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Abstract—In the 3.5 GHz Citizens Broadband Radio Service
(CBRS), 100 MHz of spectrum will be dynamically shared be-
tween commercial users and federal incumbents. Dynamic use of
the band relies on a network of sensors dedicated to detecting the
presence of federal incumbent signals and triggering protection
mechanisms when necessary. This paper uses field-measured
waveforms of incumbent signals in and adjacent to the band
to evaluate the performance of support vector machine (SVM)
classifiers for these sensors. We find that a peak analysis classifier
and a higher-order statistics classifier perform comparably when
the signal is in white Gaussian noise or commercial long term
evolution (LTE) emissions, but with out-of-band emissions of
adjacent-band systems the peak analysis classifier is far superior.
This result also highlights the importance of including adjacent-
band emissions in any performance evaluation of 3.5 GHz
Sensors.

Index Terms—3.5 GHz, CBRS, radar detection, machine
learning, sensor

I. INTRODUCTION

The Citizens Broadband Radio Service (CBRS) in the U.S.
permits commercial broadband access to the radio frequency
spectrum between 3550 MHz and 3700 MHz on a shared basis
with incumbents in the band [1]. Among the incumbents is
the U.S. military which operates radar systems in this band,
including shipborne radar off the U.S. coasts. The CBRS rules
permit dynamic access to the band in the proximity of military
radar provided a sensor network detects the presence of the
incumbent radar and triggers interference mitigation measures
when necessary. The scope of this study is on the achievable
detection performance of this sensor network.

In order to operate in the CBRS ecosystem, sensors must
be able to detect the in-band incumbent radar signal at a
minimum received power density of —89dBm (dB relative
to 1mW)/MHz [2], within 60 seconds of onset, and with
a probability of detection of 99 % or better [3]'. With this
minimum required power density, the detection is clearly
not thermal-noise-limited, as the detection threshold is 25dB
above the thermal noise floor. The challenge for detection is
presented, rather, by co-channel interference.

There are two primary sources of co-channel interference at
the sensor’s receiver. First, by design, the band is shared with

!Government requirements do not specify a maximum probability of false
alarm, although this figure of merit is naturally of interest to commercial
users.
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commercial systems. Therefore, sensors must be able to detect
the incumbent signal in channels occupied by commercial
systems. These systems are expected to be LTE systems, at
least initially. However, the emissions of commercial systems
operating in the band can, in principle, be controlled by treat-
ing the sensors as protected entities in the CBRS ecosystem.

The second, more challenging, source of interference is
the out-of-band emissions of systems operating in adjacent
bands. These systems are also military radars, operate at
frequencies below the CBRS band, and have been observed
to generate significant emissions into the CBRS band [4],
[5]. Detection by CBRS sensors differs from traditional radar
detection primarily because the sensor aims to identify the
presence of a radar signal rather than detecting and tracking
a target. Additionally, unlike a typical radar receiver that
has full access to the radar waveform, the sensor has only
partial knowledge of radar waveform parameters. However,
elements of classical radar detection can still be utilized. In
prior related work, we evaluated coherent and non-coherent
matched-filter detectors for this band [6]. Machine learning
techniques have been used for cognitive radio and proposed for
physical layer applications [7], [8]. Higher-order statistics and
cumulant features were utilized for detection and classification
in [9]-[11]. In addition, SVM and deep learning techniques
were used for signal classification in [12]-[15].

This paper is a study of the performance of SVM classifiers
trained to detect the current radar signal in the 3.5 GHz band.
The analysis uses sets of training and evaluation waveforms
derived from field measurements. Classifiers are trained on
higher-order statistics of the signal amplitude as well as on
temporal features of the peaks of the signal amplitude. The
waveforms used for training and evaluation of the classi-
fiers include field recordings of both the in-band radar and
the out-of-band emissions of adjacent-band radars collected
at two U.S. coastal locations [4], [5]. The field recordings
were supplemented with computer-generated LTE signals and
Gaussian noise. We present the achievable tradeoff between
detection and false-alarm rates under different interference
conditions for two SVM classifiers. While this study is limited
to detection of the current in-band radar, SPN-43, a similar
analysis can be performed for future radars deployed in this
band.
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Fig. 1: Classification system overview

