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Fundamental limits for the calculation of scattering corrections within X-ray computed tomography (CT) are found within the 
independent atom approximation from an analysis of the cross sections, CT geometry, and the Nyquist sampling theorem, suggesting 
large reductions in computational time compared to existing methods. By modifying the scatter by less than 1 %, it is possible to treat 
some of the elastic scattering in the forward direction as inelastic to achieve a smoother elastic scattering distribution. We present an 
analysis showing that the number of samples required for the smoother distribution can be greatly reduced. We show that fxed forced 
detection can be used with many fewer points for inelastic scattering, but that for pure elastic scattering, a standard Monte Carlo 
calculation is preferred. We use smoothing for both elastic and inelastic scattering because the intrinsic angular resolution is much 
poorer than can be achieved for projective tomography. Representative numerical examples are given. 
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1. Introduction 

As originally conceived, X-ray computed tomography (CT) fnds a material-dependent parameter from 
observations based on line integrals characterizing the absorption of X-rays in a sample, known in the feld 
as projections [1]. One of the diffculties in CT arises from the fact that physical X-rays do not necessarily 
travel in straight lines. Instead, they can scatter into a detector. The problem has only gained in practical 
importance as large array detectors have been widely deployed commercially. Scatter estimation approaches 
were reviewed a few years ago [2] along with a review of the physics of iterative reconstruction in CT [3]. A 
sketch of typical CT data acquisition is shown in Fig. 1a. 

The importance of scatter corrections was understood relatively early in the development of X-ray 
tomography [4, 5]. The importance of these corrections in diagnostic systems with fat-panel display was 
studied with phantoms simulating humans two decades ago [6], and the topic remains of current interest [7]. 
Solutions in both hardware and software are sought [8]. A software framework for studying low-dose CT 
was presented recently [9]. Scatter corrections in the context of multi-energy X-ray detectors have been 

1 How to cite this article: 
Levine ZH, Blattner TJ, Peskin AP, Pintar AL (2019) Scatter Corrections in X-Ray Computed Tomography: A 

Physics-Based Analysis. J Res Natl Inst Stan 124:124013. https://doi.org/10.6028/jres.124.013. 

https://doi.org/10.6028/jres.124.013
mailto:zlevine@nist.gov
mailto:timothy.blattner@nist.gov
mailto:adele.peskin@nist.gov
mailto:adam.pintar@nist.gov
https://doi.org/10.6028/jres.124.013
https://doi.org/10.6028/jres.124.013


Volume 124, Article No. 124013 (2019) https://doi.org/10.6028/jres.124.013 

Journal of Research of National Institute of Standards and Technology 

studied recently as well [10], and variance reduction techniques for scatter corrections have been 
presented [11]. 

Recently, a deep neural network approach has been used, motivated by scatter corrections being too 
slow for practical work [12, 13]. Such an approach suggests that the problem may be too diffcult for 
analysis by conventional means unless a signifcant computational improvement is achieved. 

Despite many years of serious attention to scatter corrections in X-ray tomography, we are not aware of 
a frst principles analysis that attempts to assess the computational requirements from a fundamental point of 
view. The principal ingredients are the differential X-ray scattering cross sections of the elements and the 
Nyquist sampling theorem. For simplicity, we limit our analysis to axial tomography. As is common in 
X-ray tomography, we assume that the sample is viewed with evenly spaced angles through 180◦ about a 
single axis. More complicated patterns such as helical tomography, which is common in medicine, or 
advanced geometries, e.g., to satisfy Tuy’s suffciency condition [14], are excluded from the present analysis. 

It is possible to treat the problem of diffusion tomography, as occurs, e.g., in the optical domain [15]. 
However, the fact that every point in the domain can send a signal to any detector pixel leads to algorithms 
that scale substantially worse than projective tomography [16]. Hence, there is an incentive to apply a scatter 
correction so that algorithms scale as in projective tomography. 

2. Theory and Analysis 

2.1 X-Ray Tomography and Projections 

In the vast majority of cases, the X-ray tomography problem is formulated in terms of projections, i.e., 
line integrals through a material [1]. As originally formulated, X-rays were taken either to be transmitted in 
a straight line to the detector or attenuated. However, the growing use of large pixelated detectors increased 
the possibility that an X-ray scattered from one ray would be detected by a pixel other than the one to which 
it was originally headed. In medical tomography, antiscatter grids are common. These are less common in 
industrial or microCT where cost and space constraints restrict their use. There are a number of more 
modern versions of X-ray tomography, including diffractive and phase-sensitive methods as well as 
tensor-based methods. Such advanced topics are out of the scope of this paper. 

