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Fluid-structure interaction simulations where solid bodies undergo large deformations re-
quire special handling of the mesh motion for Arbitrarily Lagrangian-Eulerian (ALE) formu-
lations. Such formulations are necessary when body-fitted meshes with certain characteristics,
such as boundary layer resolution, are required to properly resolve the problem. We present an
overset mesh method to accommodate such problems in which flexible bodies undergo large de-
formations, or where rigid translation modes of motion occur. To accommodate these motions
of the bodies through the computational domain, an overset mesh enabled ALE formulation
for fluid flow is discretized with the hybridizable discontinuous Galerkin (HDG) finite element
method. The overset mesh framework applied to the HDG method enables the deforming and
translating dynamic meshes to maintain quality without remeshing. Verification is performed
to demonstrate that optimal order convergenceO (k + 1) is obtained for arbitrary overlap and
approximation order k.

I. Introduction
Developing numerical methods that can efficiently and accurately model complex multiphysics problems, such as

fluid-structure interactions (FSI) where the bodies experience large deformations is still an active area of research. In
order to capture large changes in the computational domain, which include solid deformations and/or rigid translation
modes of motion, it is necessary to first study an arbitrarily Lagrangian-Eulerian (ALE) formulation of the governing
fluid equations. This particular building block is of critical importance because we will employ a monolithic solver
for FSI simulations [1], which requires that the governing fluid equations and governing solid equations be cast in the
same reference frame. Further, an ALE formulation automatically allows for dynamic bodies, and therefore dynamic
meshes to be incorporated. This last point is the driving motivation for utilizing an overset mesh framework. We have
previously developed an overset mesh framework with the mathematical discretization of the hybridizable discontinuous
Galerkin (HDG) finite element method for static linear problems such as convection-diffusion and elastostatics [2].
Below we present motivation for the use of an overset mesh method and the HDG method.

As physical geometries increase in complexity and bodies are required to move relative to one another throughout
the duration of a simulation, choices must be made on how to discretize the computational domain. One approach is to
decompose the domain into smaller subdomains, which we can allow to overlap, that can focus on the complex features
and can maintain the initial mesh quality even as bodies move relative to one another. This approach has additional
complications such as: How to address cells from a background mesh that lie within a solid body? How do meshes
communicate with each other, especially in a case when multiple meshes overlap at the same location? The primary
focus of this work is to demonstrate our communication algorithm between overset meshes.

Before proceeding it is necessary to define some common nomenclature that we will use in this work. We refer to a
mesh as a discretized representation of a physical domain into polygonal volumes (i.e., cells). An overset mesh is a
collection of meshes that overlap to discretize the entire physical domain. An overset mesh method uses overlapping
meshes to discretize the physical domain. The first overset mesh method was developed by researchers at the National
Aeronatics and Space Administration in 1983 [3, 4] to perform simulations of bodies in relative motion. Overset mesh
methods have been applied to a variety of applications [5–11] for fixed and dynamic mesh scenarios.
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Our communication algorithm provides an avenue for information to be transmitted from the interior of a donor cell,
a cell that provides information to a different mesh, to an acceptor cell, which exists on an overset boundary. Fig. 1
shows two overset cells, a subset of two overset meshes, where in this example, the red cell is the acceptor and the blue
cell is the donor. The edges of the cells that lie within the opposite cell are the overset boundaries and the purple points
are donor points from the blue donor cell to the red acceptor cell.

Donor 
Cell

Acceptor 
Cell

Fig. 1 The blue cell is a donor cell and the red cell is an acceptor cell. The purple points indicate where the
basis functions of the blue cell will be evaluated to donate information to the red cell on that particular overset
boundary. The points are distributed based on quadratic (Q2) discontinuous elements.

Higher-order finite difference and finite volume overset mesh methods require a larger overset region to maintain the
higher-order approximations [12, 13]. This implies that more data must be stored, and also that the overset meshes must
be manually constructed to ensure the correct amount of overlap during dynamic mesh motion applications is maintained.
Nastase et al. [14] first remedied this problem by developing an overset discontinuous Galerkin (DG) approach for
aerodynamic problems. The DG solver that replaced the finite difference solver is favorable because of the compact
numerical stencil that results from this discretiztion. Similarly, Galbraith et al. [15] developed a DG Chimera scheme
for solving the Euler and compressible Navier-Stokes equations. This scheme decomposes the computational domain
into a set of structured overset meshes, which must at least abut to avoid gaps and voids in the domain. Communication
via interpolation only occurs on the overset boundary faces, which is the same approach we are employing here and we
first presented in [2]. The DG Chimera scheme also can handle mixed order meshes, so interpolation occurs between
meshes of different approximation orders. Brazell et al. [16] also developed an overset DG approach within an overset
mesh framework, TIOGA (Topology Independent Overset Grid Assembler). This approach performs interpolation over
the entire overset boundary cell, instead of just the overset boundary face, which results in a different connectivity
pattern compared to [15]. This DG-overset method investigates the Reynolds Averaged Naiver-Stokes equations with
the Spalart-Allmaras turbulence model and utilizes unstructured mixed-element meshes. These DG-overset methods
were the motivation to extend this concept to coupling overset meshes and the HDG finite element method.

