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A B S T R A C T

In this study a feedforward control method for laser powder bed fusion additive manufacturing is demonstrated.
It minimizes the meltpool variation by updating the laser power based on a data-driven predictive meltpool
model. A rectangular pattern is scanned multiple times on a customized LPBF testbed. The meltpool is monitored
in situ by a high-speed camera, optically aligned with the heating laser. Constant laser power is applied for the
first scan, and its meltpool images are used to train the model and adjust the laser power for the following scans.
The meltpool images from these scans are compared, and a significant reduction in meltpool variation is
achieved.

1. Introduction

Laser powder bed fusion (LPBF) is an additive manufacturing (AM)
process in which a focused, high power laser selectively melts geo-
metric patterns into layers of metal powder and builds near-net-shape
parts layer by layer. The part quality is determined by many process
parameters [1,2], such as the laser scan path, power, velocity, etc. For
example, pores have been attributed to various phenomena related to
the power-velocity attributes, such as keyhole collapse at high laser
energy densities [3,4], or insufficient re-melting of adjacent scan vec-
tors [5,6]. Moreover, Khairallah et al. also noted that turning the laser
off at the end of a scan vector can potentially cause pores to be trapped
under the rapidly solidified melt pool, and recommended laser power
decrease at these locations [7]. A continuous scan strategy, which re-
duces such on and off was developed to reduce this end of scan porosity
[8]. Apart from the solidification physics of a single scan, the general
size, shape, and timing of a laser scanning pattern are also known to
affect the local thermal history [9] and conductivity, resulting in in-
consistent meltpool sizes.

Many earlier scan strategy studies have been focused on finding a
single ‘optimal’ combination of laser power and velocity by determining
the P–V (power-velocity) process map, paying little attention to this
local variation in thermal properties due to conductivity or residual
heat. Other studies have applied multi-physics simulation to capture
these variations [10], but the computational cost limits its application
to the scan strategy optimization. Machine learning-based simulation
seems to provide the answer; multiple researchers [11–13] have

demonstrated machine learning-based models with prediction accuracy
close to the multi-physics simulation and computation time orders of
magnitude less. However, we could not find any studies on applying
these prediction models to optimize AM scan strategies. Further lit-
erature surveys show many machine learning studies on process mon-
itoring and defect prediction [14,15]. Their potential applications on
process control have also been suggested [16,17], but none was de-
monstrated experimentally. This could be due to the limitation of the
experimental platform, such as the lack of continuous laser power ad-
justment capability within a scan vector.

In this study, we demonstrated a scan strategy optimization based
on residual heat compensation. A neighboring-effect modeling (NBEM)
method is built through a machine learning-based data-driven ap-
proach, and then used to tune the laser power for each digital scan
position. The experiment was conducted on the Additive Manufacturing
Metrology Testbed (AMMT) developed at the National Institute of
Standards and Technology (NIST) [18,19]. Its open platform process
control enabled a continuous laser power adjustment, which is funda-
mental for the implementation of advanced scan strategies.

2. AM process control and motnitoring

Fig. 1 shows the process control block diagram for the NIST AMMT.
The AM Software handles slicing, path planning, digital interpolation
and scan simulation (verification). The output files are (1) 2D layers
described by vertices, (2) scan path described by modified G-codes (AM
G-code) [9,11], and (3) time-stepped digital command of n x m
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numerical arrays; where n is the number of steps (per layer) and m is
the number of control parameters. The time-stepped digital command
can be first simulated or sent directly to the controller for execution.
The AM controller controls hardware modules including (a) laser
system, (b) powder bed, (c) build chamber and (d) monitoring devices.
The monitoring signals can be used for feedback/feedforward controls
and post-analysis.

