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In section 3.2, after equation (13)we stated ‘In the special case where δ does not depend on time andα(0)=0,
the solution isα(t) from equation (6).’This is only correct if the phasef in (13) is substituted by−f+π. Since
this phase can be defined arbitrarily, its change has no effect on the physics and all other results remain valid.
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Abstract
Coherently displaced number states of a harmonically bound ion can be coupled to two internal states
of the ion by a laser-inducedmotional sideband interaction. The internal states can subsequently be
read out in a projectivemeasurement via state-dependent fluorescence, with near-unitfidelity. This
leads to a rich set of line shapeswhen recording the internal-state excitation probability after a
sideband excitation, as a function of the frequency detuning of the displacement drivewith respect to
the ion’smotional frequency.We precisely characterize the coherent displacement based on the
resulting line shapes, which exhibit sharp features that are useful for oscillator frequency
determination from the single quantum regime up to very large coherent states with average
occupation numbers of several hundred.We also introduce a technique based onmultiple coherent
displacements and free precession for characterizing noise on the trapping potential in the frequency
range of 500 Hz–400 kHz. Signals from the ion are directly used tofind and eliminate sources of
technical noise in this typically unaccessed part of the spectrum.

1. Introduction

As this focus issue onQuantumOptomechanics showcases, themanipulation of quantum states of a harmonic
oscillator (HO) is a theme of current interest across awide range of experimental platforms. Often themethods
developed on one platform, in our case a single, harmonically bound atomic ion, can be adapted tomany other
platforms, after suitablemodifications of the original procedures. An important example is resolved sideband-
cooling ofmicro-fabricated oscillators, theoretically described in [1, 2], that bears strong analogies to the
methods thatwere first developed for single-ionmechanical oscillator systems [3–5]. In this contribution to the
focus issue, ground-state cooling is combinedwith another basic idea that is widely applicable acrossHO
platforms, namely coherent displacements that can be conveniently implementedwith a classical force that is
near resonant with theHO frequency [6]. Thefinal ingredient used here is a suitable two-level system, in our case
two internal electronic states of a single ion, that can be coupled to theHOmotion and read outwith a projective
measurement to gain information about the state of theHO.A superconducting qubit is just one example of an
effective two-level system that has been coupled to a co-locatedmicro-fabricatedHO [7]. Therefore, the
methods described in this contributionmight also be adaptable and useful to the rapidly growing community
that studiesHO systems in the quantum regime.

Exciting theHOmotion of trapped charged particles with aweak oscillating electric field, amethod often
called a ‘tickle,’ has long been used to determinemotional frequencies and subsequently the charge-to-mass
ratio in various ion trap based devices, for example in ion-trapmass spectrometers [8, 9]. The response of the
ions can be detected by counting resonantly ejected particles, by resonance absorption of the driving field [10], or
through image currents in the trap electrodes [11]. For certain atomic ions, it is possible to detect the ionmotion
through changes of scattered light that depends on velocity via theDoppler effect [12]. An important practical
advantage of a tickle is that it only interacts with the charge of the ion, therefore it is immune tomagnetic field or

RECEIVED

30October 2018

REVISED

5 February 2019

ACCEPTED FOR PUBLICATION

7 February 2019

PUBLISHED

19March 2019

Not subject to copyright in theUSA.Contribution ofNIST

https://doi.org/10.1088/2058-9565/ab0513
https://orcid.org/0000-0002-2215-2641
https://orcid.org/0000-0002-2215-2641
https://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/ab0513&domain=pdf&date_stamp=2019-03-19
https://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/ab0513&domain=pdf&date_stamp=2019-03-19


AC-Stark shifts thatmay restrict howwell theHO frequency can be determined spectroscopically, for example
by resolving themotional sidebands of internal transitions of ions [13].Many other implementations ofHO
systems have analogousmechanisms available, for example excitation of amicro-fabricated resonator by driving
it with a piezo-electric element orwith a capacitively coupled electric circuit.

The ticklemethod can be further refinedwith atomic ions that are cooled close to the ground state of their
motion and can be coupled to a two-level system through resolved sideband transitions [4, 13]. Near the ground
state ofmotion, the probability of driving a ‘red sideband’ transition, where the internal state change of the ion is
accompanied by reducing the number of quanta in themotional state ñ  - ñ∣ ∣n n 1 , is strongly suppressed and
can be used to determine the averageHOoccupation number n̄ [5, 13]. Starting near the ground state, a resonant
tickle can add quanta ofmotion such that the red sideband can be driven again, as discussed qualitatively in [14].
Forweak excitation, n̄ 1, we observe responses close to the Fourier limit of the tickle pulse, as wewill describe
inmore detail and have experimentally demonstrated.