The HDG method was first developed in [17] and provides an efficient way to reduce the size of the global system
through the hybridization procedure. There have been previous HDG formulations for moving and deforming domains
via an ALE perspective of the Navier-Stokes equations in Nguyen and Peraire [18] and Fidkowski [19]. The HDG ALE
formulation has also been used to build an HDG FSI formulation in Sheldon et al. [1]. The HDG method has versatility
and adaptability to enable straightforward implementation for a variety of different physics, which makes it ideal for
complex multiphysics applications like FSI.

In the computational fluid dynamics (CFD) community DGmethods are a viable alternative to finite volume methods,
because this variant of the finite element method shares the conservation properties that are inherent to the finite volume
method. Unfortunately, standard DG methods result in a linear system that becomes large due to duplication of degrees
of freedom (DoFs) at nodes on element boundaries [18]. Through the hybridization process the global system is greatly
reduced, when compared to standard DG methods, while maintaining the conservation properties that are necessary in
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fluid dynamics. In Ahnert and Bärwolff [20] the authors compare an HDG method to a second-order finite volume
method for incompressible flow; they conclude that the higher accuracy outweighs the slow matrix assembly for the
HDG method compared to the finite volume method.

Hybridization involves introducing independent approximations on the border of elements (i.e., the trace of the
elements) in addition to the interior of the elements for at least one field [21, Chapter 7]. Therefore, the new trace
unknowns can be used to reduce the global system size and/or enrich the function space of the solutions. The HDG
method decomposes the solution into two parts: the global solution trace, which exists on the cell boundaries, and
the local solution, which exists internal to each cell. The local solution on each cell is only coupled with the global
solution trace; therefore, the local solution on one cell is completely decoupled from the local solution of its neighboring
cells. The only solution field that exists in both solution spaces is the hybrid unknown. The trace of the hybrid field
approximates the global solution and is the only globally coupled field.

In this paper we are extending the overset mesh framework originally developed in [2] to an isentropic ALE
Navier-Stokes HDG formulation. This formulation allows for bodies to move throughout the domain, relative to one
another, and for the computational domain to deform. This paper serves as a proof-of-concept where we will verify
our formulation using a four overset mesh configuration that demonstrates optimal order convergence is obtained for
arbitrary overlap and arbitrary approximation order.

II. Governing Equations
In order to be incorporated in a monolithic solver the governing fluid equations are required to undergo a coordinate

transformation from an Eulerian set of coordinates to an ALE set of coordinates. We describe this process below by first
presenting the Eulerian form of the isentropic Navier-Stokes equations, where an equation of state for isentropic flow is

∂ρ

∂t
= β

∂p
∂t
, (1)

where β = 1/c2 and c is the speed of sound through the fluid. Here we are neglecting the convective term from the
material derivative and only relating the pure time derivatives, as in Bagwell [22]. Eq. (1) alters the continuity equation
by incorporating time variance of pressure instead of density. The primary fields on the governing fluid system are
velocity gradient L, the velocity v, and pressure p and the isentropic form of the governing Eulerian fluid equations over
any physical domain Ω is

L − gradv = 0, ∀x ∈ Ω, (2a)

ρ
∂v
∂t
+ div (−µL + pI) + ρLv + ρ (divv) v = f, ∀x ∈ Ω, (2b)

ε
∂p
∂t
+ divv = 0, ∀x ∈ Ω, (2c)

(−µL + pI)n = gN, ∀x ∈ ∂ΩN, (2d)
v = gD, ∀x ∈ ∂ΩD, (2e)

where ε = β/ρ, gN is a prescribed traction on ∂ΩN , and gD is a prescribed velocity on ∂ΩD . In order to reformulate
Eq. (2) to an ALE perspective we require the use of the mesh displacment um and the mesh deformation gradient Fm
through the following relations

Fm = I + Gradum, (3a)
gradp = F−ᵀm Gradp, (3b)

gradv = (Gradv)F−1
m , (3c)

divL = GradL : F−ᵀm , (3d)
divv = Gradv : F−ᵀm , (3e)

where the subscript m indicates that the field corresponds to the governing equations of the mesh. Also, the : operator
in Eqs. (3d) and (3e) is a double contraction [23] meaning that two indices are summed over and results in a scalar field
if : acts between two second order tensors (as in Eq. (3e)), or in a vector if : acts between a third order tensor and a
second order tensor (as in Eq. (3d)). We should note that grad and Grad are distinguished based on the coordinates,
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and therefore the reference configuration, that these derivatives are being performed on, namely grad ..= ∂/∂x and
Grad ..= ∂/∂X, which is consistent with [24]. Additionally, we need the so-called ‘fundamental ALE equation’ [25] in
both scalar and vector form:

φ′ = Ûφ − F−ᵀm Gradφ ·
∂X
∂t
, (4a)

a′ = Ûa −
[
(Grada)F−1

m
] ∂X
∂t
, (4b)

where ∂X/∂t = vm, the mesh velocity, the prime derivative is a material time derivative, and the dot derivative is
an ordinary time derivative (∂/∂t). Lastly, normal vectors viewed from the ALE perspective instead of the Eulerian
perspective undergo the following transformation

n = F−ᵀm nf, (5)

where n is the original fluid normal vector in the Eulerian reference frame and nf is the fluid normal vector in the ALE
reference frame. Using Eqs. (2)–(5) we can obtain the isentropic form of the governing ALE equations. This governing
system contains two parts, the governing fluid equations and the governing mesh equations. The partial differential
equations (PDE) system governing the fluid mechanics, which consists of primary fields velocity gradient Lf , velocity
vf , and pressure pf is

Lf − GradvfF−1
m = 0, ∀X ∈ ΩF (0) , (6a)

ρf
∂vf
∂t
+ ρfLf (vf − vm) − µfGradLf : F−ᵀm + F−ᵀm Gradpf + ρf

(
Gradvf : F−ᵀf

)
vf = ff, ∀X ∈ ΩF (0) , (6b)

ε
∂pf
∂t
− ε

[
F−ᵀm Gradpf

]
· vm + Gradvf : F−ᵀm = 0, ∀X ∈ ΩF (0) , (6c)

(−µfLf + pfI)F−ᵀm nf = gNf, ∀X ∈ ∂ΩNF (0) , (6d)
vf = gDf, ∀X ∈ ∂ΩDF (0) , (6e)

where ΩF (0) is the initial physical fluid domain from the ALE perspective. The fields that are required in order to
couple the fluid and mesh together are the deformation gradient Fm and the mesh velocity vm. The mesh velocity is not a
primary field in the mesh governing system, but it is approximated via a backward difference of the mesh displacement
um in time [26]. The mesh motion is governed by an elastostatics formulation; therefore, we do not consider elastic
wave propagation and the mesh PDE system is time-independent, but a mesh velocity can be approximated through the
change in displacement. The PDE system governing the mesh motion, which consists of primary fields displacement um
and deformation gradient Fm is

Fm − I − Gradum = 0, ∀X ∈ ΩF (0) , (7a)
−Div [C (SymFm − I)] = bm, ∀X ∈ ΩF (0) , (7b)
C (SymFm − I)nm = tNm, ∀X ∈ ∂ΩNF (0) , (7c)

um = ūDm, ∀X ∈ ∂ΩDF (0) , (7d)

where C is the fourth order elasticity tensor, SymFm = 1/2
(
Fm + Fᵀ

m
)
, and bm is a source term in the balance of

linear momentum. In order to present the variational (or weak) forms of Systems (6) and (7) we need to describe the
relationship between the differential volume/area elements as we change our reference frame from Eulerian to ALE.
This relation is

dv = Jh
mdvm, da = Jh

mdam, (8)

where Jh
m = det Fh

m. Since the weak form is a set of integral equations the differentials used in those integrals need to
undergo the changes defined in Eq. (8).

III. Overset Hybridizable Discontinuous Galerkin Method
We have already written Systems (6) and (7) in first-order form since it is required for the HDG method. Before

discretizing the aforementioned governing PDE systems we need to introduce some notation that will be used throughout
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Table 1 Notation utilized in the HDG finite element method.

Notation Description
d The spatial degree of the problem {d = 2, 3}.

Th The entire computational domain.
N Total number of meshes used to discretely describe Th.
i The mesh id number.

T i
h The discretized ith computational domain (or triangulation).

∂T i
h The union of all faces of domain T i

h .
K An individual cell in T i

h .
∂K The boundary of an individual cell.

F The face of a cell.
F i

h Set of all faces, for all cells in T i
h .

Pk (K) Space of polynomials of degree ≤ k over K.
Pk (F) Space of polynomials of degree ≤ k over F.

the rest of this paper. First, Table 1 describes common definitions that we will use. Note that Th =
N⋃
i=1

T i
h . We also must

define the local and global inner products. The local inner products are over cells

(a, b)K ..=

∫
K

ab, 〈a, b〉∂K ..=

∫
∂K

ab, for scalars, (9a)

(a, b)K ..=

∫
K

a · b, 〈a, b〉∂K ..=

∫
∂K

a · b, for vectors, (9b)

(A,B)K ..=

∫
K

A : B, 〈A,B〉∂K ..=

∫
∂K

A : B, for tensors, (9c)

whereas the global inner products are over the entire discretized domain

(a, b)T i
h

..=
∑
K

(a, b)K , 〈a, b〉∂T i
h

..=
∑
∂K

(a, b)∂K , for scalars, (10a)