2.1. Time-stepped digital command

The time-stepped digital command (also referred to as digital
command) sent to the AM controller is created based on the xy2-100/
sl2100 protocol [18], which updates x and y galvo positions at 100 kHz,
or each 10 μs time-step. The digital command here expands the control
parameters from two (x and y positions) to five, to include laser power
(L), laser spot size (D), and triggers (T) for in-situ monitoring devices
(Fig. 2a). The AM controller reads in the command array and executes
one line every 10 μs (Fig. 2b). This ensures the synchronization between
the laser position, power, spot size and in-situ monitoring devices
(Fig. 2c). The digital command contains also scan speed (from the first
derivative of x and y) and acceleration information (from the second
derivative of x and y) since time is embed in the steps. Laser power (L)
can be proportional to speed to obtain a constant power density scan
strategy. It is also important that acceleration must be within the
physical system’s limit otherwise it will cause a following error (i.e.,
deviation from the commanded path) otherwise [8]. This digital com-
mand is the most accurate and complete way to describe the scan

strategy, as the physical part is built solely based on it. For the same
reason, optimization models can be built based on this digital command
alone, and to adjust the L at each scan point to compensate the thermal/
physical condition at that point.

2.2. Meltpool imaging and image analysis

During the laser powder bed fusion process, the meltpool is formed
by laser beam irradiation on the metal powders, and then solidifies to
the consolidated structure. Therefore, the meltpool is a primary feature
of this process and its stability, dimensions and behavior determine to a
great extent the quality and stability of the process [21,22]. The ob-
jective for controlling laser power during an AM build is to allow for
more constant, unvarying meltpool size. A high-speed camera is set up
coaxially [2] for in situ meltpool imaging (Fig. 2). The camera is trig-
gered by the same digital commands for the laser position and power,
hence the images can be mapped back to the exact scan positions
(Fig. 2). The trigger intervals can be arbitrary as long as it is longer than
the exposure time and multiple of one time-step (10 μs). Emitted light
from the meltpool is filtered at 850 nm (40 nm bandwidth) and diverted
by a dichroic mirror to the camera sensor with nominal 1:1 magnifi-
cation and 8 μm/pixel size. The images were taken with 45 μs exposure
time, 120-pixel x 120-pixel window, and 8-bit grayscale. The gray le-
vels are used to relate to the meltpool temperatures [23], and for build
quality prediction. This is demonstrated through the example below.

A spiral pattern was scanned on a bare stainless-steel (17−4) plate.
Fig. 3a and b plot its speed and power. The nominal velocity is 1 m/s

Fig. 1. AM process control block diagram.

Fig. 2. Time-stepped digital commands and its execution. (a) A sample digital command array. (b) Controller reads the commands and executes it row by row, at 10
μs time-step. (c) Galvo, laser power, laser diameter, and in-situ monitoring devices status are updated at every 10 μs. Cameras are triggered by T.
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but is slowed down when approaching to the center to keep the ac-
celeration within the system limits. The nominal power is 100 W but is
lowered to 60 W for 300 μs at three different locations (yellow color in
Fig. 3b), to create changes in the meltpool. A ‘virtual build plate’ is
created by a bitmap of the same dimension as the scan area (3 mm x 3
mm) and the same pixel resolution (8 μm/pixel) as the meltpool image
(Fig. 3c). The meltpool images are then ‘superimposed’ to the positions
they were taken, by taking the maximum grayscale level among them. If
the frame rate is high enough, a continuous ‘virtual’ scan track will
form as shown in Fig. 3d. Fig. 3e plots the meltpool image area by color
for direct visualization of the meltpool size variation. Comparing the
virtual (Fig. 3d) and physical scan tracks (Fig. 3f), the variations of
meltpool size at the lower laser power and at the center of the spiral are
faithfully recorded by the meltpool images. The contour with the
grayscale intensity level of 80 is found to best match the physical
meltpool width, it is used to infer melt pool boundary from the high-
speed images and calculate meltpool image dimensions.

