum gates do not have a linear structure. In other words, if A and B are unitary matrices, then A+ tB 
is not necessarily unitary – and hence A + tB are not necessarily valid quantum circuits. So this naïve 
interpolation strategy will not work. 

We consider a different way of perturbing circuits, which makes use of the unique properties of quantum 
mechanics. Suppose that we take a (possibly worst-case) circuit C = C

m

, . . . , C1, and  multiply  each  gate  
C

j by an independent Haar random matrix H
j . That is, we replace each gate C

j with C
j Hj . By  the  

left-invariance of the Haar measure, this is equivalent to selecting each gate uniformly at random – i.e. it is 
equivalent to HA. We  have  now  recovered  our  original  distribution  over  circuits,  but  in  some  sense  we  have  
gone too far, as we have completely erased all of the information of our worst-case circuit C. To  remedy  
this, we will make use of a uniquely quantum ability – namely, that it is possible to perform a fraction of 
a quantum gate. This has no classical analog (indeed, what would it mean to perform 1/10 of a NAND 
gate?) That is, suppose we “rotate back” by tiny amount back towards C

j by some small angle ✓. More  
ihj ✓specifically, replace each gate C

j of the circuit with C
j Hj e where h

j = i log H
j . If ✓ = 1  this gives 

us back the circuit C, but  if  ✓ is very tiny then each gate looks almost Haar random. One might hope that 
by collecting the values of many probabilities at small angles ✓, one  could  interpolate  back  to  the  point  C of 
interest. Therefore, a second attempt would be to take the circuit C, scramble it by multiplying it gate-wise 
by a perturbed Haar distribution defined below, and then use some form of interpolation in ✓ to recover the 
probability for C at ✓ = 1. 

Definition 5 (✓-perturbed Haar-distribution) Let A be an architecture over circuits, ✓ a constant 2 
[0, 1], and let G

m

, . . . , G1 be the gate entries in the architecture. Define the distribution HA,✓ over circuits in 
A by setting each gate G

j = H
j e ihj ✓ where H

j is an independent Haar random unitary and h
j = i log H

j . 

Unfortunately, this trick is not sufficient to enable the reduction. The problem is that e i✓hj is not a 
low-degree polynomial in ✓, so  we  have no  structure to apply  polynomial  interpolation  onto.  While there is  
structure, we cannot harness it for interpolation using currently known techniques. Although this does not 
work, this trick has allowed us to make some progress. A promising property of this method of scrambling 
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is that it produces circuits which are close to randomly distributed – which we will later prove rigorously. 
This is analogous to the fact that A + tB is randomly distributed in the permanent case, a key property 
used in that proof. We merely need to find some additional polynomial structure here in order to utilize this 
property. 

We find this polynomial structure by considering Taylor approximations of e ihj ✓ in place of e ihj ✓ in the 
above construction. While these truncated circuits are slightly non-unitary, the values of the probabilities in 
this truncation will be very close to those of the proposal above – and yet by construction we have ensured 
our output probabilities are low degree polynomials in ✓. Formally,  we  define  a  new  distribution  over  circuits  
with this property: 

Definition 6 ((✓,K)-truncated perturbed Haar-distribution) Let A be an architecture over circuits, 
✓ a constant 2 [0, 1], K an integer, and let G

m

, . . . , G1 be the gate entries in the architecture. Define the 
distribution HA,✓,K over circuits in A by setting each gate 

K

!
( ih

j ✓)kX
G

j = H
j 

k! 
k=0 

where H
i is an independent Haar random unitary and h

j = i log H
j . 

Now suppose we take our circuit C of interest and multiply it by HA,✓,K gate-by-gate to “scramble” it. 
This is precisely how a classical computer would sample from C ·HA,✓ (where the multiplication is performed 
gatewise) as one cannot exactly represent a continuous quantity digitally. Suppose we could compute the 
probabilities of these circuits for many choices of ✓ with high probability. Now one can use similar polynomial 
interpolation ideas to show hardness of this task. 

To state this formally, let us define some notation. For a circuit C and D a distribution  over  circuits  of  
the same architecture, let C · D  be the distribution over circuits generated by sampling a circuit C 0 ⇠ D and 
outputting the circuit C · C 0 (where again, the multiplication is performed gatewise). Explicitly, we show 
the following worst-to-average-case reduction. 

Theorem 1 Let A be an architecture so that computing p0(C) to within additive precision 2 poly(n), for any 
1C over A is #P-hard in the worst case. Then it is #P-hard to exactly compute 3 

+ of the probabilities 4 poly(n) 
def 

p0(C 0
) over the choice of C 0 from the distributions D0 

= C · HA,✓,K where ✓ = 1/poly(n), K = poly(n).
C 

A formal proof of Theorem 1, as well as commentary on its relation to the hardness conjectures needed 
to establish quantum supremacy, are provided in the Supplementary Information. For example, although 
we have changed the distribution over which average-case hardness is extablished, we show that hardness 
over the new distribution, Theorem 1, is necessary for the average-case conjecture relevant to the quantum 
supremacy of RCS to be true. For details, see Section 1.2 of the Supplementary Information. 

3.2 Verification of Random Circuit Sampling 

In this section we discuss the verification of Random Circuit Sampling experiments. Let us first recall the 
setting: we are given a description of a randomly generated quantum circuit (which we will refer to as the 
ideal circuit) as well as an experimental device that outputs samples. 

We wish to verify that no efficient classical device could have produced this output. One difficulty which 
immediately arises is that one can only take a small (polynomial) number of samples from the device, and 
therefore one cannot characterize the entire output distribution of the device. Another basic difficulty is that 
the output of the ideal circuit is computationally hard to produce — so for large system sizes we do not even 
know what to compare the output of the experimental device to. Current verification schemes leverage the 
fact that intermediate size experiments, such as n = 50 qubit systems, are small enough that it is feasible to 
calculate on a classical supercomputer the probability p

x that the ideal quantum circuit outputs a particular 
string x. The list of strings x output by the device, together with p

x

, is  summarized  in  a  statistical  score  
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which can efficiently estimated with few samples from the device. Our goal is to understand under what 
circumstances such a score verifies quantum supremacy. 

In this section, if unspecified, a probability distribution will be over strings x 2 {0, 1}n . The size of the 
domain will be denoted N = 2

n . The phrase “with high probability” will mean with probability 1 o(1). 

3.2.1 The cross-entropy supremacy proposal 

Cross-entropy is a leading proposal for verifying quantum supremacy [9, 34, 35]. Recall from Section 2 that ✓ 
1 

◆
the cross-entropy between distributions D and D0 is defined as CE(D,D0

) =  
X 

D(x) log . For  
D0

(x) 
x2{0,1}n 

RCS it is being used as a measure of the distance between the output distribution of the experimental device 
tuned to perform the unitary U , denoted  p

dev

, and  the  ideal  output  distribution  of  the  random  circuit  under  
U , denoted  p

U [9, 34, 35]. Estimating CE(p
dev

, p
U ) requires taking merely k ⌧ N samples, x1, . . . , xk

, from  
the experimental device, followed by the computation of the empirical estimate E of the cross-entropy 

1 
✓ 

1 
◆ 

E = 
X 

log (1)
k p

U (xi

)

i=1...k 

by using a supercomputer to calculate ideal probabilities p
U (xi

) =  |hx
i

|U |0ni|2 for only the observed outcome 
strings x

i

. By  concentration  of  measure,  for  typical  U , after  polynomially  many  samples,  E will converge 
to CE(p

dev

, p
U ). This follows from the fact that with high probability over the choice of random unitary, 

the largest and smallest ideal outcome probability are of order log N/N and 1/N2, respectively.  Hence  the  
logarithms of all p

U (xi

) are within a constant factor of one another (on average), so by the Chernoff bound 
one can estimate this quantity to multiplicative error ✏ with merely log(1/✏) samples. 

The goal of their experiment is to score as close to the ideal expectation value as possible (on average 
over the choice of U). In fact, this measure has become incredibly important to the Google/UCSB group: it 
is being used to calibrate their candidate experimental device [17, 34]. 

3.2.2 The relationship between cross-entropy and total variation distance 

As before, let p
U be the ideal output distribution and p

dev be the output distribution of the experimental 
device. To motivate the cross-entropy score, the Google/UCSB paper assumes that p

dev is a convex com-
bination of p

U with the uniform distribution [9]. Here we show that scoring well in cross-entropy certifies 
closeness in total-variation distance under a considerably weaker assumption, namely: 

Assumption 7 H[p
dev ] H[p

U ]. 