If the tickle excitation acts longer orwith a larger strength, an ion in the ground state can be displaced to
coherent states with an averageHOoccupation number n̄ 1. The Rabi frequency of sideband transitions
depends nonlinearly on n̄, which leads to collapse and revival of internal state changes that are one of the
hallmarks of the Jaynes–Cummingsmodel [15–17]. Herewe examine the probability of changing the internal
state theoretically and experimentally, as a function of tickle detuning relative to the frequency of aHOmotional
mode of the ion.When probing the red sideband transition after displacing to n̄ 1, we observe rich sets of
features with steep and narrow side lobes around the resonance center. Such nonlinear responses can in
principle be used tofind the frequency of themotionwith better signal-to-noise ratio thanwhat the Fourier limit
implies for smaller coherent states where n̄ 1 and the response of the ion is essentially linear.

A sequence of coherent displacements alternatingwith free evolution of themotion, inspired by spin-echos
[18] and dynamical decoupling [19, 20], can be used to obtain a frequency-filtered response of the ion.We
implement and characterize such sequences by observing andmodeling the ion response to deliberately applied,
monochromaticmodulations to the trapping potential curvature. Similar sequences can then be usedwithout
appliedmodulations. In this case, the response of the ion can be attributed toHO frequency noise that is
intrinsic to our system, allowing us to characterize noise on the trap potential in a frequency range of 500 Hz–
400 kHz, awide frequency range that has not been studied in detail in previouswork [21].With thismethod,
several narrow band technical noise components (spurs) in our setup could be identified through the direct
response of the ion. The noise was traced back to digital-to-analog converters (DACs) used in our setup and
eliminated by replacing themwith analog power supplies.

2. States and ionfluorescence signals from coherent displacements

Weconsider a single ionwith charge q andmassm confined in a harmonic trapping potential withminimum
position at r0, such that themotion of the ion can be described by three normalHOmodeswith approximate
frequencies  w w wx y z . By using a coordinate systemwhere the axis directions coincidewith the normal
mode directions, we canwrite the ion position as d= +r r r0 . The interaction of the ionwith an additional
uniform electric fieldE can be described as

d= ( · ) ( )H q E r . 1E

For theHO in the x-directionwe introduce ladder operators â and ˆ†a towrite a time independentHamiltonian as

w= ˆ ˆ ( )†H a a. 2x0

Wehave suppressed the ground state energy since it is a constant term that does not change the dynamics. The
real oscillator we observe in the experiment has frequency noise and is therefore not always sufficiently described
byH0.Wewill consider the change in dynamics due to frequency noise inmore detail in section 3.We replace δx
by its equivalent quantummechanical operator d = +ˆ ( ˆ ˆ)†x x a a0 with  w= ( )x m2 x0 the ground state
extent of the oscillator. For the normalmode in this direction, and in the interaction picture relative toH0, the
interactionwith an oscillating electricfield w f= +( ) ( )E t E tcosx 0 becomes




= W + +
= W + + +

w w w f w f

d f d f s f s f

- + - +

- + + + - +

( ˆ ˆ )( )
( ˆ ˆ ˆ ˆ ) ( )

† ( ) ( )

† ( ) ( ) † ( ) ( )
H a a

a a a a

e e e e

e e e e , 3
I x

t t t t

x
t t t t

i i i i

i i i i

x x

with the coupling W = ( )qE x 2x 0 0 and δ=ω−ωx,σ=ωx+ω. If the oscillating field is close to resonance
with the normalmode, d s∣ ∣ , the faster-rotating terms containingσ can be neglected to a good
approximation and the interaction takes the formof a coherent drive detuned by δ
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W +d f d f- + + ( ˆ ˆ ) ( )† ( ) ( )H a ae e . 4I x
t ti i

Wecan formally integrate the equation ofmotion forHI [6, 22, 23] to connect an initial state Y ñ∣ ( )0 at t=0
when the electric field is switched on to the coherently displaced state after evolution for duration t, Y ñ∣ ( )t

aY ñ = Y ñF∣ ( ) ˆ ( ( )) ∣ ( ) ( )( )t D t e 0 , 5ti
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The phaseΦ(t) can play an important role, for example, in two-qubit gates [23, 24] or interferometric
experiments that combine internal degrees of freedomof the ionwithmotional states [25, 26]. Here, wewill be
interested only in the average occupation number = áY Y ñ¯ ( )∣ ˆ ˆ∣ ( )†n t a a t , which does not depend onΦ(t). If the
initial state is theHOground state, Y ñ = ñ∣ ( ) ∣0 0 the average occupation is

a
d

d= =
W

-⎜ ⎟⎛
⎝

⎞
⎠¯ ( ) ∣ ( )∣ [ ( )] ( )n t t t2 1 cos . 7x2

2

On resonance (δ=0) the coherent state amplitude grows linearly in t as a = Wf( )t te x
i and the energy of the

oscillator quadratically as = W¯ ( )n t tx
2 2. For a coherent state, the probability distribution over number states ñ∣m

is a Poisson distributionwith average n̄

=
-¯
!

( )( )
¯

P
n

m

e
. 8m

m n
0

An initial number statewith Y ñ = ñ∣ ( ) ∣n0 , displaced by aˆ ( )D d , results in amore involved probability
distribution [6]

= - - <

>

-
<

¯ !
!