(a, b)T i
h

..=
∑
K

(a, b)K , 〈a, b〉∂T i
h

..=
∑
∂K

(a, b)∂K , for vectors, (10b)

(A,B)T i
h

..=
∑
K

(A,B)K , 〈A,B〉∂T i
h

..=
∑
∂K

(A,B)∂K , for tensors. (10c)

Finally, we introduce the local discontinuous approximation spaces as

Gh ..=

{
Gh ∈

[
L2

(
T i

h

)]d×d
: Gh |K ∈ [Pk (K)]d×d , ∀K ∈ T i

h , ∀i
}
, (11a)

Yh ..=

{
yh ∈

[
H1

(
T i

h

)]d
: yh |K ∈ [Pk (K)]d , ∀K ∈ T i

h , ∀i
}
, (11b)

Ph ..=
{
qh ∈ L2

(
T i

h

)
: qh |K ∈ Pk (K) , ∀K ∈ T i

h , ∀i
}
, (11c)

Ch ..=

{
Ch ∈

[
L2

(
T i

h

)]d×d
: Ch |K ∈ [Pk (K)]d×d , ∀K ∈ T i

h , ∀i
}
, (11d)

Uh ..=

{
wh ∈

[
H1

(
T i

h

)]d
: wh |K ∈ [Pk (K)]d , ∀K ∈ T i

h , ∀i
}
, (11e)

where the L2 is a Hilbert space where functions are square Lebesgue integrable and H1 is a Sobolev space where the
first order weak derivatives of a function exists. Additionally, we also have to introduce two approximation spaces for
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the global fields, i.e., the trace of the solutions. Each system requires its own solution trace (velocity for the fluid system
and displacement for the mesh system). The discontinuous approximation spaces for the global fields are

Nh ..=

{
ηh ∈

[
L2

(
F i

h

)]d
: ηh |F ∈ [Pk (F)]d , ∀F ∈ F i

h, ∀K ∈ T i
h , ∀i

}
, (12a)

Mh ..=

{
ωh ∈

[
L2

(
F i

h

)]d
: ωh |F ∈ [Pk (F)]d , ∀F ∈ F i

h, ∀K ∈ T i
h , ∀i

}
. (12b)

A. Overset Framework
For an overset mesh framework the physical domain is decomposed into N subdomains that must at least abut, but

will overlap in general. Mathematically, this decomposition is

Ω = Ω1 ∪Ω2 ∪ · · · ∪ΩN (13)

Domains are considered to overlap if

Ω
i ∩Ωj , ∅, for any i, j ∈ {1, . . . , N} , i , j, (14)

and considered to abut if they share a common boundary, but do not otherwise overlap, namely,

Ω
i ∩Ωj , ∅, Ω

i ∩Ωj = ∅, for any i, j ∈ {1, . . . , N} , i , j . (15)

Communication between the overset meshes is achieved via local (interior/volume) field information being donated
from one domain to the face/edge of another domain on integrals over the overset boundaries (the purple points in
Figure 1 where the interior information is being donated from the blue cell). The coupling between domains is a
face-volume, or global-local, coupling which occurs naturally in the HDGmethod. Also, as we will show in Section III.B
the local problem, which is solved on each cell K in each T i

h , does not change. More details about the linear algebra are
provided in Section III.C. Donated fields will be represented with a breve accent, p̆ for example. This implies that the
local field contributions to the integrals on the overset boundaries have information from the interior of a different mesh
being included (i.e., donated).

B. Overset Formulation
The weak form of the isentropic ALENavier-Stokes problem in an overset mesh framework is obtained by multiplying

each equation in Systems (6) and (7) by a corresponding test function and then integrating over each cell in each domain.
The test functions are {G, y, q} for the fluid system and {C,w} for the mesh system. We used integration by parts to
obtain boundary terms on each element in order to define the numerical traces between cells. The local weak form is
obtained by observing one cell K ∈ T i

h such that the following is satisfied:

Local Problem 1 (Local Isentropic ALE Navier-Stokes) Find
(
Lh

f , v
h
f , ph

f ,F
h
m, uh

m
)
∈ Gh × Yh ×Ph × Ch ×Uh such

that

Local Subproblem 1.1 (Fluid)(
G, Jh

mLh
f

)
K
−

(
G, Jh

mGradvh
f F−1

m

)
K
+

〈
G, Jh

m

(
vh

f − v̂h
f

)
⊗ F−ᵀm nf

〉
∂K
= 0, (16a)(

y, Jh
mρf

∂vh
f

∂t

)
K

+
(
y, Jh

mρfLh
f
[
vh

f − vh
m
] )