A sketch illustrating the fan beam geometry in two dimensions is shown in Fig. 1b. The reconstruction 
region is a circle of radius r, the center of which is a distance L from the source and R from the center of a 
plane detector. The geometric projection of the circle onto the detector is shown in Fig. 1b. Noting that the 
rays tangent to the circle determine the projected width W of the reconstruction region on the detector, it is 
simple to show that 

L + R L + R 
W = 2r √ ≈ 2r . (1) 

L2 − r2 L 

where the approximation holds only if r << L. The approximate result is often given as the geometric 
magnifcation M = (L + R)/L. 

2.1.1 Single vs. Multiple Scattering 

In this work, we will assume that the independent atom approximation is valid [17], i.e., that the 
scattering cross sections are given by the sum of the atomic constituents [18]. While X-ray fne structure 
depends on the arrangement of the atoms in space [19], if a broad spectrum of X-rays is used to illuminate 
the target, e.g., from an X-ray tube, the fne structure tends to average out. 

We are interested in determining the fnest angular resolution that is relevant to the X-ray scattering 
problem. This depends on the X-ray photon energy, the element from which X-rays are being scattered, and 
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Fig. 1. Sketches of (a) interactions in CT, showing absorption, transmission, and scattering that hits the array detector 
and scattering that misses the array detector; (b) the system, including the X-ray source S which sends X-rays through 
the cylindrical reconstruction region with radius r, centered a distance L from the source, to the detector of minimum 
width W , a further distance R from the center of the reconstruction region; (c) the ways in which linear spatial resolution 
requirements are modifed in the presence of a spatial offset characteristic of tomography, where each of the three 
scattering cones I, II, and III have the same angular distribution, but the spatial extent on the detector depends on the 
location of the scattering point within the reconstruction region; and (d) the ways in which the distribution on the 
detector is modifed for a hypothetical distribution depending on the position of the scatterer. The position on the 
detector is denoted by x. 

the geometry. When multiple scattering occurs, the angular distribution becomes less strongly peaked [20]. 
Intuitively, the multiple scattering distribution is a convolution of a function with itself, i.e. the distribution 
of a sum of independent and identically distributed random variables. Since the variances of a sum of 
independent random variables are additive, the distribution of the sum is more spread out than any of the 
individual distributions. Although the spherical geometry poses some technical complications, the solution 
is given in terms of the coeffcients of a Legendre polynomial P̀ (xL) expansion of the differential scattering 
cross section, where xL = cosθ and θ is the polar scattering angle. Sharp features are smoothed more 
rapidly than slowly varying ones. Mathematically, in this context the features of the scattering distribution 
associated with higher Legendre terms ` tend to zero faster than those with lower `. The multiple scattering 
distributions are smoother than single-scattering distributions. Hence, going forward, in this article, we will 
restrict attention to sampling single-scattering distributions with the knowledge that any numerical grid 
suffciently fne to sample a single-scattering distribution will also be suffciently fne to sample the related 
multiple-scattering distribution. 

2.1.2 CT Geometry and Sampling Requirements 

The angular content of the differential cross sections represents one element of our analysis. If a sample 
is small compared to the space between the sample and the detector (as can arise in microCT), this is 
suffcient. Suppose, however, that the region to be reconstructed is a cylinder of radius r and that the 
minimum distance from the center of the reconstruction region to the detector is R, as shown in Fig. 1. For 
simplicity, we consider scattering in a plane and imagine that the detector has a number N pixels at radius R. 

Suppose we have some criterion that provides an acceptable cut-off in ` for the differential cross section, 
namely ` max. Such a function has at most ` max wavelengths around a circle. Hence, by the Nyquist sampling 
theorem, it is suffcient to sample at 2` max points in one dimension, or one sample in a distance of πR . The ` max 
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use of fat-panel detectors does not make this estimate worse if R is interpreted as the minimum distance 
from the center of the reconstruction region to the detector. 

The complication that the scatterer may be offset by a distance r implies that the minimum distance to 
the circular detector is R − r. Scattering about such a point leads to a requirement for more sampling points 
on the part of the detector closest to the scatterer. At the densest point, one sample per distance of π(R−r) is ` max 

R now required, i.e., the worst-case sampling requirement has increased by a factor of . Typically, R
r ≤ 1

2 , R−r 
so R ≤ 2. On the other hand, if there is very small space between the sample and the detector, i.e., if R−r 
R − r << R, the sampling requirement diverges. Such a case does not correspond to the confguration of 
commercial tomographic instruments and must be excluded from the present analysis. In summary, the 
effect of the fnite sampling region is to increase the sampling requirement by up to a factor of 2 in practical 
cases. The geometry is illustrated in Fig. 1c and its effect on a hypothetical scattering distribution is shown 
in Fig. 1d. 