( ( ¯)) ( )( ) ∣ ∣ ¯ ∣ ∣P n
n

n
L ne , 9m

n n m n
n
n m 2

where a=¯ ∣ ∣n d
2, n< (n>) is the lesser (greater) of the integers n andm and ( )L xn

a is a generalized Laguerre
polynomial.

In our experiments, theHOmotion is coupled by laser fields to a two-level systemwith states labeled ñ∣ and
ñ∣ with energy difference w- = > E E 00 . The internal state is initialized in ñ∣ by optical pumping. After
the state ofmotion is prepared, the state ñ Y ñ∣ ∣ ( )t can be driven on a red sideband, resulting in population
transfer ñ ñ « ñ - ñ∣ ∣ ∣ ∣m m 1 for allm> 0while the state ñ ñ∣ ∣0 is unaffected [13]. The Rabi frequencies
depend onm> 0 as

h hW = W h
-

-
- ( ) ( )

m
Le

1
, 10m m m, 1 0

2
1

1 22

whereΩ0 is the Rabi frequency of a carrier transition ñ « ñ∣ ∣ of an atom at rest, h = k xx 0 is the Lamb-Dicke
parameter, with kx the component of the effective wavevector along the direction of oscillation. After driving the
red sideband of state ñ Y ñ∣ ∣ ( )t for duration τ, the probability of having flipped the internal state to ñ∣ is

åt t= - - W
=

¥

-

⎡
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⎤
⎦⎥( ) ( ) ( )( ) ( )P P P

1

2
1 cos 2 . 11n

m
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n
m m0

1
. 1

We set the red sideband drive duration to be equivalent to a resonantπ-pulse on the ñ ñ « ñ ñ∣ ∣ ∣ ∣1 0 transition,
which implies 2Ω1,0τ=π. For an arbitrary displaced number state the probability of the ion to be in ñ∣ for this
pulse duration becomes

å p= - -
W
W

p


=

¥
-

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( )( ) ( )P P P

1

2
1 cos . 12n

m
m

n m m
0

1

. 1

1,0

This probability is not amonotonic function of n̄ and exhibitsmaxima andminima as the displacement changes.
Experimental observations of this behavior for displaced number states and comparisons to the predictions of
equation (12)will be discussed in section 4.2.When the detuning in equation (7) is d ¹ 0, the coherent drive
displaces Y ñ∣ ( )0 along circular trajectories in phase space that can turn back onto themselves. For d p=t m with
m a non-zero integer, a∣ ( )∣t will reach amaximumof dW2 x form odd and return to zero form even. The non-
monotonic behavior of p

P with respect to n̄ creates feature-rich lineshapes when this probability is probed as a
function of the displacement detuning δ relative to theHO frequency.
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3.Noise sensingwithmotion-echo sequences

Themotion displacements discussed above enable sensitive tests of the ion’smotional coherence. Electric field
noise at themotional frequencies heats the ion out of the ground state, and is observed in all traps at a level that
often exceeds resistive heating by orders ofmagnitude. This ‘anomalous heating,’ is well documented
[21, 27, 28], but the sources are notwell understood. Onmuch longer time scales than the ion-oscillation period,
motional frequencies are known to drift overminutes and hours due to various causes, for example slow changes
in stray electric fields and drifts of the sources that provide the potentials applied to the trap electrodes.Much less
work has been done to characterize noise in the frequency range in between theHO frequency and slow drift
[21]. The highQ ofmost trapped-ion systems implies that this lower frequency noise contributes negligibly to
heating, but does cause dephasing of the ion’smotional state that can be detectedwith coherent displacements.
Here, we construct sequences of coherent displacements that alternate with periods of free evolution and
suppress the sensitivity to slow drifts of theHO frequency. This allows us to isolateHO frequency noise in a
specific frequency band, in analogy to anAC-coupled electronic spectrum analyzer. Thismethod is suitable for
detecting noise at frequencies in a range of 500 Hz–400 kHz in the experiments described here.Measurements at
lower frequencies are in part limited by the heating rate of the system, while the highest noise frequencies we can
characterize are determined by the duration of coherent displacements, which in our system can be
implemented on time scales of order a fewμs.

3.1. Basic principle
The sequences of coherent displacements discussed here are closely related to spin-echo experiments and
dynamical decoupling in two-level systems [18–20]. In analogy to the classic

p t p t p- - - - - - -( ) ( ) ( )2 pulse pulse 2 pulsea a

spin-echo sequence [18]with τa the duration of a free-precession period, the ideal ‘motion-echo’ pulse sequence
consists of

t t t t tW - - -W - - Wˆ ( ) ˆ ( ) ˆ ( )D D D2 2 ,x d a x d a x d

where τd characterizes the duration of the displacement and theminus sign in the argument of the second
displacement indicates that the phasef of the displacement drive has changed byπ relative to the other
displacement operations. To simplify this initial discussion, we assume that all displacements are instantaneous
and not affected byfluctuations in the oscillator frequency. This condition is similar to the ‘hard-pulse’ limit for
spin-echo sequences. If the frequency of the oscillating electric field in equation (1), whichwe call the ‘local
oscillator frequency’ in this context, is on resonancewith theHO frequency, the displacements in the sequence
add up to zero, so any initial state is displaced back onto itself at the end of the sequence (see figure 1(a)). In
analogy to a spin-echo sequence, if the local oscillator differs from theHO frequency by a small, constant
detuning d p t 2 d , the sequence will still result in afinal state that is very close to the initial state (see
figure 1(b)). However, if the detuning changes sign between free-precession periods (see figure 1(c)), thefinal
state will not return to the initial position and in general information about the oscillator frequency fluctuations
can be gained from thefinal displacement. This basic echo sequence can be expanded by including additional
blocks of the form