K
+

(
Grady, Jh

m
[
µfLh

f − ph
f I

]
F−ᵀm

)
K

+
(
y, Jh

mρf
[
Gradvh

f : F−ᵀm
]

vh
f

)
K
+

〈
y, Jh

mT̂h
f F−ᵀm nf

〉
∂K
=

(
y, Jh

mff

)
K
, (16b)(

q, Jh
mε

∂ph
f

∂t

)
K

+
(
q, Jh

mε
[
F−ᵀm Gradph

f
]
· vh

m

)
K
−

(
Gradq, Jh

mF−1
m vh

f

)
K
+

〈
q, Jh

mv̂h
f · F

−ᵀ
m nf

〉
∂K
= 0, (16c)

where
T̂h

f F−ᵀm nf ..=
[
−µfLh

f + ph
f I

]
F−ᵀm nf + Sf

(
vh

f − v̂h
f

)
, (17)
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Local Subproblem 1.2 (Mesh Motion)(
C,Fh

m − I
)
K
−

(
C,Graduh

m

)
K
−

〈
Cnm,

(
uh

m − ûh
m

)〉
∂K
= 0, (18a)(

Gradw,C
[
SymFh

m − I
] )

K
−

〈
w, P̂h

mnm

〉
∂K
= (w, bm)K , (18b)

where

P̂h
mnm ..= C

(
SymFh

m − I
)

nm − Sm

(
uh

m − ûh
m

)
, (19)

∀ (G, y, q,C,w) ∈ Gh × Yh ×Ph × Ch ×Uh,

where Sf and Sm are second order stabilization tensors, which are defined as

Sf ..=
(
2µf + ρf ‖vh

f ‖
)

I, (20a)

Sm ..= 50µmI, (20b)

where ‖ · ‖ represents the standard L2-norm, µm is the shear modulus of the linear elastic mesh motion, and that the
factor of 50 in the definition of Sm is for increased stability and convergence. The definition of Sf is based off of the
work by Sheldon et al. [1].

Local Problem 1 is then discretized in time using a third order backward difference formula (BDF3) [26]. This
formula is

11yn − 18yn−1 + 9yn−2 − 2yn−3 = 6∆t f (tn) . (21)

The fully discrete local weak form is provided in the Appendix. After discretizing in time, it is possible to solve Local
Problem 1, which is composed of Local Subproblem 1.1 and Local Subproblem 1.2, if the numerical traces v̂h

f and ûh
m

are known. To determine the solutions of the numerical traces we have to sum over all K , in each T i
h , and enforce the

boundary conditions and continuity of the numerical traces
〈
y, Jh

mT̂h
f F−ᵀm nf

〉
∂K

and
〈
w, P̂h

mnm

〉
∂K

where T̂h
f F−ᵀm nf and

P̂h
mnm are defined in Eq. (17) and (19). The resulting weak form is

Problem 1 (Global Isentropic ALE Navier-Stokes) Find
(
Lh

f , v
h
f , ph

f , v̂
h
f ,F

h
m, uh

m, ûh
m
)
∈ Gh × Yh ×Ph ×Nh × Ch ×

Uh ×Mh such that

Subproblem 1.1 (Fluid) (
G, Jh

mLh
f

)
Th
−

(
G, Jh

mGradvh
f F−1

m

)
Th
+

〈
G, Jh

m

(
vh

f − v̂h
f

)
⊗ F−ᵀm nf

〉
∂Th
= 0, (22a)(

y, Jh
mρf

∂vh
f

∂t

)
Th

+
(
y, Jh

mρfLh
f
[
vh

f − vh
m
] )

Th
+

(
Grady, Jh

m
[
µfLh

f − ph
f I

]
F−ᵀm

)
Th

+
(
y, Jh

mρf
[
Gradvh

f : F−ᵀm
]

vh
f

)
Th
+

〈
y, Jh

mT̂h
f F−ᵀm nf

〉
∂Th
−

(
y, Jh

mff

)
Th
= 0, (22b)(

q, Jh
mε

∂ph
f

∂t

)
Th

+
(
q, Jh

mε
[
F−ᵀm Gradph

f
]
· vh

m

)
Th
−

(
Gradq, Jh

mF−1
m vh

f

)
Th
+

〈
q, Jh

mv̂h
f · F

−ᵀ
m nf

〉
∂Th
= 0, (22c)〈

η, Jh
mT̂h

f F−ᵀm nf

〉
∂Th\∂ΩDF

〈
η, Jh

m
^

Th
f F−ᵀm nf

〉
∂ΩOF

−
〈
η, Jh

mgN

〉
∂ΩNF

= 0, (22d)〈
η, Jh

mv̂h
f
〉
∂ΩDF

−
〈
η, Jh

mgDF

〉
∂ΩDF

= 0, (22e)

where T̂h
f F−ᵀm nf is defined in Eq. (17) and

^

Th
f F−ᵀm nf is defined as

^

Th
f F−ᵀm nf ..=

[
−µf

^

Lh
f +

^p h
f I

]
F−ᵀm

^nf + Sf

(
^vh

f − v̂h
f

)
. (23)
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Subproblem 1.2 (Mesh Motion)(
C,Fh

m − I
)
Th
−

(
C,Graduh

m

)
Th
−

〈
Cnm,

(
uh

m − ûh
m

)〉
∂Th
= 0, (24a)(

Gradw,C
[
SymFh

m − I
] )