2.2 Cross Sections of Typical Elements 

It is common to write the differential cross section as d
d 

Ω 
σ , where dΩ = dxLdφ is the differential of the 

solid angle, xL = cosθ , θ is the polar scattering angle, and φ is the azimuthal angle. Here, we are restricted 
to cases in which the differential cross section depends only on θ but not on φ . In such a case, given that a 
scattering event has occurred, we write the probability density function of the cosine of the polar scattering 
angle as 

1 dσ 2π dσ 
p(xL) = ≡ (2) 

σ dxL σ dΩ 

where p has the probability normalization Z 1 
1 = dxL p(xL). (3) 

−1 

Total cross sections from the photon cross section database XCOM [21] in the range of photon energies 
typically used in tube-based X-ray tomography are shown in Fig. 2 for typical elements, namely C, O, Si, 
Ca, and Fe. Also shown are the three principal contributions to the cross section, namely elastic scattering, 
inelastic scattering, and photoabsorption. For carbon, inelastic scattering is seen in Fig. 2a to be the 
dominant process. As the atomic number increases, the minimum photon energy at which inelastic 
scattering dominates shifts to higher photon energies. Already for iron, scattering is not the dominant 
contrast mechanism in the range of tube voltages that are commonly used in tomography. This remains true 
for higher Z elements. 

2.3 Transfer of Cross Section for Smoothing 

The differential elastic (e) and inelastic (i) cross sections for X-ray scattering are expressed as [18] 

(e) (T) dσ 
= |F(q)|2 dσ 

(4) 
dΩ dΩ 

(i) (KN) dσ dσ 
= S(q) (5) 

dΩ dΩ 

where hq¯ is the momentum transfer, F and S are the elastic and inelastic form functions, and the Thomson 
(T) and Klein-Nishina (KN) cross sections are: 

(T) 2 
e dσ 

= 
r 
(1 + cos2

θ) (6) 
dΩ 2 
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Fig. 2. Cross sections from XCOM [21] for (a) C, (b) O, (c) Si, (d) Ca, and (e) Fe in the range 10 keV to 140 keV. The 
region between 30 keV and 100 keV, bounded by vertical dashed lines, is particularly important for tube-based X-ray 
tomography. The contributions of elastic scattering (blue, dotted), inelastic scattering (green, dashed), and 
photoabsorption (red, dot-dashed) as well as the total (black, solid) are shown. 

(KN) 2 
e dσ 

= 
r 
[P3 

KN sin2
θ ] (7) 

dΩ 2 KN + PKN − P2 

with re being the classical electron radius. Here � �−1 Eγ PKN = 1+ (1− cosθ) (8) 
mec2 

is the fractional energy loss. In Eq. (8), Eγ is the photon energy, and mec2 is the rest energy of the electron. 
The functions F(q) and S(q) are the elastic and inelastic atomic form factors, respectively. Typical 
differential scattering cross sections are shown in Fig. 3, from the Evaluated Photon Data Library 
(EPDL) [22]. 

Next, we motivate a transfer of cross section from the elastic to the inelastic channel in order to smooth 
the inelastic function. The elastic scattering is largely in the forward direction. Hence, for pure elastic 
scattering, a signifcant number of events will end by hitting the detector. It is appropriate to use 
conventional Monte Carlo scattering in this case. Inelastic scattering occurs through much larger angles on 
average and tends to miss the detector, so the method of fxed forced detection (FFD) has been introduced to 
improve the effciency of the simulation [23]. 