t t t t- W - - -Wˆ ( ) ˆ ( )D Da x d a x d

after thefirst displacement t-Wˆ ( )D x d in analogy to dynamical decoupling sequences in two-level systems.
Ideally, this increases the number of free-precession sampling windowswhich leads to a longer sampling time
and narrowerfilter bandwidth of the extended sequence, while still producing no net displacement from the
initial state if theHO is stable, even if the local oscillator is slightly detuned from theHO resonance.

3.2. Effects of oscillator frequencyfluctuations
If the local oscillator frequency is not on resonancewith theHO frequency, or if the detuning is not constant in
time, a realistic coherent drive (not assuming the hard-pulse limit)will not always displace the state ofmotion
along a straight line. Tomodel this situation, we setωx, the time-independent frequency at which the interaction
frame defined byH0 rotates, to be equal to the local oscillator frequency. The differential equation describing the
coherent displacementα(t) as a function of time becomes

a a d= + W f˙ ( ) ( ) ( )t ti e , 13x
i

where δ(t) is the instantaneous detuning between theHOand the local oscillator at time t. In the special case
where δ does not depend on time andα(0)=0, the solution isα(t) from equation (6). If there is noise on the trap
frequency, δ(t)willfluctuate randomly as a function of t. A general solution of equation (13), at time t0+τ as it
evolves from the initial stateα(t0) at time t0, can be formally written as
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This form is useful for numerical calculations and can be explicitly solved for special cases of δ(t).Motion-echo
sequences aremost useful if the accumulation of phase during τ is small, t p( )I t , 21 0 . In such cases, we can
expand the exponential functions in equations (14) and (15) to linear order andmake the approximation
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2

The different terms in equation (16) have straightforward interpretations: the term in curly braces characterizes
the displaced coherent state for no detuning, δ(t)=0. Finite detuning rotates this state around the origin in
phase space and to lowest order this effect is captured by the termproportional to t( )I t ,1 0 . Thefinal term
reflects the effect of the detuningwhile the state is displaced by a coherent drive, which results in a correction
proportional to t( )I t ,3 0 . For a free-precession period,Ωx= 0; during displacement by a coherent
drive, W ¹ 0x .

In this linear approximation, it is straightforward to keep track of the displacements and the corrections
from d ¹( )t 0 when periods of driving and free precession are concatenated. Because corrections on earlier
corrections are higher order than linear, the correction from each period only acts on the zero-order
displacement of any previous period. This implies that the zero-order terms in curly brackets and the corrections
can be summed up separately for a sequence. In this way, we can calculate the total zero-order displacementαn

andfirst order correctionΔαn of a sequencewith n steps starting at time t=0 in state a ñ∣ ( )0 . For the kth step
starting at tk, the displacement drive Rabi frequency isΩx,k, the drive duration τk, and the phasefk. In the linear
approximationwithα(0)=α0 the sums are

Figure 1. Schematic phase-space sketch of the displacements in the simplestmotion-echo sequence. Here, all displacements are
assumed to act instantaneously (hard-pulse limit), such that the effect of oscillator detuning during displacements can be neglected.
(a)Withoutfluctuations of the oscillator frequency, the ground-stateminimumuncertainty disk (green) is coherently displaced by
Ωxτd/2 (step 1), then remains stationary during a free-precession period (step 2), it is then displaced symmetrically through the origin
by t-Wx d (step 3), followed by another free-precession period (step 4). The final displacement byΩxτd/2 (step 5) returns the state to
the origin. (b)With a small, constant detuning, the state drifts perpendicular to the direction of the first displacement in step 2.
However, it drifts an equal amount in the opposite direction during step 4, to therefore return to the ground state after step 5. This
immunity to constant detuning can be thought of as aHOanalogy to a spin-echo sequence in a spin-1/2 system. (c) If the detuning
changes sign between steps 2 and 4, the state does not return to the origin. In all three cases (a)–(c), thefinal state reflects the sumof
additional displacements during the operation of the sequence that are caused by time-dependent changes inHOdetuning.
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3.3.Motion-echo sequences
We restrict ourselves to sequences withN steps acting on an initial ground state,α0=0, where the sumover all
unperturbed displacements of a sequence isαN=0. In this way, thefinal state is equal to aD ñ∣ N and directly
reflects the effects of non-zero detuning.Moreover, we can construct the displacements in such away, that a
constant detuning d ¹ 0, results inΔαN=0. Thismimics the feature of spin-echo sequences that small
constant detunings have no effect on theirfinal spin state. Themotion-echo sequences preserve this feature, if
the linear approximation is valid, evenwhen taking the effect of the detuning onto the displacement operations
into account. For constant δ, the integrals t dt=( )I t ,k k k1 and t dt=( )I t , 1 2k k k3