The ‘virtual build plate’ (meltpool intensity and area plots in Fig. 3d
and e) were originally developed to predict the potential lack of fusion
and keyholing defects. They were provided here as a demonstration of
continuous laser power control and accurate in-situ meltpool mon-
itoring capabilities. The close correlation between the lack of fusion
locations on the physical plate (Fig. 3f) and the virtual plate (Fig. 3d)
implies that if the lack of fusion defects are eliminated on the virtual
plate by keeping a constant meltpool, the lack of fusion defects could
also be eliminated on the physical plate. Three potential lack of fusion
defects were seeded by lowering the laser power to 60 W (the yellow
regions in Fig. 3b), but only two can be observed on the virtual /
physical plate (Fig. 3d and f). This implies a lower laser power does not
necessarily result a smaller meltpool or a lack of fusion defect. When
the scan approaching the center, the center region is heated up and
same laser power level can create a larger meltpool. The objective of
this study is only to keep a constant meltpool area, but it is believed
that a more constant meltpool will give a better part quality.

3. Modeling and optimization methods

This section introduces the fundamental approaches of modeling
and optimization methodologies used in this study for scan strategy
improvement. It uses the building time, laser power, scan speed, and

neighboring effect factors (Eq. 1) as input variables for the meltpool
size predictive model. However, the scan strategy optimization uses the
laser power as the single design variable to reduce the meltpool var-
iation. A data-driven model predicting meltpool image size is developed
based on the data collected from the original experiment. The optimizer
iteratively updates the laser power (L column in Fig. 2a) in the scan
commands to keep the meltpool size more constant. A series of ex-
periments were designed to verify the modeling and optimization work.

The modeling method in this study builds upon the authors’ pre-
vious work named Neighboring Effect Modeling Method (NBEM) [24].
The fundamental theory of the NBEM method is that the meltpool size
depends on, in additional to laser power and scan speed, the thermal
history of the scanning process. Eq. (1) shows the formulation of
meltpool size Si for scan point i, and the related variables laser power Pi,
scan speed vi, and neighboring effect factors θi

Δt and θi
Δd. The last two

factors represent the cumulative effect of all neighboring points to the
current point i based on time difference Δt and spatial difference Δd.

=S f P v θ θ( , , , )i i i i
t

i
dΔ Δ (1)

Under this theory, the NBEM factors summarize the influence of the
previous energy density of all neighboring points according to the
cooling rates. The magnitude of these factors depends on the part
geometry and laser scan path. The geometry of the part determines the
quantity of neighboring points. The scan path determines how the
neighboring points relate to the current point. For example, two points
may be spatially close to one another but the scan path might be such
that a long time exists between when the laser spot hits each point [24].
Considering the cooling rate, spatially closer points with long traveling
time cannot provide sufficient influence on the current melting point.
This study modifies the original formulation to a new form by adding
the global building time factor and removing the low sensitive spatial
NBEM factor to improve predictive accuracy. The formulation of NBEM
model used in this study is:

=S f t P v θ( , , , )i i i i i
tΔ (2)

where variable ti represents the global building time at current scanning
point i. θi

tΔ , the summation the neighboring effect from time perspec-
tive, can be presented as:

Fig. 3. Meltpool image analysis example. (a) Laser speed (b) Laser power. (c) Virtual build plate with equivalent frames per second =4 kHz. (d) Continuous track
created from meltpool images. (e) Meltpool area plot against its location. (f) Microscopic image of the physical scan tracks.
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where tΔ ij is the travel time from point j to point i along the laser scan
path. Pij and vij are the laser power and scan speed of point j in the
neighboring zone of the current point i. The effect for point j is:

=f t a e(Δ )t ij
a t

1
Δ ij2 (4)

where =f (0) 1t and ∞ =f ( ) 0t . The parameters a1, a2 can be derived
from data-driven approach based on the experiments. In this study,

tΔ max is set to 300 000 μs that represents the maximum time difference
in the NBEM model. The estimated a1 = 1, a2 = -0.00001029 were
used, as well as an order of ‘1113’ for the polynomial variables ti, Pi, vi,
and θi

tΔ in Eq. (2). Table 1 lists the coefficients and terms of the poly-
nomial model, where x1 = ti, x2 = Pi, x3 = v, and x4 = θi

tΔ .
The purposes of the scan strategy optimization are meltpool size

control and variation reduction. To achieve these goals, the potential
design variables for optimization can be laser power, scan speed, and
laser scan path. Modifying scan speed or laser scan path requests the
significant changes in scan commands, therefore laser power is selected
as the single design variable for the optimization, which focuses on
managing the meltpool size into the desired range. Steps in the opti-
mization algorithm are:

Step 1. Compute the NBEM variables ti, Pi, vi, and θi
tΔ from the scan

commands x, y, and L columns, of each time step i.
Step 2. Compute the meltpool area of each time step using by NBEM

model for current scan strategy
Step 3. Locate the irregular sized meltpool from the estimation

>S Sh max and <S Sl min. Subscripts h and l represent the index of the
time step when larger and smaller meltpool may appear due to the scan
strategy. Smax and Smin are the boundaries of desired meltpool range.

Step 4. For all irregular meltpool, = −+P P m p*(1 Δ )h
k

h
k1 for over-

sized meltpool and = ++P P m p*(1 Δ )l
k

l
k1 for undersized meltpool,

where +Ph
k 1 and +Pl

k 1 are the updated laser power for h and l at k+1
iteration, pΔ is the portion of laser power adjustment, and m is the
decrement coefficient of each iteration. In this study pΔ is set to 10 %,
m is set to

+ k
10

9
.

Table 1
Polynomial coefficients and terms of Eq. (2) used in this study.

Coefficient Term Coefficient Term Coefficient Term Coefficient Term

c0 Intercept c5 x1x2 c10 x3x4 c15 x2x3x4
c1 x1 c6 x1x3 c11 x4

2 c16 x x1 4
2

c2 x2 c7 x2x3 c12 x1x2x3 c17 x x2 4
2

c3 x3 c8 x1x4 c13 x1x2x4 c18 x x3 4
2

c4 x4 c9 x2x4 c14 x1x3x4 c19 x4
3

Fig. 4. Scan strategy for the first experiments. Numbers indicate the scanning sequence. (a) Laser power. (b) Laser speed.

Table 2
Experiment design.

Scenario Constraint of Power (W) Objective Meltpool Area (mm2)

Lower Bound Upper Bound Lower Bound Upper Bound

1 100 195 0.014 0.026
2 100 195 0.016 0.024
3 100 195 0.018 0.022
4 50 250 0.014 0.026
5 50 250 0.016 0.024
6 50 250 0.018 0.022

Fig. 5. 3D plot of the meltpool area for the original experiment. Meltpool
images at locations marked by A - D are plotted in Fig. 6.
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Step 5. Compute the meltpool area of each time step using the new
scan strategy with updated laser power.

Step 6. Calculate =
−+

hΔ μ μ

μ
h
k

h
k

h
k

1
and =

−+

lΔ μ μ

μ
l
k

l
k

l
k

1
. μh

i and μl
i re-

present the total number of large and small meltpools for the kth

iteration. If both hΔ and lΔ converge, the current scan strategy is
considered optimal. Otherwise, set the new m and then return to Step 3.

Seven experiments (scans) were conducted, all with the same con-
centric spiral-in pattern and scan speed as shown in Fig. 4a. The scan is
divided into 4 islands, the number on each island indicates the scanning
order. The nominal scan speed is set to 800 mm/s and is reduced during
turns. Fig. 4b, however, shows the laser power for the first experiment
only. Two constant laser power levels applied, 100 W for the contour
(perimeter of the pattern) and 195 W for the infills. The laser spot size is
set to 85 μm. The scan strategy and meltpool images for the first ex-
periment, also referred to as the original experiment, are used to build
the NBEM model.