Th
−

〈
w, P̂h

mnm

〉
∂Th
= (w, bm)Th , (24b)〈

ω, P̂h
mnm

〉
∂Th\∂ΩDF

+
〈
ω,

^

Ph
mnm

〉
∂ΩOF

=
〈
ω, tNm

〉
∂ΩNF

, (24c)〈
ω, ûh

m
〉
∂ΩDF

=
〈
ω, ūDm

〉
∂ΩDF

, (24d)

where P̂h
mnm is defined in Eq. (19) and

^

Ph
mnm is defined as

^

Ph
mnm ..= C

(
Sym

^

Fh
m − I

)
^nm − Sm

(
^uh

m − ûh
m

)
. (25)

∀ (G, y, q, η,C,w, ω) ∈ Gh × Yh ×Ph ×Nh × Ch ×Uh ×Mh,

where ∂ΩDF =
N⋃
i=1

∂Ωi
DF

, ∂ΩNF =
N⋃
i=1

∂Ωi
NF
, and ∂ΩOF =

N⋃
i=1

∂Ωi
OF

. Eqs. (23) and (25) show that all the local fields are

donated from a mesh that is different from the one where the corresponding integral is being computed.

C. Implementation
The solution of Problem 1 is achieved through the Newton-Raphson method [27]. This method linearly approximates

the residual of the nonlinear system allowing for the solution to be updated in an iterative fashion. The resulting linear
system for a general overset mesh configuration is of the form[

A B
C D

] {
Υ

Λ

}
=

{
H
Q

}
, (26)

where A, B, C, D are block matrices and Υ, Λ, H, Q are block vectors at each Newton iteration. For example,

A ..=



A1 0 · · · 0

0 A2 · · ·
...

0 · · ·
. . . 0

0 · · · 0 AN


. (27)

The matrix A is a block diagonal matrix and each Ai is also a block diagonal matrix for the ith mesh because the
coupling between the entries in Ai only occurs within each K ∈ T i

h , but not across neighboring elements because of the
discontinuous basis functions used. Each block is representative of different degree of freedom coupling for the HDG
formulation, namely, [

VVC VFC
FVC FFC

] {
local solution
global solution

}
=

{
local source
global source

}
, (28)

where V is volume, F is face, and C is coupling. In Section III.A we discussed that the coupling between meshes is a
FVC, which corresponds to the C block matrix. In addition to the overset coupling in the C matrix we also have some
extra FFC, the D matrix, which can be seen in the integrals associated with Eqs. (23) and (25). This extra FFC does not
help tie the meshes together, but instead is a byproduct of the chosen numerical flux that enforces that the hybrid fields,
fluid velocity and mesh displacement, are continuous across element boundaries. Overall, the structure of the linear
system does not change for an overset configuration compared to a single mesh configuration. This implies that we can
use the same linear algebra techniques that is common for the HDG method. Through static condensation [28], the local
solution is condensed out of the linear system via the Schur complement [29] in order to obtain a system in terms of the
global unknowns only, (

D − CA−1B
)
Λ = Q − CA−1H. (29)
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Since A is block diagonal it is easily inveritable. Solving Eq. (29) provides us with the global solution Λ =
{
v̂h

f ûh
m
}ᵀ.

The global solution is then used to compute the local solution via

Υ
i =

(
Ai

)−1 (
Hi − Bi

Λ
i
)
, (30)

on a cell-by-cell basis for each K ∈ T i
h for each mesh i = 1, . . . , N . We have implemented the overset coupling algorithm

that is described in more detail in Kauffman et al. [2], and have utilized a sparse-direct linear solver UMFPACK [30] to
obtain the global solution through the deal.II finite element library [31].

IV. Computational Studies
Problem 1 is the full isentropic ALE Navier-Stokes formulation. In terms of overset meshes this formulation allows

individual meshes to deform and meshes to move relative to one another. This implies that meshes surrounding a body
do not need to deform as bodies move, which maintains the initial mesh quality. Two-dimensional verification, through
the method of manufactured solutions [32], of Problem 1 shows optimal order convergence for varying degrees and
arbitrary amount of overlap in a four overset mesh system for varying approximation orders.