2 are independent of tk and
the total displacement simplifies to

åa d t a tD = + W f

=
-( ) ( )i 1 2 e . 18N

k

N

k k x k k
1

1 ,
i k

For themotion-echo sequences,Ωx,k=Ωx is the same for all displacements and the coherent state parameter
before each of the tWˆ ( )D x d operations is tW 2x d . In this case, the second contribution in the (...) braces is

t W1 2 x d, equal and opposite to the initial state parameter, so all displacement terms in the sum equation (18)
are equal to zero individually, except for the first and last displacement which is tWˆ ( )D 2x d . However, since
α0=0, these terms sum to dt t t tW - W + W =( )i 2 1 2 2 2 1 2 2 0d x d x d x d , which leaves only the free-
precession terms to be considered. All sequences contain an even number n2 a of free-precession periods
(na>0, integer), with half of them contributing dt tWi 2a x d each and the other half dt t- Wi 2a x d , so, as
previously noted (see figure 1) these terms also sum to zero andΔαN=0 for a constant detuning.

3.4. Response to amonochromaticmodulation
Next, we can determine the response to amonochromaticmodulation at frequencyωn of the form d =( )tn

w f+( )A tcosn n n . On the one hand, theHO frequency can be deliberatelymodulated in this way, which enables
us to compare the response of themotion-echo sequence to the theoretical expectation.On the other hand,
some of the frequency noise acting on the oscillator can be characterized as a noise spectrum consisting of a sum
of suchmodulation termswith distinct frequenciesωn,j, possibly varying amplitudesAn,j and randomphases
fn,j. In addition, theHOmay be affected by noise with a continuous spectrum, butwewill restrict ourselves to
discrete, narrow-band noise spurs here. The noise spectrum can be characterizedwithmotion-echo sequences,
if the response to amonochromaticmodulation atωn allows for determination of that frequencywithin a band
that depends on the resolution of the sequence. The amplitude of the responseΔαN is proportional to the noise
amplitude and is zerowhen averaged over the randomnoise phasefn (denoted by á ñ... ), but because thefinal
occupation n̄fin is proportional to a∣ ∣N

2, after integrating overfn, we get an average final occupation

òp
a fá ñ = D

p
¯ ∣ ∣ ( )n

1

2
d . 19N nfin

0

2
2

This is proportional to the noise power inside the filter bandwidth of themotion-echo.
For themonochromaticmodulation, the integrals I1 and I3 have analytic solutions:

t
w

w t f w f

t
w

w f w t f

w t w f

= + + - +

= + - + +

- +

( ) [ ( ( ) ) ( )]

( ) [ ( ) ( ( ) )

( )] ( )

I t
A

t t

I t
A

t t

t

, sin sin

, cos cos

sin . 20

n

n
n n n n

n

n
n n n n

n n n

1 0 0 0

3 0 2 0 0

0

Now, the integrals depend on t0 and τ, therefore the sumover amotion-echo sequence is non-zero in general.
Inserting the integrals into equation (17) and summing over themotion-echo sequences is straightforward but
tedious, and yields closed expressions for the final displacementΔαN and the corresponding average occupation
number of themotion a= D¯ ∣ ∣n Nfin

2. Taking the average over the randomphasefn yields
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If the free-evolution time τa is varied in themotion-echo sequence, the expression in the upper line produces an
envelope that is oscillating at frequencyωnwith phase shifts proportional to τd

4. Thefirstmain peak appears
when w t t p+ ( )n d a and the spacing between adjacentmain peaks is exactly t p wD = 2a n, which allows for
determination ofωn from this interference pattern. Thewidth of the narrowmain peaks can be characterized by
the distance δτa of the two zeros of the response closest to a peak, which are spaced by dt p w= ( )n2a a n . It is
possible to resolve a pair ofmain peaks produced bymodulations atωn andωn+δωn respectively, as separate
maxima if dw p t t+∣ ∣ [ ( )]nn a a d . If a continuous noise power spectral density w( )an n

2 is sampled in this way,
δωn determines the bandwidth of the samplefilter that relates the noise power density to the actual noise power
detected in this band.

To have á ñn̄fin approximately represented by the ion state population p
P , the averagemode occupation

should be kept below á ñn̄ 1fin , which is possible by reasonable choices for the displacementΩxτd and the
number of free-precession periods 2na. Choosing either the size of the displacement or the number of
displacements to be too large has the same effect as over-driving themixer in an electronic spectrum analyzer,
which leads to a response that is not linear in the input signal, resulting in a distorted output.