For inelastic scattering up to about 100 keV, the KN factor has a rapidly convergent Legendre series [24]. 
The total differential cross section is given by the sum of elastic and inelastic contributions, namely, 

dσ dσ (e) dσ (i) 

dΩ 
= 

dΩ 
+ 

dΩ ! 
dσ (KN) 1 |F(q)|2 dσ (T ) 

= + S(q) (9) 
2π dxL dxL ! 

dσ (KN) 1 dσ (T ) 

≈ [|F(q)|2 + S(q) − Z] + Z . 
2π dxL dxL 

However, the factor Z − S(q) in this equation has a short angular range, and so its presence dominates 
the convergence of the Legendre series of the differential cross section, which in turn leads to a requirement 
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Fig. 3. Atomic form factors for C (solid black), O (long dashed orange), Si (dot-dashed red), Ca (dashed green), and Fe 
(dotted blue) from the EPDL as a function of the polar scattering angle θ . Curves are given for (a,d) the complement of 
inelastic scattering form factor S, scaled to unity at θ = 0 (where S itself goes from 0 at θ = 0 to at most Z), (b,e) the 
elastic scattering form factor scaled to unity at θ = 0, and (c,f) the effective elastic scattering form factor for photon 
energies of (a–c) 30 keV and (d–f) 100 keV. 

for high-spatial-frequency sampling. This requirement, in turn, necessitates a large number of fxed forced 
detection points. For each photon being detected, it must be projected from a position in the sample to all of 
the fxed forced detection points, so this step can easily dominate the total computational time for scatter 
corrections. If we could somehow fll in the hole created by the factor Z − S(q), many fewer FFD points 
would be required. 

We take advantage of an approximate equality between inelastic and elastic scattering cross sections for 
scattering in the forward direction. Figure 3 shows S(q) differs from Z only for small values of the relevant 
parameter in Eq. (8), mc

Eγ 
2 (1 − cosθ ). 

Because of the Pauli principle, |F(q)|2 ≥ Z − S(q), a relation from the early days of quantum 
mechanics [18, 25], with equality holding only for hydrogen, the two terms on the right side of Eq. (9) are 
positive individually. We verifed this point numerically by examining functions from the EPDL [22]. 
Hence, accepting a very small error, we may defne effective elastic and inelastic cross sections according to 
these two terms. As shown in Fig. 4, the cross sections differ by less than 1 % in the relevant range defned 
by the strongly-peaked functions shown in Fig. 3. Furthermore, there is a less than 1 % fractional energy 
loss by the scattered photon at the angles relevant to the transfer of the cross section. This picture is 
reaffrmed in Fig. 5 where the effect of the transfer is shown on the inelastic and elastic differential cross 
sections and their sum. The inelastic differential cross section is much smoother after the transfer, whereas 
the sampling requirements for the elastic differential cross are little changed. 

After transfer, the effective inelastic cross section is dramatically smoother, and so it may be calculated 
with a limited number of FFD points. The number may be estimated the rapidity with which the Legendre 
coeffcients of the KN distribution approach zero. The formulas for these coeffcients with numerical values 
were published over 50 years ago [24]. For 100 keV, the series is rapidly convergent, dropping off by about a 
factor of 10 for each `. Fewer than 10 points in one dimension would suffce for sampling the function over 
the full range of polar angles, i.e., 0 to π . However, the situation is even more favorable, because we only 
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Fig. 5. The effect of the transfer approximation on the cross section for the case of carbon, for (a,b) 30 keV photons and 
(c,d) 100 keV photons. For parts (a,c), the elastic and inelastic differential cross sections (green, dashed green line / 
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need to sample the Klein-Nishina function over the detector which is typically less than 1 sr. A low order 
polynomial suffces. Hence, the number of FFD points may be limited to the square of some small integer, 
e.g., 32 to 72 points. This is dramatically fewer than the number of points required if Z − S were being 
sampled. 

The elastic cross section is little changed by the transfer, except that the effective elastic cross section for 
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hydrogen vanishes. Since elastic scattering is largely in the forward direction, such scattering tends to hit the 
detector rendering the FFD procedure unnecessary. In our work, we handle the elastic scattering through an 
ordinary forward-propagating radiation transport Monte Carlo calculation. Mixed elastic and inelastic 
scattering is treated as inelastic scattering because the angular distribution is dominated by inelastic 
scattering. The transfer plays a large role in reducing the computational needs. 

2.4 Angular Variation of the Cross Sections 

To learn about the angular variation of the elastic scattered function, we consider the cases of carbon and 
water at 100 keV. Referring back to Fig. 3, the lower Z elements require the best angular resolution to 
sample the effective elastic scattering distribution. There is an exception for hydrogen: It vanishes. Because 
the elements helium, lithium, beryllium, and boron are not commonly studied in tomography, we consider 
carbon be a critical case, with water to be of similar interest. Recall also from Fig. 2 that the low Z elements 
tend to have scattering as their dominant contrast mechanism. Also, the higher photon energy requires 
higher angular resolution, and 100 keV is a practical upper bound for tube-based sources. Although higher 
tube voltages are used, e.g., 140 kV, most of the X-ray spectrum will be below 100 keV, even in this case. 
Although we only present one case, it is more or less a bound for tube-based X-ray tomography as it is 
normally practiced. Lower-energy photons require less spatial resolution to achieve the same degree of 
approximation to Nyquist sampling. 