Claim 8 If Assumption 7 holds, then achieving a cross-entropy score which is ✏-close to ideal, i.e., |CE(p
dev

, p
U ) 

H(p
U )|  ✏, implies that kp

dev p
U k  p

✏/2. 

Proof: (Sketch) 
The claim follows from a straightforward application of Pinkser’s inequality: 

r
kp

dev p
U kKLkp

dev p
U k   (2)

2 r
CE(p

dev

, p
U ) H(p

dev

) 
= (3)

2 r
CE(p

dev

, p
U ) H(p

U ) 
r

✏   (4)
2 2 

Where equation 2 is Pinsker’s inequality, equation 3 follows from the definition of KL divergence kD,D0k
KL = 

CE(D,D0
) H(D) and equation 4 follows from Assumption 7. 
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It might appear at first sight that Assumption 7 follows from the very reasonable physical assumption 

that the experimental device is any noisy version of the ideal device. While this is not true in general, it does 
hold for some standard noise models such as local depolarizing noise. So one approach to verification is to 
verify the noise model and show that it is consistent with Assumption 7. We note that of course, verifying 
Assumption 7 directly would require exponentially many samples from the device. 

Following this connection further, one can easily construct examples of distributions which score well on 
cross-entropy but are far from ideal in total variation distance. In particular one can achieve this by taking 
the ideal distribution and reducing its entropy. 

Theorem 9 For every unitary U , there exists a distribution D
U such that, with probability 1 o(1) over the 

choice of U from the Haar measure, |D
U p

U | 0.99, and yet CE(D
U , pU ) is O(1/N⇥(1)

)-close to ideal. 

We provide a proof of Theorem 9 in the Supplementary Information. 

3.2.3 Binned output generation (BOG): a common ancestor to cross-entropy and HOG 

Recall that the goal of these statistical measures is to verify RCS with very few samples from the experi-
mental device, but allowing for exponential classical postprocessing time (See Section 2). These tests are 
all performed by taking k = poly(n) samples from the device x1 . . . xk and then computing statistics on the 
ideal output probabilities p

U (xi

) of the observed strings. It is natural to try to maximize the amount of 
information obtained from the computed values of p

U (xi

), so  as  to  eliminate  the  largest  number  of  imposter  
distributions. In this section, we describe a statistical measure which performs this task. It simultaneously 
generalizes both HOG and cross-entropy difference – that is, passing this test implies that one has scored well 
on both cross-entropy and HOG. Furthermore, this test eliminates more imposter distributions than naively 
combining cross-entropy and HOG. As discussed previously, cross-entropy and HOG certify supremacy under 
two very different assumptions – one relating to the noise present in the device, and another to a non-standard 
complexity conjecture. Therefore this new measure verifies quantum supremacy if either assumption holds. 
We call this measure “binned output generation” or BOG, which we define below. 

qConsider dividing the interval [0, 1] into poly(n) bins, such that for each bin [a/N, b/N ], we  have  
R
b 
qe = 

a 
⇥(1/poly(n)). In other words when sampling from a Porter-Thomas distribution, one would expect to see 
roughly an equal number of counts of p

U (xi

) in each bin. Now suppose that one takes k = poly(n) samples 
from an experimental device (with a randomly chosen U) to obtain  strings  x1 . . . xk

. We  say  that  the  
test passes if one has approximately the correct frequency of counts of p

U (xi

) in each bin (up to small 
constant multiplicative error). By concentration of measure the ideal distribution will pass the test with 
high probability. 

BOG can be seen as a simple refinement of HOG, where we divide the output probabilities into poly(n) 
bins instead of two (below median and above median). Therefore, this measure both verifies HOG and 
additionally ensures that the more fine-grained “shape” of the distribution is present as well. Furthermore, 
one can show that for a suitable choice of parameters, passing BOG implies that one has achieved nearly the 
ideal cross-entropy as well – as the ideal cross-entropy is O(n), an  (1±1/poly(n)) multiplicative approximation 
to the cross-entropy suffices to verify o(1) closeness to the ideal cross-entropy difference. BOG extracts the 
maximum amount of information out of the computation of the p

U (xi

), as  long  as  one  ignores  the  higher-
order bits of the results. Differences between these higher order bits are not observable with merely poly(n) 
samples from the device. For instance, if one passes BOG, then one has certified the expectation value of any 
Lipschitz function of the ideal probabilities to error O(1/poly). In this particular sense BOG is information 
theoretically optimal. We therefore propose BOG as a measure for verification, as it uses the same data as 
HOG and cross-entropy to obtain more information about the output distribution. 
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On the Complexity and Verification of 
Quantum Random Circuit Sampling: 
Supplementary Information 

1 Average-case hardness 

Our main result is to give the first worst-to-average-case reduction for computing the output probabilities of 
random quantum circuits. We will now describe why this result is critical to establishing quantum supremacy 
from Random Circuit Sampling (RCS). 

Let us first define what we mean by RCS. Random Circuit Sampling is the process of picking a random 
(efficient) quantum circuit and then sampling from its output distribution. Formally, an architecture A 
is a collection of directed acyclic graphs, one for each integer n. Each  graph  consists  of  m  poly(n) 
vertices where each vertex v has deg

in

(v) = deg

out

(v) 2 {1, 2} except for specific vertices s and t which have 
deg

out

(s) =  deg
in

(t) =  n and deg
out

(t) = deg

in

(s) = 0. A  circuit  C acting on n qubits over A is instantiated 
by taking the n-th graph and specifying a gate for each vertex v /2 {s, t} in the graph that acts on the qubits 
labelled by the edges adjacent to that vertex. The vertices s and t represent the state prior to and after the 
application of the circuit. That is, we can think of an architecture as an outline of a quantum circuit (one 
for each size n), and one needs to fill in the blanks (specify each gate) to instantiate a circuit. 

We will consider the distribution on circuits where each gate is drawn uniformly at random. Here 
“uniformly at random” means according to the Haar measure, i.e. the unique measure on unitary matrices 
that is invariant under (left or right) multiplication by any unitary. 

Definition 10 (Haar random circuit distribution) Let A be an architecture over circuits and let the 
gates in the architecture be {Gi}i=1,...,m. Define the distribution HA over circuits in A by drawing each gate 
Gi independently from the Haar measure. 

Random Circuit Sampling is then defined as follows: 

Definition 11 (Random Circuit Sampling) Random Circuit Sampling over a fixed architecture A is the 
following task: given a description of a random circuit C from HA, and a description of error parameters 
✏, > 0, with probability 1 over the choice of C, sample from the probability distribution induced 
by C (i.e., draw y 2 {0, 1}n with probability Pr(y) =  | hy|C|0ni|2) up to total variation distance ✏ in time 
poly(n, 1/✏). Here and throughout this paper, the probability distribution induced by C is Pr(y) =  | hy|C|0ni|2 

for y 2 {0, 1}n . 

While RCS is defined relative to an architecture A, the  exact  choice  of  A will not matter for our main 
result. In fact our result will still hold if some of the gates of A are fixed while others are drawn Haar-
randomly. We discuss the architectures proposed for quantum supremacy in detail in Section 1.6 of the 
Supplementary Information. Also, note that this definition is designed to allow for a small amount of error 
in the classical sampler. This is to capture the fact that real-world quantum devices will be unable to 
perform this task exactly due to noise - and hence this definition allows the classical device the same error 
tolerance we allow the quantum device. As usual total variation distance means one half of the ` 

1 distance 
between the probability distributions. Likewise, this definition allows the sampler to fail on a small fraction 
of inputs C; this  is  to  ensure  that  randomly  testing  the  quantum  device  for  poly(n) random choices of C 
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suffices to certify that RCS has been performed correctly – otherwise one would need to test all C to verify 
the quantum device works. 

The goal of our work is to argue that RCS is difficult for classical computers. The crux of this argument 
lies in the relative difference in the difficulty of estimating the output probabilities of classical vs quantum 
circuits. It is well known that certain output probabilities of quantum circuits are very difficult to compute 
– in  fact,  they can  be  #P-hard to approximate, which is truly intractable. In contrast, it is much easier to 
approximate the output probabilities of classical circuits [39], under an assumption known as the non-collapse 
of the polynomial hierarchy. This result alone is enough to establish the difficulty of exactly sampling from 
the probability distribution output by the quantum device (i.e. in the case ✏ = 0) [8,  10].  

However, to make this argument robust to experimental noise, we need the hardness of computing output 
probabilities to be “more spread out” in the output distribution, rather than concentrated in a single output 
which could be corrupted by noise. This was precisely the insight of Aaronson and Arkhipov [8]. They 
showed that BosonSampling cannot be classically simulated under the following conjecture: 

Conjecture 12 ([8], Informal) Approximating most output probabilities of most linear optical networks is 
#P-hard. 