4. Experimental implementation and results

4.1. Experimental setup
Experimentswere performedwith a single 9Be+ ion trapped40 μmabove a cryogenic (;4 K) linear surface-electrode
trapdescribed elsewhere [30, 31]. The coherent displacements are performedon the lowest frequencymode (axial)of
the three orthogonalHOmodes of the ion,with frequencyωx; 2π×8MHz.Weuse two levelswithin the
electronic S2

1 2 ground-state hyperfinemanifold, = = - ñ = ñ∣ ∣F m1, 1F , = = - ñ = ñ∣ ∣F m2, 2F , whereF
is the total angularmomentumandmF is the component along thequantization axis, definedby a 1.43mTstatic
magneticfield.Direct ‘carrier’-transitions between the states ñ ñ∣ ∣n and ñ ñ∣ ∣n are driven bymicrowavefields
inducedby aω0;2π×1.281 GHzcurrent throughone of the surface trap electrodes.

The ion is prepared in ñ ñ∣ ∣0 with afidelity exceeding 0.99 byDoppler laser cooling, followed by ground-
state cooling [23] and optical pumping. Sideband transitions ñ ñ « ñ  ñ∣ ∣ ∣ ∣n n 1 are implementedwith
stimulated Raman transitions driven by two counter-propagating laser beams that are detuned from the

S2
1 2 P2

1 2 transition (λ;313 nm) by approximately 40 GHz [32]. This allows us to prepare nearly pure
number states of themotion as described inmore detail in [33].We implement the tickle by applying a square-
envelope pulsewith oscillation frequency near the axialmode frequency to the same electrode that is used for the
microwave-driven hyperfine transitions, which produces an electric field at the position of the ionwith a
component along the direction of the axialmotionalmode.

We distinguishmeasurements of the ñ∣ and ñ∣ states with state-dependent fluorescence [23].When
scattering light from a laser beam resonant with the ñ « = = - ñ∣ ∣P F m, 3, 3F3 2 cycling transition, 11–13
photons are detected on average over 400 μs with a photo-multiplier if the ion is in ñ∣ , while only 0.2–0.5
photons (dark counts and stray light) are detected on average if the ion is projected into ñ∣ .

In the experiments detailed below, the signal indicates the deviation of thefinalmotional state from = ñ∣n 0 .
Population in the ground state ofmotion is discriminated from that in excited states ofmotion by performing
the RSB pulse theoretically described in equation (12), connecting population in ñ > ñ∣ ∣n 0 to ñ - ñ∣ ∣n 1 while
leaving population in ñ = ñ∣ ∣n 0 unchanged. For average excitation n̄ 1 2 the probability p

P of changing the
internal state is approximately equal to n̄. A subsequentmicrowave carrierπ-pulse exchanges population in ñ∣
and ñ∣ followed by detection. The ñ∣ state has a low average count rate, whichminimizes shot noise in the
photomultiplier signal. This is helpful when determining small deviations from = ñ∣n 0 with high signal-to-
noise ratio.

4.2.Displaced number states
As briefly described in [14], tickling an ion that has been cooled to near themotional ground state to determine
the ion oscillation frequency is a practical calibration tool. The experiment is performed here as follows: the ion
is cooled to near the ground state and prepared in ñ∣ , then a tickle tonewith afixed amplitude and detuning δ is
applied for afixed duration τd=13 μs. The resulting coherent state is characterized by applying a RSBπ-pulse

4
The expression in the lower line is equivalent to the intensity far-field pattern of a transmission gratingwith na slits [29] and describes a

na-times sharper response that produces amore narrowly peaked interference patternwith nearly symmetric side lobes.
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for the ñ ñ  ñ ñ∣ ∣ ∣ ∣1 0 transition followed by amicrowave carrierπ-pulse, then detection of the internal state
via state-selective fluorescence as described above.

The symbols with error bars (1-σ statistical error, from shot noise in the photo-multiplier count rate
averaged over 600 experiments per detuning value) infigure 2 show themeasured p

P as a function of tickle
detuning for low on-resonance occupation ( =¯ ( )n 0.61 1 ). The line shape is well described by equations (7) and
(12). The solid line is afit to these equationswith =¯ ( )n 0.61 1 as the only free parameter after subtracting an
offset of 0.05(1) due to stray light background and imperfect ground state cooling that was determined
independently. In this case, p

P is roughly linear in n̄ and reflects the sinc2-shape of the Fourier transformof the
square-envelope tickle pulse. Keeping the excitation small gives us the practical advantage that only one
prominent peak in p

P versus detuning exists,makingfitting tofind the resonance frequency straightforward.
However, the precisionwithwhichwe can determine the frequency of oscillation is Fourier-limited by the pulse
duration.

With the development of a theoretical understanding of line shapes for larger excitations, where p
P is

nonlinear in n̄, we have found that we can determine the resonant frequency with a precision that increases
approximately linearly with the size of the excitation a∣ ∣ in the range of a< <∣ ∣0 17, which implies that we can
improve on the Fourier limit of the tickle pulse.We expect that the linear trend continues beyondα=17, but
anharmonicity and trap stability will limit the useful range of a∣ ∣.