A. Two-dimensional verification
For the two-dimensional manufactured solution [32] of Problem 1 the velocity field is chosen as

ve (X) =

(
cos (π [x + y]) sin (π [x − y]) cos

(
π
4 t

)
cos (π [x + y]) sin (π [x − y]) cos

(
π
4 t

)) , (31)

the pressure is chosen as

pe (X) =
cos (π [x + y]) sin (π [x − y]) cos

(
π
4 t

)
ε

, (32)

and the displacement is chosen as

ue (X) =

(
−x − sin

(
π
4 [x − y]

)
cos

(
π
4 t

)
−y + cos

(
π
4 [x + y]

)
cos

(
π
4 t

)) . (33)

The velocity gradient is defined as Le B GradveF−1 from Eq. (6a) and the deformation gradient is defined as
Fe B Gradue + I from Eq. (7a). In this formulation, because the pressure is chosen arbitrarily it is necessary to compute
a right-hand-side term in Eq. (6c). The right-hand-side terms are not presented here but can be calculated using a
symbolic algebra package. Fig. 2 shows the computational domain under investigation for the ALE verification problem.
Note that because of the choice of the displacement field, care must be taken so that the determinant of the deformation
gradient is not zero anywhere in the domain. The values of the parameters {ε, ρf, µf, λm, µm,∆t} are chosen to be{

1
[
m · s2/kg

]
, 1

[
kg/m3] , 1/2 [Pa · s] , 1 [Pa] , 1/2 [Pa] , 10−6 [s]

}
. Fig. 3 shows the four overset mesh system that

is used in the verification of Problem 1. Table 2 describes the mesh domains, initial cell size and corresponding color in
Fig. 3.

Table 2 Domain definitions and initial minimum cell sizes for all four meshes used for the verification of
Problem 1. The set of points given for Ω1 – Ω4 correspond to lower left and upper right corners respectively.

Mesh Fig. 3 Color Domain h0

Ω1 Orange [0.5, 0.5] × [1.1, 1.1] 0.2121
Ω2 Green [0.8, 0.8] × [1.5, 1.5] 0.2475
Ω3 Blue [0.5, 0.7] × [1.2, 1.5] 0.2658
Ω4 Red [0.9, 0.5] × [1.5, 1] 0.1953

Convergence rates are demonstrated using the L2 error norm, defined as

‖a‖L2 ..=

√∫
Ω

a · a dΩ, (34)
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Fig. 2 Computational domain used for the two-dimensional verification of isentropic ALE Navier-Stokes with
corresponding boundary conditions.

Fig. 3 The four overset mesh system used for the two-dimensional verification of isentropic ALE Navier-Stokes
simulations.

for a generic vector field a. Similar definitions exist for scalar fields and tensor fields. Fig. 4 shows the convergence
results for all of the linear elastic fields that govern the mesh motion: displacement and the deformation gradient.
Both fields converge at the optimal rate for all approximation orders (k = 1, . . . , 4) for each mesh. Fig. 5 shows the
convergence results for all of the fluid fields: velocity, pressure, and velocity gradient. All fields converge at the optimal
rate for all approximation orders (k = 1, . . . , 4) for each mesh. The error in the velocity gradient for Ω1 and Ω4 starts to
increase on the finest level mesh. This is attributed to the third order temporal scheme starting to dominate the error.
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Fig. 4 Convergence results of the displacement u (a) and (b) and the deformation gradient F (c) and (d). All
fields show optimal order convergence for all approximation orders. Note that this also verifies the overset
system for the two-field linear elasticity problem, since no fluid properties affect this system.

11



10−10

10−8

10−6

10−4

10−2

0.02 10−1 0.3

O
(
h5

)

L
2

er
ro

r
n

or
m

h

‖v − vh‖L2

k = 1,Ω1

k = 2,Ω1

k = 3,Ω1

k = 4,Ω1

k = 1,Ω2

k = 2,Ω2

k = 3,Ω2

k = 4,Ω2

(a)

10−10

10−8

10−6

10−4

10−2

0.02 10−1 0.3

O
(
h5

)

L
2

er
ro

r
n

or
m

h

‖v − vh‖L2

k = 1,Ω3

k = 2,Ω3

k = 3,Ω3

k = 4,Ω3

k = 1,Ω4

k = 2,Ω4

k = 3,Ω4

k = 4,Ω4

(b)

10−10

10−8

10−6

10−4

10−2

0.02 10−1 0.3

O
(
h5

)

L
2

er
ro

r
n

or
m

h

‖p− ph‖L2

k = 1,Ω1

k = 2,Ω1

k = 3,Ω1

k = 4,Ω1

k = 1,Ω2

k = 2,Ω2

k = 3,Ω2

k = 4,Ω2

(c)

10−10

10−8

10−6

10−4

10−2

0.02 10−1 0.3

O
(
h5

)

L
2

er
ro

r
n

or
m

h

‖p− ph‖L2

k = 1,Ω3

k = 2,Ω3

k = 3,Ω3

k = 4,Ω3

k = 1,Ω4

k = 2,Ω4

k = 3,Ω4

k = 4,Ω4

(d)

10−10

10−8

10−6

10−4

10−2

100

0.02 10−1 0.3

O
(
h5

)

L
2

er
ro

r
n

or
m

h

‖L− Lh‖L2

k = 1,Ω1

k = 2,Ω1

k = 3,Ω1

k = 4,Ω1

k = 1,Ω2

k = 2,Ω2

k = 3,Ω2

k = 4,Ω2

(e)