II. SYSTEM MODEL

A sensor is responsible for detecting incumbent radar sig-
nals and identifying which 10 MHz channel each signal occu-
pies within the lower 100 MHz of the band. One alternative
is for a capable sensor to sample the entire 100 MHz and
employ M filters to cover the entire bandwidth, each filter
being centered at an appropriate frequency, f.,. The output
of each filter is fed to a radar signal detector. The simplest
form of a detector is a binary classifier indicating presence
or absence of an incumbent radar signal. Fig. 1 demonstrates
this configuration. In addition to filtering, the signal can be
downsampled to an appropriate sampling rate, F, to reduce
computations. After filtering, a set of features, ®;, is extracted
from the signal for use by a trained classifier Cl; to decide
whether the radar signal is present or absent in the channel.

For simplicity, we will assume that the classification
branches are identical and thus we will drop the branch
subscript ¢ for the remainder. As in [6], the simplified signal
model is given by

x[n] = s[n] + v[n],

where s is the in-band radar signal whose presence we are
trying to detect, and v is either complex white Gaussian noise
(CWGN), an LTE signal sharing the band, or adjacent-band
interference (ABI) from radar emissions outside the band. The
SVM classifier requires training before its use for detection.
The model is trained on signal data that include scenarios
similar to what a sensor will observe in field operation. The
statistical hypothesis testing for the radar signal detection is

{HO s z[n] = vn],
Hy : x[n] = s[n] + v[n].

Two probabilities are of interest for evaluating detection per-
formance, the probability of false alarm, Pry = Pr(H,|Hy),
and the probability of detection, Pp = Pr(Hq|H1).

III. SVM BINARY SIGNAL CLASSIFICATION

We model the detection problem of the incumbent radar
signals as a binary classification problem. In supervised learn-
ing, the classifier requires the ground truth for the presence
of the radar signal. Therefore, we generate training signal
data with an appropriate response variable for the state of
the incumbent radar signal. For both training and testing, all
signals pass through a two-step normalization process. First,
we subtract the mean of the signal from itself. This step
reduces the direct current (DC) components in the signal.
Second, we normalize the signal by its root mean square
(RMS). RMS normalization removes the dependency of the
extracted features on the magnitude of the signal.

A. Feature extraction

For signal classification, the features are signal attributes
that emphasize some phenomena of interest in the signal.
Particularly, we are interested in signal features that are useful
for detecting pulsed radar signals. Two examples of such
signals with different types of background interference are
shown in Fig. 2. In one case (Fig. 2a), the interference is
an LTE signal and the pulsed radar signal is relatively easy to
distinguish. In the other case (Fig. 2b), the interference also
appears pulsed and detection is more challenging. We consider
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two classification models, each with a distinct set of features
extracted from the time-domain signals. One set is comprised
of higher-order statistics of the signal amplitude and the other
of temporal features of the peaks of the signal amplitude. We
use state-of-the-art SVM classifiers with the kernel method
for both models due to its efficiency for solving classification
problems that include non-linear features.

1) Higher-order statistics classifier (HSC): We consider
the third and fourth moments of the magnitude of the signal
in terms of its skewness and kurtosis, respectively. Skewness
is a measure of the lack of symmetry of a distribution, and
kurtosis is a measure of whether the distribution is heavy-
tailed or light-tailed relative to a normal distribution [16].
Skewness and kurtosis provide a measure of the deviation
of the signal distribution from normality towards burstiness.
The distribution of the amplitude when a strong radar signal
is present is heavy-tailed and highly skewed to the right.
On the downside, skewness and kurtosis may not be able
to distinguish between the intended radar signal and similar,
pulsed interference signals. In order to improve detection
performance amid non-uniform bursts in the interference, we
partition the signal into P contiguous partitions. Each signal
partition, x,,, has a number of samples, N, = %, where N is
the number of samples of the signal. We choose N and P to
produce an integer number of partitions, N,. The kurtosis, ~p,
and skewness, ¢,, of each partition are computed as follows,

= iy (Japlil] = ()

Kp = Uf; )
= S (il — (Tzp]))?
N, £=i=1\I"p b2
Cp = 03 )
p

where (-) denotes the mean, and o, is the standard deviation
of |z,|. The features for this model are computed as the
mean of the kurtosis and skewness over all signal partitions.
Specifically,