While they did not prove this conjecture, they were able to prove the following necessary worst-to-average-
case reduction: 

Theorem 13 ([8], Informal) Exactly computing most output probabilities of most linear optical networks 
is #P-hard. 

This result immediately implies that one cannot exactly sample from the output probability distributions 
of randomly chosen linear optical networks (i.e. ✏ = 0 but 6= 0). Hence even “generic” optical interference 
patterns are difficult to generate classically; the remaining task is to make this average-to-worst case reduction 
robust to noise, and hence make the sampling result robust to experimental error (✏ 6= 0). 

Following the arguments of Aaronson and Arkhipov, one can show that assuming the non-collapse of PH, 
no efficient classical algorithm can perform RCS, under the following approximate average-case hardness 
conjecture. We detail these arguments later in Section 1.5 of the Supplementary Information. 

Conjecture 14 (Informal) There exists an architecture A so that approximating |h0n| C |0ni|2 for most 
C ⇠ HA is #P-hard. 

The astute reader may notice that we have stated Conjecture 14 in terms of a single output rather than 
a random output. These are equivalent by an argument known as “hiding” [8] which we detail in Section 1.5 
of the Supplementary Information. 

Our Theorem 1 establishes the analogue of Theorem 13 for Random Circuit Sampling. Just as for 
Aaronson and Arkhipov, this theorem will give necessary evidence in support of our main hardness conjecture: 

Theorem 1(Simplified) It is #P-hard to exactly compute | h0|C 0|0i|2 with probability 3/4+1/poly(n) over 
the choice of C 0, where the circuit C 0 acting on n qubits is drawn from any one of a family of discretizations 
of HA. 

This holds for any architecture A in which computing | h0|C 0|0i|2 is #P-hard in the worst case. Likewise 
this immediately implies one cannot exactly sample from “generic” interference patterns over systems of 
qubits. We further show that this average-case hardness theorem is in fact necessary for Conjecture 14 to 
be true in Section 1.3 of the Supplementary Information, and that an approximation-robust version of this 
theorem would be sufficient to prove Conjecture 14 in Section 1.4 of the Supplementary Information. We 
will provide further commentary on our result in Section 1.2 of the Supplementary Information after we 
prove it formally. 

Furthermore, prior work has shown that Random Circuit Sampling has an additional property known 
as anti-concentration [18, 19], which has not been proven for BosonSampling or FourierSampling. Anti-
concentration can be seen as evidence that an average-case hardness result could be made robust to noise. 
We will discuss how known anti-concentration results can be integrated into our hardness proof in Section 
1.6 of the Supplementary Information. 
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1.1 Proof of Theorem 1 

We will now prove Theorem 1, using the notation defined in Section 3.1 of the Methods. 

Theorem 1 Let A be an architecture so that computing p0(C) to within additive precision 2 poly(n), for any 
1C over A is #P-hard in the worst case. Then it is #P-hard to exactly compute 3 

+ of the probabilities 
4 poly(n) 

def 
p0(C 0

) over the choice of C 0 from the distributions D0 
= C ⇥ HA,✓,K where ✓ = 1/poly(n), K = poly(n).C 

The proof of Theorem 1 follows by demonstrating the inherent polynomial structure of the problem and 
leveraging the structure via polynomial interpolation to equate average-case and worst-case hardness. 

Proof: Let {Hj } be a collection of independent Haar random gates and define 

K

k! 
k=0 

X
( ihj ✓)k 

Hj 
0 
(✓) =  Hj 

0 0 0where . Define the circuit  . Let  ⇥h i log H C (✓) C H (✓) (✓) = (C (✓))as= q p .j j 0

Y 

Notice that for a fixed choice of {Hj }, q(✓) is a low-degree polynomial in ✓. By  a  Feynman  path  integral  
(Fact 4), 

mX
|C 0

(✓)|y
0

i = hyj |[C 0
(✓)]j |yjhy

1

im

y1 ,...,ym 12{0,...,d 1}n j=1 

is a polynomial of degree mK as each term hyj |[C1

(✓)]j |yj 1

i is a polynomial of degree K. Therefore, q is a 
polynomial of degree 2mK. Now  assume  that  there  exists  a  machine  O such that O can compute p0(C 0

) for 
3/4+ 1/poly(n) of C 0 where C 0 is drawn from the distribution in the theorem statement. A simple counting 
argument shows that for at least 1/2 + 1/poly(n) of the choices of {Hj }, O correctly computes p0(C 0

(✓)) 
for at least 1/2 + 1/poly(n) of ✓. Call such a choice of {Hj } good. 

p(✓) 

✓ 

Supplementary Figure 2: Example of a true function p0(C) (dotted), inherent polynomial q(✓) =  p0(C0(✓)) (solid), 
and potentially noisy samples {(✓`, O(✓`))}. 

1Consider a machine O0 with fixed ✓
1

, . . . , ✓k 2 [0, ) that queries O(✓`) for ` = 1, . . . , k. Then 
poly(n) 

O0 applies the Berlekamp-Welch Algorithm [36] to compute a degree 2mK polynomial q̃ from the points 
{(✓`,O(✓`))}`=1,...,k and returns the output q̃(1). 

Theorem 15 (Berlekamp-Welch Algorithm [36]) Let q be a degree d univariate polynomial over any 
field F. Suppose we are given k pairs of F elements {(xi, yi)}i=1,...,k with all xi distinct with the promise that 
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yi = q(xi) for at least min(d+1, (k +d)/2) points. Then, one can recover q exactly in poly(k, d) deterministic 
time. 

We remark that if we choose k = 100mK, then  for  a  good  {Hj } with high probability (by a Markov’s 
inequality argument), the polynomial q̃ = q. Therefore, q̃(1) = q(1) = p0(C 0

(1)). Since  at  least  1/2 +  
1/poly(n) of {Hj } are good, by repeating this procedure poly(n) times and applying a majority argument, we 
can compute p0(C 0

(1)) exactly. It only remains to show that p0(C 0
(1)) is a 2 poly(n) additive approximation 

to p0(C), a  #P-hard quantity. 
Using standard bounds for Taylor series, one can easily show that |p0(C 0

(1)) p0(C)| is at most 2O(nm)/((K)!)

m 

(This will be formally proven in Section 1.3 Fact 19 of the Supplementary Information). As we choose 
K = poly(n), this  is  at most  2 poly(n) for every desired polynomial. ⇤ 

1.2 Interpreting and extending Theorem 1 

We have now established a worst-to-average case reduction with respect to the distribution D0 def 
C = C ⇥HA,✓,K . 

We now provide several sections to interpret this result. First, although we have changed the distribution 
over which average-case hardness is established, we show that hardness over the new distribution, Theorem 
1, is necessary for Conjecture 14 to be true in Section 1.3 of the Supplementary Information. Second, we 
show the approximate version of this theorem (over the family of distributions D0 ) is  equivalent to the C 
original conjecture (over HA) – see Section 1.4 of the Supplementary Information. So an approximation-
robust version of Theorem 1 would prove the original Conjecture 14 – which is precisely what we desire 
from our result. Hence Theorem 1 is precisely an analog of Theorem 13 for BosonSampling. Additionally, 
although our result is phrased in terms of exactly computing p0(C 0

), we  show  we  can  make  this  result  robust  
to some fixed inverse exponential approximation error (see Section 1.7 of the Supplementary Information) – 
this follows from the same arguments used in BosonSampling [8]. So, to prove Conjecture 14, one only needs 
to improve the robustness. 

At a high level, to see why our hardness result is necessary for Conjecture 14 to be true, consider the 
values of the parameters in Conjecture 14, which we state here: 

Conjecture 14 There exists an architecture A so that the following task is #P-hard: Approximate |h0n| C |0ni|2 

3 1to additive error ±✏/2n with probability + over the choice of C ⇠ HA in time poly(n, 1/✏).
4 poly(n) 

1Conjecture 14 assets that is it #P-hard to compute anything in an interval of radius around the 
2

n
poly(n) 

point p0(C) on average over the choice of C. Our  result  states  that  it  is  #P-hard to compute a different 
quantity p0(C 0

) on average, where C 0 is a truncated version of C (which we can also show remains true up to 
a tiny inverse-exponential amount of  additive error).  But  this quantity  p0(C 0

) is extremely close to p0(C). 
The fact this hardness is necessary for Conjecture 14 essentially follows from the fact that this hardness 
interval is completely contained within the window of conjectured hardness. The fact that making it robust 
would be sufficient to prove Conjecture 14 essentially follows from that fact that p0(C) and p0(C 0

) are so 
close to one another that a 2 n/poly(n) approximation to one is a 2 n/poly(n) approximation to the other 
and vice versa. This is illustrated in Supplementary Figure 3. 