The Legendre expansion of the effective elastic scattering form factor is shown in Fig. 6. The Thomson 
1 cross section of Eq. (6), which has an exact two-term Legendre expansion proportional to P0 + 2 P2, would 

add little angular content if included. The ft to the signal, given in the caption of Fig. 6, may be 
reparameterized as a Gaussian with a standard deviation of σ` = 5.73 centered on ` = −1.78. If 99 % of the 
expansion is included, ` max = 14. Spherical harmonics provide uniform resolution over the sphere, 
suggesting (` max + 1)2 = 225 polynomials are suffcient for 4π sr. Given that two samples per wavelength 

will represent the Nyquist sampling limit, we can estimate that one sample per 2(4π)1/2 
≈ 0.15 rad (8.6◦) is 15π 

suffcient to sample the effective elastic scattering form factor. 
As discussed earlier, the spatial resolution required by the detector depends on the location of the 

scatterer in the reconstruction region. Simple geometrical considerations lead to a variation by up to a factor 
. Although this factor can be arbitrarily large in principle, in practice the distance from the center of of R

R 
+ 
− 

r
r 

the sample to the detector R is at least twice the radius of the sample r, leading to a bound of a factor of 3 
variation in the factor relating angular scattering to the region affected on the detector plane. Given that we 
expect the detector to subtend an angle larger than 0.15 rad, a large fraction of the elastically scattered 
events will hit the detector, obviating the need for FFD in this part of the problem. Instead, we collect these 
events in a virtual detector which is somewhat larger than the physical detector, and then we use Fourier 
smoothing with a bandwidth dictated by the estimate given here. 

In Fig. 7a, we show the scatter for 108 photons through a 1 nm3 cube of water with a density of 
1010 kg/m3. The scatter is nearly circularly symmetric, and it has an isotropic one-dimensional (1D) 
standard deviation of 45.5 mm. We chose a 150 kV tube spectrum with a 5 mm Al flter and a 0.25 mm Cu 
flter using TASMICS [26]. The flter was chosen to match the M150 beam quality that is used to calibrate 
X-ray detectors at NIST [27]. 

We choose the signal and noise model to make a Wiener flter [28] 

|S(k)|2 
W (k) = (10) 

|S(k)|2 + |N(k)|2 . 

Our choice of the noise model is a spatial-frequency-independent constant N0, which is suggested by theory 
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dot-dashed red line), 0.412347 − 0.00715297`. The sum (Sig+Noi, solid orange line) is also shown. 
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Fig. 7. Scatter from a 1 nm3 cube of water including (a) the unfltered scatter, (b) the signal and noise models of the 
power spectrum (arbitrary units), and (c) the fltered scatter. The simulation uses (d) the M150 source spectrum. 

for counting statistics and is also used in Tikhonov regularization [29]. The signal model is taken to be 

S(k) = S0 exp(−k/k0). (11) 

We give here S0/N0 =3672, which we round to 4000 for the program and k0 = 50 m−1, with k0 being −2 
times the slope of the ft shown in Fig. 7b. Figure 7c shows the sample after the flter is applied. The fltered 
spot strongly resembles the original. For example, the angular average of 1D standard deviations is 45.5 mm 
in both cases. In practice, we collect scatter over a hypothetical detector that is twice as large per dimension 
as the actual detector, apply Fourier fltering on the larger detector, and then crop the fltered result to our 
physical detector. In this way, we avoid the potential problem of an artifact due to the periodicity assumption 
inherent in Fourier analysis, which appears at the edge of the domain. 
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Because the effective inelastic scattering leads to particle trajectories that usually miss the detector, 
FFD [23] is an effective way to gain effciency. Using FFD, when a scattering event occurs, the probability 
of the particle propagating to fxed points on the detector is found. Attenuation of the particle on the way to 
the detector is taken into account, as are solid angle factors. In order to do this, a particle must be propagated 
to each of the points on the FFD grid. Because this occurs for every particle sampled by Monte Carlo, it 
requires a relatively large computational effort. To minimize this effort, we select Chebyshev collocation 
points and smooth the resulting counts using Chebyshev polynomials over the detector. 