10−10

10−8

10−6

10−4

10−2

100

0.02 10−1 0.3

O
(
h5

)

L
2

er
ro

r
n

or
m

h

‖L− Lh‖L2

k = 1,Ω3

k = 2,Ω3

k = 3,Ω3

k = 4,Ω3

k = 1,Ω4

k = 2,Ω4

k = 3,Ω4

k = 4,Ω4

(f)

Fig. 5 Convergence results of the velocity v (a) and (b), the pressure p (c) and (d), and the velocity gradient L
(e) and (f). All fields show optimal order convergence for all approximation orders. For k = 4 there is a slight
deviation in the velocity gradient from the optimal slope. This is attributed to the temporal error dominating at
the finest level mesh.
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V. Summary
We have presented an overset-HDGmethod for an isentropic ALE Navier-Stokes formulation, which we have verified

through the method of manufactured solutions in two-dimensions. Through verification, all fields, on each mesh, of the
coupled system converged at optimal order O (k + 1), where k is the approximation order. Through this verification
procedure we have demonstrated that the amount of overlap between meshes is arbitrary and that convergence is optimal
even for higher-order approximations.

VI. Future Work
The extensions of this work are to develop a parallel communication algorithm and implement a general block

parallel solver. The parallelization of the communication algorithm will allow for more realistic simulations to be
performed and direct comparisons between model experiments and other accepted overset methods. We expect that the
general trend in the scaling between a single mesh configuration and a general N-mesh overset configuration will be
similar once the communication algorithm is fully parallelized and a more robust linear solver is implemented. We are
not expecting any overset configuration to run faster than a single mesh configuration. We will directly compare our
fully parallel overset-HDG algorithm to existing overset codes already in use, and we expect that our algorithm will
outperform the current overset standards.

Appendix
The fully discrete local weak formulation is presented below. This takes into account the third order backward

difference formula (BDF3), defined in Eq. (21), used to discretize the Local Problem 1 in time. We also include the
backward difference approximation we use to calculate the mesh velocity. For increased clarity the superscript h for all
fields is removed and replaced with superscript n to indicate the current timestep. Note that n − 1 refers to the previous
timestep, and so on. So at timestep n the fully discrete weak form is

Local Problem 2 (Local Isentropic ALE Navier-Stokes) Find
(
Ln

f , v
n
f , pnf ,F

n
m, un

m

)
∈ Gh ×Yh ×Ph ×Ch ×Uh such

that

Local Subproblem 2.1 (Fluid)(
G, Jn

mLn
f
)
K
−

(
G, Jn

mGradvnf
[
Fn

m
]−1

)
K
+

〈
G, Jn

m
(
vnf − v̂nf

)
⊗

[
Fn

m
]−ᵀ nf

〉
∂K
= 0, (35a)(

y,
Jn

mρf

6∆t
[
11vnf − 18vn−1

f + 9vn−2
f − 2vn−3

f
] )

K

+

(
y, Jn

mρfLn
f

[
vh

f −

{
un

m − un−1
m

∆t

}])
K

+
(
Grady, Jn

m
[
µfLn

f − pnf I
] [

Fn
m
]−ᵀ)

K
+

(
y, Jn

mρf
[
Gradvnf :

[
Fn

m
]−ᵀ] vnf

)
K

+
〈
y, Jn

mT̂n
f
[
Fn

m
]−ᵀ nf

〉
∂K
=

(
y, Jn

mfnf
)
K
, (35b)(

q,
Jn

mε

6∆t
[
11pnf − 18pn−1

f + 9pn−2
f − 2pn−3

f
] )

K

+

(
q, Jn

mε
{[

Fn
m
]−ᵀ Gradpnf

}
·

{
un

m − un−1
m

∆t

})
K

−

(
Gradq, Jn

m
[
Fn

m
]−1 vh

f

)
K
+

〈
q, Jn

mv̂nf ·
[
Fn

m
]−ᵀ nf

〉
∂K
= 0, (35c)

where
T̂n

f
[
Fn

m
]−ᵀ nf ..=

[
−µfLn

f + pnf I
] [

Fn
m
]−ᵀ nf + Sn

f
(
vnf − v̂nf

)
, (36)

Local Subproblem 2.2 (Mesh Motion)(
C,Fn

m − I
)
K −

(
C,Gradun

m
)
K −

〈
Cnm,

(
un

m − ûn
m
)〉
∂K
= 0, (37a)(

Gradw,C
[
SymFn

m − I
] )

K
−

〈
w, P̂n

mnm

〉
∂K
=

(
w, bn

m
)
K , (37b)

where

P̂n
mnm ..= C

(
SymFn

m − I
)
nm − Sm

(
un

m − ûn
m
)
, (38)
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∀ (G, y, q,C,w) ∈ Gh × Yh ×Ph × Ch ×Uh,

where Sn
f is defined as

Sn
f
..=

(
2µf + ρf ‖vn−1

f ‖

)
I. (39)
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