Furthermore, we note that this hardness result is generic. One can easily show our proof techniques apply 
to essentially any distribution D over quantum circuits over qubits with the following properties: 

• The support of D contains instances which are worst-case #P-hard. 

• D “scrambles” any worst-case instance back to D (or some distribution close in total variation distance). 

• D is a continuous distribution over gates. 

The necessity of the corresponding hardness result carries through as well. Therefore, our result is a generic 
tool for establishing hardness of distributions of randomly chosen circuits over qubits. 

4 
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p0(C) p0(C 0
) 

n n n
2 2 2 

poly(n) exp(n) exp(n) 

Supplementary Figure 3: Our hardness result in the context of Conjecture 14. Our result establishes that outputting 
any number in the blue hashed interval centered around p0(C0) on average is #P-hard, while the original conjecture 
states that outputting any number in the larger grey interval around p0(C) on average is #P-hard. Note: the two 

intervals of length 2 n 
correspond to two different exponential functions. 

exp(n) 

1.3 Theorem 1 is necessary for Conjecture 14 

To reflect on our result, Theorem 1 shows that a worst-to-average-case reduction is indeed possible with 
respect to a distribution over circuits that is close to the distribution HA we desire. Here we show that 
the hardness result established in Theorem 1 will be necessary to prove Conjecture 14. At a high level, this 
is because the discretized circuit amplitudes are exponentially close to those of the base circuit, and this 
perturbation falls within the approximation window of Conjecture 14. 

Let us start by choosing some convenient notation. For the purposes of this section, let us fix an 
1architecture A as well as parameters ✓ = , and  K = poly(n). Then, with respect to a fixed circuit 

poly(n) 

C over this architecture, we denote the distribution C ⇥ HA,✓ as DC (i.e., the corresponding ✓ perturbed 
Haar-distribution), and C⇥ HA,✓,K will be denoted D0 (i.e., the corresponding (✓,K) truncated perturbed C 
Haar-distribution). We also define the joint distribution of DC and D0 , which we denote by JC . This is the C 
distribution over pairs of circuits (C

1

, C
2

) generated by choosing independent Haar random gates {Hj }j=1...m 

and using this choice to publish C
1 from DC and C

2 from D0 , using  the  same  choice  of  {Hj }. Then, the C 
marginal of JC on C

1 is DC and on C
2 is D0 but they are correlated due to the same choice of {Hj }. For  C 

simplicity of notation, we will often suppress the argument C and simply write D,D0 ,J . 
Now we will show how to use the existence of an algorithm for computing probabilities of most circuits 

with respect to the D0 to estimate probabilities of most circuits drawn from HA. We  introduce  one  more  
helpful definition for these results, namely: 

Definition 16 We say an algorithm O ( , ✏)-computes a quantity p(x) with respect to a distribution F over 
inputs if: 

Pr [p(x) ✏  O(x)  p(x) +  ✏] 1 . 
x⇠F 

In other words, the algorithm computes an estimate to the desired quantity with high-probability over 
instances drawn from F . In these terms, the main result of this section will be: 

Theorem 17 Suppose there exists an efficient algorithm O that for architecture A, (✏, )-computes the 
p0(C 0

) probability with respect to circuits C 0 ⇠ D0, then there exists an efficient algorithm O0 that (✏0 , 0
)-

0computes the p0(C 0
) probability with respect to circuits C 0 ⇠ HA, with  ✏0 = ✏+1/exp(n) and = +1/poly(n). 

Note that, as in the statement of Theorem 1, the algorithm O is assumed to work for D0 for any choice 
of C (since D0 is defined relative to a circuit C). From this, one has the following immediate corollary: 

Corollary 18 Conjecture 14 implies Theorem 1. 

Proof: If there is an algorithm exactly computing probabilities on average (i.e. with probability 3 
+ 1 )

4 poly(n) 

over D0, then  there  is  an  algorithm  approximately  computing  probabilities  on  average  over  HA. Therefore, if 
approximately computing probabilities on average over HA is #P-hard, then exactly computing probabilities 
on average over D0 is #P-hard as well. Hence Conjecture 14 implies there exists some architecture A for 
which exactly computing probabilities on average over D0 is #P-hard. In fact, Theorem 1 says something 
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even stronger than this, as it applies to all architectures with worst-case #P-hardness. Therefore a weaker 
form of Theorem 1 is necessary for Conjecture 14 to be true. ⇤ 

In other words, our main result is necessary for the quantum supremacy conjecture (Conjecture 14) to 
be true. 

We start proving Theorem 17 by establishing two facts which relate the distributions of circuits drawn 
from the joint distribution J . A  natural  interpretation  of  Facts  19  and  20  is  as  statements  about  the  proximity  
of output probabilities and input distributions, respectively. Fact 19 states that the output probabilities of 
circuits drawn from the joint distribution J are effectively the same. Fact 20 states the perturbed distribution 
is essentially HA – therefore,  choosing the inputs  from  HA or the perturbed distribution is immaterial. 

Fact 19 Let A be an architecture over circuits and C a circuit in the architecture. Let (C
1

, C
2

) be circuits 
drawn from J . Then the zero probabilities of C

1 and C
2 are close; namely, 

poly( )n

X

|p0(C1

) p0(C2

)|  2 . 

Proof: By expanding the exponential as a Taylor series, we can express each gate C
1,j and C

2,j of C
1 and 

C
2

, respectively, as  

1 KX
! !

( ihj ✓)k 
( ihj ✓)k 

C
1,j = Cj Hj ; C

2,j = Cj Hj . 
k! k! 

Y 

k=0 k=0 

( ihj ✓)
k 

Therefore, C
1,j C

2,j = Cj Hj 

⇣P1 
⌘
. We  can  apply  the  standard  bound  on  Taylor  series  to  k=K+1 k! 

bound | hyj |C1,j C
2,j |yj 1

i|  for some constant . Applying  this  to  a  Feynman  path  integral,  K! 

Ym m ⇣m⌘X
2

O(nm) 

 2n(m 1) · O| h0|C
1

|0i� h0|C
2

|0i|  hyj |C1,j |yj 1

i� hyj |C2,j |yj 1

i = . 
K! (K!)

m 
j=1 j=1

y1,...,ym 

This proves that the amplitudes are close. As the amplitudes have norm at most 1, then the probabilities 
are at least as close. The result follows by a sufficiently large choice of K = poly(n). ⇤ 

Fact 20 Let A be an architecture on circuits with m gates and C 2 A a circuit from that architecture. Then 
the distribution HA and D are O(1/poly(n)) close in total variation distance. 

Note that D depends on C, and  that Fact 20 holds  for  any choice of C. 
Proof: 

To prove this, we will show that for any particular gate of the circuit, the distributions induced by HA and 
D are O(✓) close in total variation distance. Then the additivity of total variation distance for independent 
events implies that the distributions are O(m✓)-close (i.e. if D and D0 are ✏-close in total variation distance, 
then n independent copies of D are n✏-close to n independent copies of D0). The result then follows from a 
suitably small choice of ✓ = 1/poly(n). 

Now consider the distributions HA and D on a single two-qubit gate. Since the Haar measure H is 
left-invariant, the distance between these is equivalent to the distance between C ⇥ H and D = C ⇥ H✓, 
where H✓ is the perturbed Haar distribution on a single gate. Since total variation distance is invariant 
under left multiplication by a unitary, this is equivalent to the distance between H and H✓. 

Intuitively, the reason these are O(✓) close is as follows: consider a random rotation in SO(3), vs.  a  
random rotation in SO(3) which has been “pulled back” towards the identity. By construction, the axes 
of rotations will be uniformly random over the sphere in both distributions. The only difference between 
the distributions lies in their angles of rotation – the former’s angle of rotation is uniform in [0, 2⇡] while 
the latter’s is uniform in [0, 2⇡(1 ✓)]. These distributions over angles are clearly ✓-close in total variation 
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distance. This immediate implies these distributions over matrices are ✓-close in total variation distance as 
well since matrices are uniquely defined by the eigenbasis and eigenvalues. 