We havemeasured p
P (given by equation (12) following themicrowave carrierπ-pulse to exchange

population between ñ∣ and ñ∣ ) versus detuning of the tickle frequency for various displacement amplitudes up
to a »∣ ∣ 17, corresponding to a coherent state with an average occupation of »n̄ 300. Figure 3 shows four such
cases with n̄ of 3.22(3) (figure 3(a)), 10.4(1) (figure 3(b)), 98.4(7) (figure 3(c)) and 299(1) (figure 3(d)). The lines
arefits with free parametersΩx andHO resonance frequencyωx. An experimentally determined vertical offset of
0.05(1) is added to thefit function to account for background counts, as in the evaluation of the data presented in
figure 2.

The steep slopes of some of the line-shape features imply a stronger response to small changes in the
detuning, as compared to cases where n̄ 1 (dashed lines in figure 3).Moreover, the response is symmetric
around δ=0, so these steeper slopes can be exploited tofind δ=0without a detailed understanding of the line
shapes beyond this symmetry. This enables line-center determinationwith a signal-to-noise ratio beyond the
Fourier limit of the linear response ( n̄ 1).

To validate the generalization of our theory to displaced number states with quantumnumbers n�1 (see
equation (9)), we produce number states up to n=6, as described in [33] and scan the amplitude of the coherent
displacementwhile the tickle frequency is resonant with the ion’s oscillation. As the amplitude of the coherent
state increases, the Rabi frequency of the RSB interaction varies with n as predicted by equations (10) and (12),
producing the non-monotonic response of the ion’s fluorescence shown infigure 4 together withfits based on
equation (12), with the tickle strengthΩx and contrast of the final state readout as free parameters.We perform
this experiment by preparing the ion in pure number states n=0 (figure 4(a)), n=2 (figure 4(b)), n=4
(figure 4(c)) and n=6 (figure 4(d)) and applying a resonant tickle tonewithfixedΩx for durations ranging from

Figure 2. Spin-flip probability p
P (see section 4.2) of ion after 13 μs tickle excitation on ñ∣ versus detuning from ion oscillation

frequency. The average occupation n̄ of the ionmotion in response to tickle excitation ismapped onto the spin state by applying aRSB
pulse, which connects levels ñ ñ∣ ∣n to ñ - ñ∣ ∣n 1 for n>0, while leaving population in ñ = ñ∣ ∣n 0 unchanged. A subsequent
microwave carrierπ-pulse exchanges populations in ñ∣ and ñ∣ to reducemeasurement projection noise. The solid line is afit using
equation (7) and free parameter n̄ and an experimentally determined vertical offset of 0.05 (1) to account for background counts and
imperfect ground state cooling. The fit yields an on resonance average occupation of =¯ ( )n 0.61 1 .
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0.05 to 12 μs, resulting in coherent displacements up to a »∣ ∣ 20d . Displaced number states are useful to
quantum-enhanced sensing of forces with high number states [34].

4.3.Motion-echo experiments
Wefirst perform themotion-echo experiments with a 10 or 100 kHz tone applied to one of the trap electrodes.
The tonemodulates the potential curvature of the trap at the position of the ion and therefore the ion’s
oscillation frequency. The purpose of this is two-fold: to experimentally characterize the response of the ion and
compare the results against theory for a knownperturbation and to explore the range of noise that is detectable
with thismethod in our setup.With the tone applied continuously and the phasefn changing randomly from
experiment to experiment (tomimic the uncontrolled phase of noise), we perform a series ofmotion-echo
sequenceswith various numbers of free-precession periods 2na, scanning thewait time τa.Wefind that p

P
depends on the relationship between τa and the frequency of the applied tone in the expectedmanner according
to equation (21). This can be seen by comparing themeasured points infigure 5 to the solid lines that showfits
withAn as a free parameter. All fitted values ofAn are consistent with each other towithin 2 times the standard
deviation (see caption offigure 5) and indicate a relativemodulation depth of w ´ -A 1.4 10n x

4. Initial
displacement values were tW = ( )2 0.518 6x d and 3.44(2) for the experiments with the 10 kHz tone and 100
kHz tone, respectively.Similar experiments were performedwith applied tones from500 Hz to 400 kHz and
while the results qualitatively agreedwith theory, attenuation and distortion of the tones through various filters
with uncharacterized parasitic capacitance and resistive loss at 4 K in our experimental setup prevented us from
comparing quantitatively to the theory.

Finally, we performmotion-echo experiments without a purposely applied tone, to sense and characterize
intrinsic frequency noise in our setup.With na=10 (20 free-precession periods), τd=4 μs, and coherent
displacements tW = ( )2 3.44 2x d , we find several peaks in the time scan corresponding to a single narrow-band
noise spur atωn;2π×260 kHz having an amplitudeAn=2π×2.4(2) kHz (see figure 6(a)), which
corresponds to a relativemodulation depth w ´ -A 3 10n x

4. In this run, the electrode potentials are
supplied fromDACs, so the spurs are likely caused by cross-talk of digital circuitry in theDACs to the outputs.
After switching the electrode potential sources to low-noise analog power supplies, we observed a nearly
uniformnoisefloorwithout the spurs (see figure 6(b)).