2) Peak analysis classifier (PAC): The peak analysis
method relies on finding the peaks of the time domain signal
with certain constraints. A threshold -y is first applied to the
signal. The threshold rule ensures only peaks of a sufficient
amplitude are considered for the peak search. Then, we use the
second derivative test to find all the local maxima in the signal.
The local maxima are further filtered by minimum separation
time. This step ensures that only one sufficient peak is selected
per time interval of 7},,. In the last step, we limit the number of
peaks by selecting the largest L peaks. We use the resulting set
of peak amplitudes, {cy}, and their corresponding times, {74},
to extract the desired features for the peak analysis classifier.
The differences between the times of the peaks indicate the
level of uniformity of the peak separation. Specifically, the
more uniform the time separation is, the higher likelihood that
an in-band SPN-43 radar signal is present. Hence, we define

{A1p := 7941 — 70, =1,2,3,..., L — 1} as the set of time
differences between the peaks. In addition to the statistics of
the set {A7,}, we use the average of the peak amplitudes as
one of the features. The set of features for peak analysis is
defined as

Por ={({AT}), var({A7}), max({A7}), ({are})},

where var(-) is the variance, and max(-) is the maximum.

B. Classification model

The SVM classifier constructs an optimal separating hy-
perplane between two linearly separable classes. Since the
classes in our model are not linearly separable, we use the
kernel method which expands the features into higher dimen-
sional feature space. Specifically, we use the Gaussian kernel
function. Furthermore, we tune the model hyperparameters
using Bayesian optimization [17], [18]?. In particular, the
hyperparameters are box-constraint and kernel-scale. The box-
constraint is the regularization parameter for the soft margin of
the SVM. As a result, it provides a tradeoff between misclas-
sification and over-fitting. On the other hand, the kernel-scale
regulates the influence of individual support vectors on the
decision boundary. Furthermore, Platt scaling with a sigmoid
function is used to map the SVM scores into class posterior
probabilities [18], [19]. The probability output enables us to
compute detection performance against a range of threshold
values.

IV. PERFORMANCE ANALYSIS

Field-measured signals of shipborne radar mixed with three
types of interference are used to train and test the classifier.
The radar and interference signals are generated separately,
processed similarly to [6], and later added together in simu-
lation. All the radar and interference signals consist of 20 ms
segments, each with F; = 2 MHz. The radar signals contain
20 pulses. The interference is either WGN, a single time-
division duplex (TDD) LTE signal, or ABI. Radar peak power
and interference peak and average power are computed in
a 1MHz bandwidth. In addition, the signal-to-noise ratio
(SNR) is defined as the peak power of the radar signal to
the average noise power in 1 MHz. Field-measured radar and
ABI signals are divided into two separate groups, one for
training and another for evaluating detection performance. The
WGN and LTE signals are generated randomly during training
and testing. The TDD LTE signal configurations are selected
randomly from columns of Table 1 in [6].

A. SVM classifier training

We generated 35200 training waveforms. Half of the
set contains a radar signal plus interference and the other
half contains interference only. The training set includes

2Certain commercial equipment, instruments, or materials are identified
in this paper to foster understanding. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.



12800 waveforms with WGN, another 12800 waveforms
with LTE interference, and 9600 waveforms with ABI. The
signal state is stored in the response variable as 0 when
the incumbent radar signal is absent, and as 1 when the
incumbent radar signal is present. We set different levels
of interference power for each scenario. For WGN, the
SNR was set at (11,13,15,17) dB. For LTE, the peak
radar signal power was fixed at —89dBm/MHz, the re-
quired detection threshold, while the LTE power was set at
(=100, —103, —106, —109) dBm/MHz.> The training wave-
forms with ABI were equally selected from three groups
based on their peak interference to noise ratio (INR). In
particular, the groups are selected based on three ranges of
INR, (10 < INR < 20,20 < INR < 30,INR > 30) dB. The
SNR for the waveforms with ABI was fixed at 19 dB, which
corresponds to the SNR when the peak radar signal power is at
the required detection threshold and the detector has a thermal
noise figure of 6 dB.