We can extend this logic to the two-qubit case as well. By construction the distributions H and H✓ 
i✓ log Awill be diagonal in a uniformly random basis U (since “pulling back” a matrix A by e preserves the 

eigenbasis). Hence the only difference between these distributions lies in their distribution over eigenvalues. 
We will show their distribution over eigenvalues are O(✓) close in total variation distance, which will imply 

i✓4the claim. In particular, the distribution of eigenvalues ei✓1 , ei✓2 , ei✓3 , e of a two qubit gate drawn from H 
is given by the density function, due to Weyl (e.g. [40]), 

Pr

h
✓i ˆ

i
/= ✓i 

Y
e 

2 
i✓ˆi i✓ˆje . 

i6=j 

In contrast the distribution over eigenvalues of a two-qubit gate drawn from H✓ is 

Pr

h
✓i ˆ

i
/= ✓i 

8
>< 

>: 

0 9i : ✓ˆi 2⇡(1 ✓) 
Y

2 
e i✓

ˆ

i i✓ˆje o.w. 
i6=j 

One can easily compute that the total variation distance between these measures is O(✓), which implies the 
claim. This simply uses the fact that the above density function is smooth and Lipschitz, so a version of the 
same density function which has been “shifted” by ✓ is O(✓) close in total variation distance. ⇤ 

Armed with these facts we are now ready to prove Theorem 17. We divide the proof into two steps, 
encapsulated into two lemmas (Lemmas 21, 22). In the first, we show how to use an algorithm that works on 
average over circuits drawn from D0 to get an algorithm that works on average over pairs of circuits drawn 
from H and D. 

Lemma 21 Suppose there exists an algorithm O that for any circuit C from a fixed architecture A takes as 
input a circuit C

2 sampled from D0 and (✏, )-computes the p0(C2

) probability. Then there exists an algorithm 
O0 that receives as input a random circuit C ⇠ HA as well as a sample C

1 ⇠ D and (✏0 , )-computes the 
p0(C1

) probability, where ✏0 = ✏ + 1/ exp(n). 

Proof: This lemma is primarily a consequence of Fact 19. Our objective in the proof will be to develop an 
algorithm O0 that, given a circuit C

1 from the HA,✓ infers the corresponding circuit C
2 from HA,✓,K . Once  

it does this, it simply returns the output of O run on input C
2

. 
More formally, consider an algorithm O0 that is given as input C, as  well  as  a  pair  of  circuits  (C

1

, C
2

) ⇠ J , 
where J is the joint distribution with respect to C. Then O0 runs O on input C

2

. Clearly, from Fact 19, the 
output probabilities of C

1 and C
2 are exponentially close, so we can see that O0 

(✏ + 1/ exp(n), )-computes 
the quantity p0(C1

). 
Now by averaging over C, we  see  that  in  fact  O0 

(✏ + 1/ exp(n), )-computes p0(C1

) with respect to a 
distribution over triplets of circuits (C,C

1

, C
2

) in which C ⇠ HA and the pair (C
1

, C
2

) is distributed via the 
corresponding joint distribution J . Next  notice  that  instead  of  receiving  the  triplet  of  inputs  (C,C

1

, C
2

), 
O0 could simply have received a circuit C ⇠ HA and a circuit C

1 ⇠ D. This is because it can infer the 
truncated circuit C

2 directly from C and C
1

, by  left-multiplying  C
1 by C† to obtain the element drawn from 

HA,✓. As  ✓ is fixed beforehand, the algorithm can then deduce the corresponding element drawn from HA 

with probability 1 by simply diagonalizing each gate and stretching the eigenvalues by 1/(1 ✓). It can then 
compute the truncated Taylor series to obtain C

2

. The Lemma follows. ⇤ 

Next, we show how to use this new algorithm O0 that works on average over pairs of circuits drawn from 
HA and D to get an algorithm O00 that works on average over circuits drawn from HA. 

Lemma 22 Suppose there exists an algorithm O0 that takes as input a random circuit C ⇠ HA from a fixed 
architecture A as well as a circuit C

1 ⇠ D, and (✏, )-computes the p0(C1

) probability. Then there exists 
an algorithm O00 that (✏, 0

)-computes the p0(C) probability with respect to input circuits C ⇠ HA, with  
= + 1/poly(n). 
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Proof: This lemma is a direct consequence of Fact 20. In particular, Fact 20 implies that the input 
distribution to the algorithm O0, in which the first input circuit is drawn from HA and the second is drawn 
from D, is  1/poly(n)-close in total variation distance to the distribution over pairs of circuits independently 
drawn from HA which we refer to as H(2). This crucially relies on the property that Fact 20 is true for all A 
C, i.e.  D = DC (which depends on C) is  close  in  total variation  distance  to  HA for any choice of C. 

To see this, let A(C, C
1

) be the probability density function (PDF) for the distribution on inputs to O0 , 
and let B(C, C

1

) be the PDF for H(2) (when integrated with respect to the Haar measure on pairs (C, C
1

)).A 
Then we have that 

1 
Z 

1 
Z 

||A B|| = 
2 Z 

dCdC
1

|A(C, C
1

) 

1 
Z 

B(C, C
1

)| = 
2 

dCdC
1

|DC (C1

) 1| 

= 
Z 

dC 
2 

dC
1

|DC (C1

) 1| 

= dC||DC HA||  O(1/poly(n)) 

Where the first line follows from the fact that the PDF of the Haar measure is 1, and both measures’ 
marginal distribution on the first input is Haar, the second line follows from splitting the joint integral into 
two integrals, and the third from Fact 20 (which holds for all C) as  well as  the  convexity  of  integration.  

Note total variation distance can be interpreted as the supremum over events of the difference in proba-
bilities of those events. Considering the event that O0 is approximately correct in its computation of p0(C1

), 
this means if O0 is run on inputs from the distribution H(2) instead of from C ⇠ HA and C

1 ⇠ D, it will A 
still be correct with high probability. So O0 will (✏, + 1/poly(n))-compute p0(C1

) with respect to this new 
distribution H(2). Now these two input circuits are independently drawn, and so O0 can discard the unused A 
input circuit (i.e., the new algorithm O00 merely needs to run this modified O0 on its input circuit). We 
arrive at our Lemma. ⇤ 

The results from Lemmas 21 and 22 together prove Theorem 17. 

1.4 Approximate version of Theorem 1 is equivalent to Conjecture 14 

We have shown that Theorem 1 is necessary for Conjecture 14. In this section we show a further nice property 
of Theorem 1. Namely, we show that the approximate version of Theorem 1 is equivalent to Conjecture 14, 
by proving the converse of Theorem 17. At a high level this follows because the truncated and non-truncated 
amplitudes are inverse exponentially close to one another, so an inverse polynomial approximation to one is 
an inverse-polynomial approximation to the other and vice versa. This implies that proving an approximation 
robust version of our Theorem 1 would in fact prove the original Conjecture 14 as desired. Hence our result 
can be seen one particular exact version of Conjecture 14, and is analogous to what is known in the case of 
Permanents and BosonSampling [8]. 

Theorem 23 Suppose there exists an efficient algorithm O that (✏, )-computes the p0(C) probability with 
respect to circuits C drawn from HA. Then there exists an efficient algorithm O0 that for architecture A and 
any fixed circuit C, given  C as well as C 0 drawn from D0 ,C , (✏0 0

)-computes the p0(C 0
) probability, where 

0✏0 = ✏ + 1/exp(n) and = + 1/poly(n). 

Corollary 24 The following two statements are equivalent: 

• It is #P-hard to (✏, )-compute the p0(C) probability with respect to circuits C drawn from HA, for 
any ✏, =  ⌦(1/poly(n)). (i.e., Conjecture 14) 

• It is #P-hard to (✏, )-compute the p0(C 0
) probability with respect to circuits C 0 drawn from any dis-

tribution in D0 , for any ✏, =  ⌦(1/poly(n)).C 
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Proof: The proof closely resembles that of Theorem 17 - it makes careful use of Facts 19 and 20. Suppose 
O that (✏, )-computes the p0(C) probability with respect to circuits C drawn from HA. Now  note  that  
by Fact 20, for any C, D is O(1/poly(n)) close to HA in total variation distance. Again as total variation 
distance is a supremum over events of differences in probability, this means that if O is instead fed instances 
from D, it will remain correct with high probability (by considering the event the computation is correct). 
So O will (✏, + O(1/poly(n)))-compute the p0(C1

) probability with respect to circuits C
1 drawn from any 

distribution DC . 
Now suppose we create an oracle O0 which takes as input circuits C

1

, C
2 drawn from the joint distribution 

J (C), and  runs  O on C
1

. Now  by  construction  this  oracle  O0 will (✏, + 1/poly)-compute the p0(C1

). But  
by Fact 19 p0(C1

) is very close to p0(C2

), and  therefore  O0 will (✏ + 1/exp(n), + O(m✓))-compute the 
p0(C2

). But  now  note  that  one  can  infer  the  circuit  C
1 from the value of C

2

, as in the proof of Theorem 
17 (again one would simply left multiply C

2 by C†, diagonalize, infer the  values  of the  rotation  angles  i of 
the corresponding value of HA,✓, and  then  output  C

1

.) Hence one can remove C
1 as input to the circuit, 

and obtain an oracle which approximately computes p0(C2

) given arbitrary C and C
2 drawn from D0 byC 

inferring C
1 and running O on it. The theorem follows. ⇤ 

1.5 Sampling implies average-case approximations in the polynomial hierarchy 

In this section, we explain why Conjecture 14 implies quantum supremacy for RCS. In particular, we show 
that such an efficient classical algorithm for RCS would have surprising complexity consequences. This 
section will be very similar to analogous results in earlier work (see e.g., [8, 26, 27]). 