The other six experiments were designed to validate the optimal
scan strategy according to the constraint of power and the objective
meltpool image area. As shown in Table 2, Scenarios 1–3 set the laser

power from 100 W to 195 W. The target meltpool image area of Sce-
nario 1 ranged from 0.014 mm2 to 0.026 mm2 and gradually narrowed
to 0.018 mm2 to 0.022 mm2 for Scenario 3. Scenarios 4–6 have the
same target meltpool area range, but the boundary condition of laser
power extends to 50 W to 250 W. All scenarios have the same target for
the mean meltpool area, 0.02 mm2.

4. Experiment results and discussion

Fig. 5 shows the 3D plot of the measured meltpool image area for
the original experiment using the scan strategy shown in Fig. 4. The
meltpool images located near the center of each island have a sig-
nificantly larger area than the average. Fig. 6 shows the actual meltpool
images taken by the coaxial camera at locations A–D marked in Fig. 5. A
total of 20,902 meltpool images were collected for each experiment.
Fig. 7 plots the histogram of the meltpool image areas measured. The
average is 0.0304 mm2 with a standard deviation of 0.0181 mm2.

The model is fitted by the polynomial regression method using Eq.
(1) and Eq. (2), with the data from the original experiment. To test the
predictive accuracy, the model is built by 50 % of the data and tested by
the remaining 50 %. The formulation of The Average Relative Error
Magnitude (AREM) [25] is shown in Eq. (5), where yi is the observed
meltpool image area from the experiment, ŷi is the estimated area from
the model, and n is the total data points. The data used to build the
model includes only effective laser power (P>0); the meltpool images
with area = 0 are thus eliminated from the training and testing data-
sets. AREM of the model from Eq. (1) is 23 % and the model from Eq.
(2) is 17 %. The model with the lower predictive error is implemented.
The values of the fitted coefficients for Eq. (2) are shown in Table 3. The

Fig. 6. Example meltpool images for the original experiment.

Fig. 7. Histogram of the melt pool image area for the original experiment.

Table 3
Coefficients of NBEM model.

10−6 10−6 10−6 10−6

c0 0 c5 0 c10 0.2450 c15 0.0005
c1 −0.0039 c6 0 c11 −0.0038 c16 0
c2 136.9875 c7 −0.0414 c12 0 c17 0.0079
c3 −2.3710 c8 0 c13 0 c18 −0.0024
c4 0 c9 −1.1516 c14 0 c19 0.0038
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Fig. 8. Optimized laser power (a – c) and meltpool image area (d – f) for Scenarios 1 to 3.

Fig. 9. Optimized laser power (a – c) and meltpool image area (d – f) for Scenarios 4 to 6.
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value of c2, which is coefficient for x2 (laser power) in the polynomial,
shows the dominant effect of laser power on the meltpool area. This
justifies the using of laser power as the single design variable to reduce
the meltpool variation.

=
∑ −

≠= ˆ
n

y y
y

yAREM 1 (
| |

) 0i
n

i i

i
i

1

(5)

Fig. 8 shows the optimized laser power distributions (a–c) and the
resultant meltpool image areas (d–f) for Scenarios 1–3 (Table 2). The
originally uniformly distributed laser power (Fig. 4b) was adjusted to
the subject-specific conditions in Table 1, causing both the irregularities
and peak values of the meltpool image area to be significantly reduced.
The optimized scan strategy tends to reduce the laser power near the
center and during the turns, when the energy density increases and/or
residual heat accumulates. Scenario 3 has tighter objective meltpool
area boundaries (Table 2) than Scenarios 2 and 1, therefore (c) reduces
the laser power more aggressively than (b) and (a). However, due to the
lower bound of the laser power being limited at 100 W for all three

scenarios, none of them can completely remove the meltpool image
area peak at the island center.