Figure 3.Response of ion to tickle excitation versus detuning from ion oscillation frequency formaximal excitations on resonance of
(a) =¯ ( )n 3.22 3 , (b) =¯ ( )n 10.4 1 , (c) =¯ ( )n 98.4 7 and (d) =¯ ( )n 299 1 . As the average occupation of the coherent state increases, the
line shape becomesmore sharply featured. Solid lines are fits with free parametersΩx andωx.We determine themaximumexcitation
n̄ of each experiment from thefitted values ofΩx. Dashed lines represent a Fourier-limited response resulting from aweaker excitation
( =n̄ 0.64) for comparison.
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In principle the sensitivity can be increased arbitrarily by choosing a larger value of the coherent drive
strength (which is proportional toΩx, see equation (21)). However, therewill be technical limitations thatwill
largely depend on the setup. If noise on the coherent drive begins to dominate the outcome of an experiment,
then theHOnoise can no longer be accurately deduced. Evenwithout any noise in theHOor the drive,
anharmonicities will eventually deform thewave-packet and reduce the overlap of the final state with the ground
state.

5. Summary and conclusions

Wehave theoretically described and experimentally demonstrated features of coherently displacedHOnumber
states, including displaced ground states. Coherent displacements are a universal concept that applies to all HOs
and, because they correspond to a classical, near-resonant force on the oscillator, they can often be implemented
in a simpleway in concrete experimental settings. Here, we characterized the responses of a single, harmonically
trapped atomic ion to an electric field that oscillates close to resonancewith the ion’smechanicalmotion. The
ion response was then characterized by coupling the ionHO to an internal two-level systemof the ion. This was
realized by driving a red sideband on an internal state transition that sensitively depends on the state of theHO
and subsequently detecting state-dependent fluorescence from the atom. The ion fluorescence exhibits a
nonlinear response in n̄ whendriving the sideband for final states with average occupation number >n̄ 1. The
resulting line shapes of internal-state population versus detuning exhibit a complicated but symmetric structure
with steep and narrow side lobes to the central resonance featurewhich are accounted for by the theory.

By applying a sequence of coherent displacements, alternating with free evolution of the state ofmotion, we
obtained a frequency-filtered response of theHO. In this way,fluctuations of theHO frequency in a certain
frequency band can be isolated and sensitively detected by the ion itself. This technique can be used as a
complementarymethod in investigating the behavior of surface charges and answering questions about the
sources of anomalous heating.We demonstrated the key features of thismechanism from the response to

Figure 4.Response of ion to tickle excitation versus coherent drive duration for initial number states (a)n=0, (b)n=2, (c) n=4
and (d) n=6. As the displacement of the ion’smotion increases, the Rabi frequency of the RSB interaction varies non-monotonically.
Solid lines are producedwith theory in equation (12) usingfit parameters of the tickle strengthΩx and contrast of thefinal state
readout, and an experimentally determined vertical offset of 0.05 (1) to account for background counts and imperfect initial state
preparation. Fitted values ofΩx and the contrast of thefinal state are, respectively, (a) 2π×0.230 0(2)MHz and 0.884(4),
(b) 2π×0.245 3(3)MHz and 0.899(5), (c) 2π×0.251 6(6) MHz and 0.886(6) and d) 2π×0.255 8(8)MHz and 0.894(5).
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deliberately appliedmonochromaticmodulations on the trap frequency, and then used themotion-echo
sequence to detect and eliminate inherent technicalHO frequency noise in our ion trap system.

We anticipate that the basic concepts exhibited in this work can be transferred tomany otherHO systems
and foresee various extensions and refinements of the current trapped-ionwork. For example, it should be

Figure 5.Characterization ofmotion-echo experiments with tones of 10 and 100 kHz for various numbers of free-precession periods
n2 a (see top of plots). Lines arefits based on equations (21) and (12)with free parametersAn. For the experiments with the 10 kHz tone
applied, an initial displacement of tW = ( )2 0.518 6x d was used, and fitted values ofAnwere 2π×1.3(4) kHz, 1.5(1) kHz, 1.4(1) kHz
and 1.2(1) kHz for 2na=2, 4, 6 and 8, respectively. Likewise for the 100 kHz tone, an initial displacement of tW = ( )2 3.44 2x d was
used, and fitted values ofAnwere 2π×1.0(4) kHz, 1.1(3) kHz, 1.1(2) kHz and 1.1(1) kHz for 2na=4, 6, 8 and 12, respectively.

Figure 6.Noise sensingwithmotion-echo experiments. The two sub-plots compare noise on electrode potentials delivered from two
different sources: (a)Digital-to-Analog converters (DACs) and (b) linear bench power supply. Experiments were performedwith
na=10 (20 free-precession periods) and coherent displacements ofΩxτd /2=3.44(2). The solid black line in (a) is afit to the data
taken on theDACs based on equation (21)with free parametersAn andωn, and a vertical offset of 0.07 to account for background
counts and imperfect state preparation. From thisfit, we determine that theDACs introduce noise atωn/(2π);260 kHzwith
An=2π×2.4(2) kHz.
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possible tofind interestingmodifications of the coherent displacement sequences by utilizing different
displacement patterns in phase space or by displacing non-classical quantum states [33, 34].
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