That is, we show that the following algorithm which we call an approximate sampler, is unlikely to exist: 

Definition 25 (Approximate sampler) An approximate sampler is a classical probabilistic polynomial-
time algorithm that takes as input a description of a quantum circuit C, as well as a parameter ✏ (specified 
in unary) and outputs a sample from a distribution D0 such that C 

D0||DC C ||  ✏ 

where DC is the outcome distribution of the circuit C and the norm is total variation distance. 

We note that this definition requires the approximate sampler to work for all circuits C. All  of  the  
arguments in this section would hold even if the approximate sampler worked on most circuits C drawn from 
HA. While this latter definition better corresponds to the definition of RCS, we will analyze the former to 
simplify our presentation. 

Our main result will connect the existence of an approximate sampler to an algorithm which will estimate 
the probabilities of most random circuits drawn from HA, in the following sense: 

Definition 26 (Average-case approximate solution) An algorithm O is an average-case approximate 
solution to a quantity p(x) with respect to an input distribution D if: 

Pr 
h
O(1

1/✏ , 11/ , x) p(x)  
✏ i 

1 . 
x⇠D 

2

n 

In other words, an average-case approximate solution outputs a good estimate to the desired quantity for 
most random inputs but might fail to produce any such estimate for the remaining inputs. 

More formally, the main theorem of this section, Theorem 28, proves that the existence of an approximate 
sampler implies the existence of an average-case approximate solution for computing the p0(C) probability 
of a random circuit C ⇠ HA. This average-case approximate solution will run in probabilistic polynomial 
time with access to an NP oracle. The main theoretical challenge in quantum supremacy is to give evidence 
that such an algorithm does not exist. This would certainly be the case if the problem was #P-hard, or as 
hard as counting the number of solutions to a boolean formula. Such a conjecture lies at the heart of all 
current supremacy proposals. More formally, this conjecture is: 
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Conjecture 14 There exists a fixed architecture A so that computing an average-case approximate solution 
to p0(C) with respect to HA is #P-hard. 

We now show how Conjecture 14 would rule out a classical approximate sampler for RCS, under well-
believed assumptions. Specifically, assuming this conjecture is true, Theorem 28 tells us that an approximate 
sampler would give an algorithm for solving a #P-hard problem in BPPNP . Now, BPPNP is known to be 
in the third-level of the PH (see e.g., [41]). In other words, BPPNP ✓ ⌃

3

. On  the  other  hand,  a  famous  
theorem of Toda tells us that all problems solvable in the PH can be solved with the ability to solve #P-hard 
problems. That is, PH ✓ P#P [42]. Putting everything together, we have that an approximate sampler 
would imply that PH ✓ ⌃

3

, a  collapse  of  the  PH to the third-level, a statement that is widely conjectured 
to be false (e.g., [43, 44]). 

Finally, we prove Theorem 28. The proof utilizes a classic theorem by Stockmeyer [39], which we state 
here for convenience. 

Theorem 27 (Stockmeyer [39]) Given as input a function f : {0, 1}n ! {0, 1}m and y 2 {0, 1}m there 
is a procedure that runs in randomized time poly(n, 1/✏) with access to a NPf oracle that outputs an ↵ such 
that 

(1 ✏)p  ↵  (1 + ✏)p for p =  Pr  [f(x) =  y]. 
x⇠U({0,1}n

) 

In the context of this work, the primary consequence of Stockmeyer’s theorem is that we can use an NP 
oracle to get a multiplicative estimate to the probability of any outcome of an approximate sampler, by 
counting the fraction of random strings that map to this outcome. Using this idea we prove: 

Theorem 28 If there exists an approximate sampler S with respect to circuits from a fixed architecture A, 
there also exists an average-case approximate solution in BPPNP

S 

for computing the p0(C) probability for a 
random circuit C drawn from HA. 

Proof: We start by proving a related statement, which says that if we can sample approximately from 
the outcome distribution of any quantum circuit, we can approximate most of the output probabilities of all 
circuits C. This statement, unlike the Theorem 28, is architecture-agnostic. 

Lemma 29 If there exists an approximate sampler S then for any quantum circuit C, there exists an average-
case approximate solution in BPPNP

S 

for computing the | hy| C |0i |2 probability of a randomly chosen outcome 
y 2 {0, 1}n . 

Proof: First fix parameters , ✏ > 0. Then for any quantum circuit C, S(C, 11/⌘ 
) samples from a distribu-

tion ⌘-close to the output distribution p of C. We  denote  this  approximate  outcome  distribution  by  q. By  
Theorem 27, there exists an algorithm O 2 BPPNP

S 

such that 

(1 )qy  O(C, y, 11/⌘ , 11/ 
)  (1 + )qy. 

Let q̃y = O(C, y, 11/⌘ , 11/ 
) for to be set later. Since q is a probability distribution, E(qy ) = 2  n. By  

Markov’s inequality,  
k
1 1 

 
k
1 1 

Pr qy  ;  Pr  |qy q̃y|  . 
y 

2

n k
1 y 

2

n k
1 

Secondly, let #y = |py qy|. By  assumption,  
P 

#y = 2⌘ so, therefore, E(#y) = 2⌘/2n. Another  Markov’s  y

inequality gives  
2k

2

⌘ 1 
Pr #y  . 
y 

2

n k
2 

With a union bound and a triangle inequality argument, 
 

k
1 + 2k

2

⌘ 1 1 
Pr |py q̃y|  + 
y 

2

n k
1 k

2 
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Choose k
1 = k

2 = 2/ , = (✏� )/4, ⌘ = /2. Then, 

✏ 
Pr

h
|py q̃y| 

i
 . 

ny 
2

Therefore, for any circuit C, the  algorithm  O is an approximate average-case solution with respect to the 
uniform distribution over outcomes, as desired. ⇤ 

Now we use the shared architecture constraint in the theorem statement to enable a so-called hiding 
argument. Hiding shows that if one can approximate the | hy|C|0i|2 probability for a random y 2 {0, 1}n , 
the one can also approximate p0(C) for a random C. This latter step will be crucial to our main result. In 
particular, both the anti-concentration property and our proof of average-case hardness of estimating circuit 
probabilities relies on considering a fixed output probability (see Sections 1.1 and 1.6 of the Supplementary 
Information). 

To prove this, we rely on a specific property of HA. This hiding property is that for any C ⇠ HA, and  
uniformly random y 2 {0, 1}n , Cy ⇠ HA where Cy is the circuit such that hz| Cy |0i = hz y| C |0i. In other 
words, the distribution over circuits needs to closed under appending Pauli X gates to a random subset of 
output qubits. 

Lemma 29 tells us that for any circuit C, an  approximate  sampler  gives  us  the  ability  to  estimate  most  
output probabilities hy| C |0i. If we instead restrict ourselves to HA, we  can  think  of  this  same  algorithm  
O as giving an average-case approximate solution to p0(C) with respect to the distribution generated by 
first choosing C from HA and then appending X gates to a uniformly chosen subset of the output qubits, 
specified by a string y 2 {0, 1}n, since  hy| C |0i = h0| Cy |0i. Using  the  hiding  property  this  is  equivalent  to  
an average-case approximate solution with respect to circuits C drawn from HA, as stated in Theorem 28. 

⇤ 

1.6 Connecting with worst-case hardness and anti-concentration 

Prior to this subsection, all of our results have been architecture agnostic– our worst-to-average case re-
duction in Section 1.1 of the Supplementary Information aims to reduce the presumed worst-case hardness 
of computing output probabilities of quantum circuits over a fixed architecture A to computing them on 
average over HA. 