The training data was used to extract ®,,. features for HSC,
and &, features for PAC. For the PAC model, T, = 0.5 ms,
L = 20, and - was set to 3 dB above the average power of the
signal. The features and the response variable were fed to the
SVM training algorithm. The SVM model was initially tested
with 10-fold cross-validation with equal probability of the
class. The confusion matrices for both classifiers are shown in
Fig. 3. The percentages of correctly and incorrectly classified
observations are shown in the diagonal and off-diagonal cells
of the confusion matrix, respectfully. In addition, the far right
column and last row give the percentages of correct and
incorrect classifications of each class. For example, Fig. 3(b)
shows that the PAC model correctly predicts class 0 84.7%
of the time. Finally, the lower right cell of each matrix shows
overall accuracy. Clearly, the PAC model has higher accuracy
and mis-detection rates than the HSC model.

While the confusion matrix of the cross-validation is useful
for understanding overall performance and tuning the model
hyperparameters, a better measure of detection performance
is the receiver operating characteristic (ROC). The following
ROC curves were generated with waveform data that was not
used for training.

B. Detection performance

We used the trained SVM models for HSC and PAC to
evaluate ROC curves. Given the input, the trained model
generates the probability of the class which is compared to a
threshold to decide the presence or absence of the radar signal.
We use a range of threshold values to evaluate detections and
false alarms and average them over all simulation points to
compute Pp versus Pp4 curves.

1) Signal detection in WGN: Fig. 4 shows the ROC curves
for HSC and PAC for the WGN scenario. Both classifiers
require SNR of roughly 12dB to achieve low Prp4 at
Pp = 0.99. While HSC performs better for the lower SNR

3Current CBRS requirements stipulate that commercial interference at a
sensor not exceed —109 dBm/MHz [3], but this analysis also considers
higher levels of interference.
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Fig. 4: Radar signal with added WGN.

values, PAC converges faster to a low Pr4 at higher SNR.
In comparison to the matched filter detector with a similar
scenario [6], both HSC and PAC classifiers require about
7dB higher SNR to achieve the same detection performance.
However, considering that current detection requirements [2]
equate to an SNR of about 19 dB, both HSC and PAC perform
acceptably in Gaussian noise.

2) Detection in LTE interference: The performance of HSC
and PAC in the presence of LTE interference is shown in
Fig. 5. The performance of both classifiers degrades slightly
from the WGN case due to relatively large variations of
the LTE signal in time. Nevertheless, the performance of
both detectors is still within the acceptable range since the
sensors are required to tolerate —109 dBm/MHz of aggregate
commercial emissions [3].

3) Detection in adjacent-band interference: Finally, Fig. 6
shows the performance in ABI. The PAC classifier performs
well for this case and not very far behind the matched
filter detector for the same scenario [6]. Evidently, the HSC
yields poor performance and is unreliable for this type of
interference. This is not surprising since the HSC cannot
distinguish between the burst of pulses of incumbent radar
and ABI. This example demonstrates that a specific detector
may perform well within official requirements [2] for detecting
the federal incumbent radar but may perform poorly in certain
realistic interference scenarios such as radar emissions from
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Fig. 6: Radar signal with adjacent-band radar emissions.

adjacent bands.

V. CONCLUSION

We presented two feature-based SVM classifiers for detect-
ing federal incumbent radar in the 3.5 GHz shared-spectrum
CBRS band. We evaluated their performance using field-
measured signals of the in-band incumbent radar in WGN,
and in the presence of interference from dominant LTE signals
or adjacent-band emissions. Although both classifiers require
higher SNR values to achieve the same detection rate as
the matched-filter detector, their performance is within the
acceptable range of current detection requirements. In addi-
tion, the proposed SVM classifiers may provide a practical
advantage since they are less computationally expensive to
generalize than a matched filter for the same in-band radar
signal with a partially known set of parameters. For instance,
a matched-filter detector requires correlation with multiple
templates if the radar pulse repetition rate is not known,
while the SVM classifiers only need to be trained once with
multiple templates. However, the features of the classifier
should be chosen carefully since a specific detector may
meet official requirements but may perform poorly in certain
realistic interference scenarios such as radar emissions from
adjacent bands.
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