Scenarios 4–6 attempt to reach the objective meltpool area by ex-
tending the laser power constraints to 50 W–250 W (Table 2). The new
optimized laser power distributions and the resultant meltpool image
areas are shown in Fig. 9. The meltpool image area variation is further
reduced, the peaks at the island center are almost leveled. Fig. 10 shows
the example meltpool images at the same locations A – D as in Fig. 6,
but for Scenario 6. Meltpool image area at location A and B remain
similar in size as before but significantly reduced at C and D, compared
with the original experiments (Fig. 7).

Fig. 11 compares the histogram of the meltpool image area of the
original experiment and Scenario 6. The average meltpool image area
in Scenario 6 is 0.0193 mm2. The standard deviation is reduced from
0.0181 mm2 to 0.0039 mm2. Table 4 lists the averages and standard
deviations for all experiments. The minimum standard deviation is
achieved by Scenario 6. Both Scenarios 3 and 6 have the tightest area
objectives, but Scenario 6 allows the power to be adjusted in a wider
range. This demonstrated the effectiveness of this optimization method.

5. Summary and future work

There is an open field of research into laser scan strategy with the
potential to reduce defects, control residual stress or microstructure, or
improve the speed and efficiency of material consolidation. NIST
AMMT provides control and monitoring capabilities for such research.
This study demonstrated a meltpool prediction-based scan strategy, it
maintained a more constant meltpool by adjusting laser power con-
tinuously based on the meltpool size predication made by the NBEM
model. The variation of meltpool image area, measured by its standard

Fig. 10. Example meltpool images for Scenario 6.

Fig. 11. Histogram for the original experiment (orange) and Experiment 6 (blue).

Table 4
Experimental results for original and optimized scan strategy.

Scenario Mean± SD (mm2) Objective (mm2)

Original 0.0304±0.0181
1 0.0231±0.0075 0.014 – 0.026
2 0.0221±0.0073 0.016 – 0.024
3 0.0208±0.0069 0.018 – 0.022
4 0.0208±0.0044 0.014 – 0.026
5 0.0203±0.0044 0.016 – 0.024
6 0.0193±0.0039 0.018 – 0.022
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deviation, was reduced by 78 % over the constant power scan strategy
(from 0.0181 mm2 to 0.0039 mm2). In a LPBF process the layer
thickness is usually less than 100 μm, therefore many adjacent layers
are sliced into the same geometry. The build environments, such as
temperature and air flow rate, do not vary too much per layer neither.
Therefore, the current layer meltpool images can be used to optimize
the scan strategy for the next layer to achieve a layer-wise feedforward
control.

The NBEM model simplifies the complicated thermal condition of a
scan position into four NBEM factors, it is computationally effective but
may also raise the modeling uncertainties due to the physical and nu-
merical losses. To achieve a more comprehensive physical representa-
tion and real-time control, a deep learning approach can be used. The
power, scan speed, and meltpool area plots in Fig. 3 can be super-
imposed into a multi-layer array to train a deep neural network model
for regression or classification purposes. More specifically, the neural
network regression model aims to capture more nonlinear features than
the current polynomial approach to improve predictive accuracy. The
optimization that builds upon a more accurate meltpool estimation can
potentially provide more precise power adjustment. The deep neural
network classification model, on the other hand, aims to identify
whether the scan command needs to be adjusted. The superimposed
array would construct the input layer. Power, speed, and meltpool area
would be the three input nodes. The output layer has three nodes for
power adjustment decisions. Increasing, maintaining, and decreasing
the power would be three categories for the output. The neural network
model would be trained to make a proper decision based on the original
commands and optimized power adjustment. However, it requires more
physical experiments for better training result. Current research of the
author has designed an experiment with 12 unique scan patterns with
different scan direction, island division, and power and speed settings
[26]. The data can be potentially used to build the deep neural network
model. This should provide a more accurate meltpool estimation at a
faster processing time, and is believed to be the direction towards the
real-time feedforward control of the AM process.
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