Of course, for these results to be relevant to quantum supremacy, we need to establish that for the 
architectures A used in supremacy experiments, computing worst-case output probabilities is #P-hard. Then 
our worst-to-average-case reduction shows that computing average case probabilities for these experiments 
over HA is #P-hard – which is precisely what is necessary for the supremacy arguments of Section 1.1 of 
the Supplementary Information to hold. In this section, we will show that this requirement on A is quite 
mild. In particular, we will show that a candidate instantiation of RCS which is known to anti-concentrate 
– namely random quantum circuits on  a 2D grid  of depth  O(n) – easily satisfy this property. Therefore it 
is possible to have a single candidate RCS experiment which has both average-case #P-hardness as well as 
anti-concentration. 

Such worst-case hardness can be established via the arguments of Bremner, Jozsa and Shepherd [10]. 
Although we will not summarize these standard arguments here, the key technical ingredient is demonstrating 
that quantum computations over this fixed architecture are universal. This will imply that the power of the 
corresponding complexity class supplemented with the ability to do post-selected measurements is equal in 
power to PostBQP = PP by a result of Aaronson [45]. That is, to show our worst-case hardness result it 
suffices to show that the class of problems solvable by circuits over a fixed architecture is equal to BQP. This 
can be established by standard results from measurement-based quantum computation involving universal 
resource states [46, 47, 48]. Roughly speaking, these results allow us to prepare a fixed state on a 2D grid 
and simulate any quantum circuit by performing a sequence of adaptive one-qubit measurements on this 
state. Combining these results immediately implies that if an architecture A is capable of generating one of 
these universal resource states, then A contains #P-hard instances – because one could simply post-select 
the measurement outcomes such that no adaptivity is required. 
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To be more formal, let us define some notation. Let A ✓ A0 if the gates in A are a subset of those in 
A0 . Then if a circuit C is realizable in A, then  it  is  also  realizable  in  A0 - simply  by  setting  those gates  
not in A to the identity (of course, one can also expand this definition to consider a one-qubit gate to be a 
subset of a two-qubit gate - as one can always set the two-qubit gate to be the identity tensor a one qubit 
gate.) Consider the “brickwork” state defined by Broadbent, Fitzsimons and Kashefi [49]. The brickwork 
state | 

brick

i is a universal resource state for measurement-based quantum computation, which has nice 
properties. In particular it can be prepared by a constant-depth quantum circuit C

brick on a 2D grid, where 
gates only act on nearest-neighbor qubits. Let A

brick be the architecture of C
brick

, adding  on space for  one-
qubit gates on every output qubit. Then A

brick is universal for quantum computation under post-selection 
by the above arguments. Therefore these prior results immediately yield the following Lemma: 

Lemma 30 For any architecture A such that A
brick ✓ A, it  is  #P-hard to exactly compute probabilities in 

A. 

We first note that Lemma 30 is a worst-case hardness result: it states that exactly computing output 
probabilities for all circuits over A is #P-hard. However, the condition required to invoke Lemma 30 is 
extremely mild. It simply says that the architecture must contain a simple constant-depth nearest-neighbor 
circuit on a 2D grid as a subgraph. We now show that the mildness of this condition allow us to easily 
connect worst-case hardness to anti-concentration. 

Let us first define anti-concentration and state why it is important in the context of quantum supremacy. 
Broadly speaking, anti-concentration is a statement about the distribution of probabilities. It states that 
most output probabilities are reasonably large. 

Definition 31 (Anti-concentration) For a fixed architecture A, we say that RCS anti-concentrates on 
A, if there exists constants , > 0 so that: 

 
1 

Pr p0(C) 1 . 
C⇠HA 2n 

Crucially, this anti-concentration property allows us to reduce the hardness of average-case approximate 
solutions (which, by definition, approximate the desired circuit probability additively) to an  average-case  
solution that approximates the solution multiplicatively. As  such,  we  can  at  least  ensure  that  these  approxi-
mations are non-trivial, that is the signal is not lost to the noise. More formally, 

Lemma 32 For a fixed architecture A for which RCS anti-concentrates, if there exists an algorithm O that 
estimates p0(C) to additive error ±✏/2n for a 1 fraction of C ⇠ HA, then O0 also can be used to estimate 
p0(C) to multiplicative error ✏ ·  for a 1 fraction of C ⇠ HA. 

✏Proof: A rephrasing of the  additive  error assumption is  PrC2HA 

⇥
|O(C) p0(C)| > 

⇤
 . We  apply  a  

2

n 

union bound to argue that 

✏ h ✏ i
Pr [|O(C) p0(C)| >  ✏p0(C)]  Pr 

h
|O(C) p0(C)| > 

i
+ Pr  >  ✏p0(C)

C2HA C2HA 2

n C2HA 2

n 

 + . 

⇤ 
Anti-concentration is known for random quantum circuits of depth O(n). It is possible to show that this 

instantiation of RCS obeys the conditions of Lemma 30, and hence can exhibit both average-case hardness 
and anti-concentration simultaneously. More specifically, suppose that at each step one picks a random pair of 
nearest-neighbor qubits on a line, and applies a Haar random gate between those qubits, until the total depth 
of the circuit is O(n). Prior  work  has  established  that  such  circuits  are  approximate  quantum  two-designs,  
i.e. they approximate the first two moments of the Haar measure on all n qubits of the system [18, 50]. 
This, combined with the fact that unitary two-designs are known to anti-concentrate (which was noted 
independently in multiple works [19, 31, 32]), implies that random circuits of depth O(n) anti-concentrate. 
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These results immediately generalize to random circuits of depth O(n) on a 2D grid. Note one can easily 
show that with probability 1 o(1/poly(n)) over the choice of a random circuit in this model, the architecture 
of the circuit obeys Lemma 30. Hence, computing average-case probabilities over this random circuit model 
is #P-hard. Although here we are discussing average-case hardness over a random choice of architecture, 
this result easily follows from our reduction for a single architecture, since w.h.p. the architecture drawn is 
hard on average. 

Therefore, random circuits of depth O(n) on a 2D grid obtain both average-case hardness and anti-
concentration. We note that it is conjectured that random circuits of depth O(n1/2

) on a 2D grid anti-
concentrate as well [9]. If this conjecture is true then such circuits would also exhibit both anti-concentration 
and average-case hardness, as we only require constant depth to satisfy Lemma 30. 

1.7 Approximate sampling to a fixed inverse exponential suffices 

The statement of Theorem 1 describes the hardness of exactly computing the probabilities p0(C 0
) over the 

choice of C 0 from the distributions D0 . In this Section, we show that the statement can be improved to show C 
nthat it remains #P-hard to approximately compute these probabilities to inverse exponential error 2 
d 
, for  

some fixed but arbitrary d (this parameter is set when one picks the degree of truncation K of the truncated 
circuit inputs.) This follows from the arguments outlined in Aaronson and Arkhipov, who noted the same 
fact for their context [8]. Combining this with Theorem 23, one sees that in order to prove Conjecture 14, 

none simply needs to improve this approximation tolerance from 2 
d 

to 1/poly(n). 
In particular, we can modify the proof of Theorem 1 as follows. Assume instead that our machine O 

napproximately computes p0(C 0
) with tolerance 2 

d 
with probability 1 1/2mK2 when C 0 is drawn from 

D0 . Now, we instead randomly choose uniformly spaced 2mK +1  values {✓`} and interpolate the polynomial C 
nq̃(✓) from the points {(✓`, O(✓`)}. Then with high probability, q̃(✓`) will differ from q(✓`) by at most 2 
d 
. 

We now apply the technique of Aaronson and Arkhipov [8]. By an argument of Rakhmanov [51], we 
can further argue that for a range [a, b] with 0  a < b   1/poly(n) and b a =  ⌦(1/poly(n)), that  for  

d0 
nevery ✓ 2 [a, b], |q(✓) q̃(✓)|  2 where d0 is a constant dependent on d. In other words the difference 

between these polynomials is uniformly bounded within some (slightly narrower and taller) box. It is then 
na consequence of  a lemma of  Paturi [52] that  |q(1) q̃(1)|  2 
c 

– i.e.,  our polynomial interpolated  on  the  
noisy data is still a good approximation of our quantity of interest. 

In [8], this argument is omitted but it is stated that it follows from a result of Paturi [52]. Although 
the argument of Paturi is insufficient by itself, we thank Aaronson for pointing out that it can be fixed by 
coupling it with Rakhmanov’s result [51]. 

The rest of the proof follows that of Theorem 1. We note that we are unable to use the Berlekamp-Welch 
Algorithm [36] directly in this error-robust theorem as it is not robust to noise. This requires us to assume 
that the machine O produces an approximately correct estimate with probability 1 1/poly(n). The  same  
issue affects Aaronson and Arkhipov’s result [8]. 

2 Verification of Random Circuit Sampling 

2.1 Proof of Theorem 9 

Theorem 9 For every unitary U , there exists a distribution DU such that, with probability 1 o(1) over the 
choice of U from the Haar measure, |DU pU | 0.99, and yet CE(DU , pU ) is O(1/N ⇥(1)

)-close to ideal. 

Proof: (Sketch) 
The basic idea is to consider a “rescaled” distribution on 1/k of the outputs for some sufficiently large 

1integer k. That is, we will assign probability 0 to 1 fraction of the outputs, and multiply the probabilities k 
1on the remaining outputs by k. By  construction,  this  has  total  variation  distance  roughly  1 from the k 

ideal distribution and relatively small entropy. However, one can show it is essentially indistinguishable from 
the point of cross-entropy difference – that is the cross-entropy difference is exponentially close to the ideal. 
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To be more precise, consider listing the strings x 2 {0, 1}n as x
1

, . . . , xN in order of increasing pU (x). 
Label the strings xi, i = 1  . . . N , such  that  i < j  implies pU (xi) < pU (xj ). For simplicity, we will focus 
only on the “middle 99.9 percent” of the distribution, i.e., we will pick constants c

1

, c
2 such that with high 
c1 c2probability over the choice of U , 99.9 percent of probability mass is on xi satisfying < pU (xi)  . We  N N 

c1will consider values of i between imin, the  smallest  i such that < pU (xi), and  imax, the  largest  i such that N 
pU (xi) < c2 .N 

Now consider the distribution DU defined as follows: 

DU (xi) =  

8
>< 

>: 

pU (xi) i < imin or i > imax 

pU (xi) +  pU (xi+1

) +  . . .+ pU (xi+k 1

) imin  i  imax and i = kN 

0 imin  i  imax and 6i = kN. 

It is not hard to see that the total variation distance between this distribution and the ideal distribution 
1is 0.99(1 ) in expectation over the choice of U , and  hence  if  k = 500 with high probability is more than k 

0.99 by standard concentration inequalities. Furthermore, a careful but straightforward calculation shows 
that the CE of this rescaled distribution DU and pU is exponentially close to the ideal score. 

⇤ 

2.2 The importance of the “shape” of RCS output distributions 

A basic property of RCS is that typical outcome distributions have a “Porter-Thomas”, or exponential shape. 
That is, when one draws random unitary U , for  any  choice  of  constants  c

1 < c
2 the number of x with pU (x) in 

c2the range [c
1

/N, c
2

/N ] will be roughly N
R

e qdq in expectation. Therefore, by concentration of measure, 
c1 

with high probability over the choice of U , the  distribution  induced  by  choosing  a  random  x and sampling 
pU (x) is close to (a discretized version of) the Porter-Thomas, or exponential distribution. 

By itself, such a Porter-Thomas distribution is not a signature of quantumness – below we give an 
example of a classical physical process resembling the physics of a noisy/decoherent quantum system, which 
can reproduce the “Porter-Thomas shape”. The significance of the Porter-Thomas distribution lies in the fact 
that it has constant variation distance away from the uniform distribution. This fact facilitates statistical 
measures that take into account not only the shape of the distribution, but also the identities of which 
output strings correspond to which probabilities pU (x) under the ideal distribution. 

Example: Consider a system of n+ m classical bits, the first n of which we will call the “system”, and the 
second m of which we will call the “environment”. Suppose that the system bits are initialized to 0, while 
the environment bits are chosen uniformly at random. Now suppose that one applies a uniformly random 
classical permutation to these n+ m bit strings (i.e., a random element of S

2

n+m ) and  observes  the  first  n 
system bits many times (while ignoring the environment bits) with the same choice of but different settings 
of the environment bits. A diagram of this process is provided below in quantum circuit notation, but note 
this is a purely classical process. 

0

n / 

I /
2

m 

/ 

/ 

Now we claim that the “shape” of this probability distribution closely resembles Porter-Thomas. Over the 
choice of , each  input  string  on  n+ m bits is mapped to a uniformly random output string on n+ m bits 
(of which we only observe the first n bits). Therefore, this process resembles throwing 2m balls (one for 
each possible setting of the environment bits) into 2n bins (one for each possible output string of the system 
bits). We note that this approximation is valid only if m is sufficiently large (say m = n) – otherwise one 
would “notice” that is a permutation rather than a random function, and the ball throws would not be 
approximately independent. This is analogous to the fact that the amplitudes of a random quantum state 
are only approximately independent because they are subject a normalization constraint. For simplicity, 
suppose we set m = n (though we do not claim this choice is optimal). It is well known that in the large 
n limit, the distribution of the number of balls in each bin is close to the Poisson distribution with mean 
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n 1

2

m 
= 1  [53], i.e., the number of balls thrown into each bin is described as Pr[c = k] =  where c is the k!e 

count in a particular bin. So normalizing by the number of balls, we see that for any output string x, 
 

k 1 
Pr p

Poisson (x) =  = . 
N k!e 

We claim that this distribution is a natural classical imposter of Porter-Thomas. Since k! = 2

⇥(k log k), 
this distribution is also (approximately) exponential. So this can be seen as a discretized version of Porter-
Thomas, where the discretization resolution can be made finer by choosing larger m. Just  as  the  Porter-
Thomas distribution approximately describes the distribution on output probabilities of a quantum system 
under a random choice of U , here  the  Poisson  distribution  approximately  describes  the  distribution  on  output  
probabilities of this classical system under a random choice of . And as the Porter-Thomas distribution is 
reproduced with unitary k-designs for sufficiently large k, here  the  Poisson  statistics  are  reproduced  when  
is chosen from a k-wise independent family for sufficiently large k. This follows because the number of bins 
with k balls is a kth order moment of the distribution. 

2.3 The relationship between cross-entropy and HOG 

The last section highlighted that any supremacy proposal based on outcome statistics must directly incorpo-
rate the relationship between outcome strings and their probabilities. One verification measure which takes 
this into account directly is Aaronson and Chen’s Heavy Output Generation (or HOG). The task required 
of the quantum computer is simple: given a circuit description of a unitary U , output  a  list  of  strings  such  
that a substantial fraction of them are “heavy” in the ideal output distribution: 

Definition 33 ([28]) Given as input a random quantum circuit U drawn from HA, generate output strings 
x
1

, . . . , xk, at least a 2/3 fraction of which have greater than the median probability in pU . 

At first glace, this statistical test seems unrelated to cross-entropy. However, these measures are more 
similar than they first appear. Indeed, note than one can easily restate the HOG task as taking a certain 
expectation value over the device’s output distribution. 

Definition 34 A family of distributions {DU } satisfies Heavy Output Generation (HOG) iff the following 
holds: Let 

HOG(DU , pU ) =  
X 

DU (x) (pU (x)) 
x2{0,1}n 

ln 2 where (z) = 1  if z and 0 otherwise. Then the family is said to satisfy HOG if N 

EU⇠HA HOG(DU , pU ) 2/3. 

The quantity ln(2)/N is chosen because it is the median of Porter-Thomas. This is empirically measured as 
follows: pick a random U , obtain  k samples x

1

, . . . , xk from the experimental device and compute: 

1 X
H = (pU (xi)). (5)

k 
i=1,...,k 

Phrased in this language, the similarities between cross-entropy and HOG (equations (1) and (5)) are 
readily apparent. Both are approximating the expectation value of some function of the ideal output prob-
abilities f(pU (xi)) over the experimental output distribution. In the case of cross-entropy, f(x) = log(1/x). 
And in the case of HOG, f(x) =  (x). Both  measures  require  only  a  small  number  of  samples  from  the  
experimental device to compute to high accuracy by concentration of measure. Furthermore, cross-entropy 
and HOG directly verify more than just shape – rather they identify a particular relationship between out-
come strings and their probabilities, and ensure that the quantum device tends to output “heavy” elements 
of the ideal distribution (with respect to some measure of heaviness). 
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While we have shown there is a natural noise model assumption under which classically scoring well on 
cross-entropy leads to a collapse of the polynomial hierarchy, no such connection is known for HOG. On 
the other hand, Aaronson and Chen connected the hardness of performing HOG to a complexity theoretic 
assumption known as QUATH. This is a nonstandard complexity conjecture and it remains open to connect 
the hardness of HOG to more standard complexity conjectures such as the non-collapse of the Polyno-
mial Hierarchy. In short, these two measures verify quantum supremacy under two very different types of 
conjectures. 
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