As discussed above, for the effective elastic scattering, the scattering angles are modest and the scattered 
particles tend to hit the detector, so FFD is not required. This keeps the cost per photon down. Because there 
may be a substantial number of effective bins, smoothing in the Fourier domain is an effective strategy. 
Fourier smoothing has a problem with boundaries if the function is not periodic. For elastic scattering, we 
address that issue by collecting scattered points on a virtual detector that extends past the physical detector 
by at least a couple of smoothing lengths. In this case, boundary effects of smoothing are confned to a 
region that does not intersect the physical detector. Fourier smoothing followed by truncation are then 
effective strategies. 

The fact that the inelastic scattering is smoother than the elastic scattering suggests intuitively that it 
does not need so many Monte Carlo photons to sample. A quantitative statement of this principle is given in 
the Appendix. However, in this work, we retain the natural odds of elastic and inelastic sampling. 

The purpose of studying the cut-off for the Wiener flter is as follows. Nyquist’s theorem says that a 
band-limited function may be sampled at two points per period. The parameters of the Wiener flter, 
combined with a willingness to neglect a small fraction of the power spectrum at high spatial frequency, lead 
to the number of angular samples required. Determining this number is a major goal of the present study. 

2.5 Reconstruction Method for Multi-Energy, Multimaterial Projective Tomography 

The reconstruction method is presented here. We use a Bayesian approach based on the Bouman-Sauer 
formulation [30]. However, unlike the Bouman-Sauer formulation, we use a constant for the prior 
distribution, which does not express a preference for geometric structure, a priori, like the Bouman-Sauer 
prior choice. Such an assumption is reasonable in many situations including random-dot patterns. We 
include scatter corrections iteratively using the moving, expanding window method of Levine and 
Pintar [31]. In this method, the calculated Monte Carlo scatter from the most recent 50 % of the iterations 
values is included, balancing the need to keep the number of Monte Carlo trials moderate while omitting 
scatter corrections from early reconstruction iterations which are no longer useful at a given level of 
precision. 

The problem — and our reconstruction code — is formulated for the multi-material case [32]. In this 
paper, we only reconstruct systems with one material. However, we do account for beam hardening. We 
assume that we have a beam composed of photons of various energies. In projective tomography, when the 
photons are attenuated, it is assumed that they do not hit the detector pixel hit by the projection. In this case, 
Beer’s law holds, energy by energy, albeit not for the beam as a whole. The non-exponential nature of the 
sum is known as beam hardening. The role of scatter corrections is to make the assumption of projective 
tomography valid. 

Suppose there are several spectra, I( j 
0)
(E), generated by a set of X-ray sources, assumed to be used at 

different times. Suppose there are several materials in the sample, the attenuation parameters of which are 
given by αi(E). Let the detector sensitivity be D(E). Although a single function is assumed here, as we will 
see, only the dose-detector product D(E)I j(E) enters the theory. This recognition implies that systems with 
different values of D(E) can be included in the present formulation with a small change of notation. The 
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observations at several viewpoints indexed by ψ are given by ! Z 
friαi(E)Arψ ~ ~ dED(E)I( j 

0) 

ir~ 
∑ I jψ (E)exp (12) − = 

~ 

where fri represents the amount of material of type i present in a voxel indexed by 
a ray, indexed by ψ , travels going through a voxel at r. Here, r is a discrete index. The matrix A ~ ~ 

~ rψ is the distance , and Ar ~ ~ 

rψ is sparse 
3because a single ray will intersect O N of N voxels as it traverses the reconstruction domain. We will need ( ) 

~ 

the derivatives ! Z 
fri0 αi0 (E)Arψ αi(E)Arψ . ~ 

∂ fri 
~ 

0i r~ ~ 

∂ I jψ dED(E)I( j 
0) 

∑ (E)exp (13) = − − 

The objective function, which combines information from the detectors with prior information, is given 
by [30] 

f~ ~ )+ (g |n~ LMAP(n|~f ) = LML( f ) ~ (14) 

where n represents the counts in each channel (with an assumed Poisson distribution), ~f is the proposed 
reconstruction, and g(~f ) is the prior distribution. The frst term is the likelihood function derived assuming 
that each observation nJ obeys the Poisson distribution with mean IJ . Maximizing Eq. (14) gives the 
maximum a posteriori (MAP) estimate whereas maximizing LML alone is the Maximum Likelihood (ML) 
method. h i 

~ 

∑ ~ LML(n|~ 
J 

where J = ( jψ) is a joint index. Note that if the intensities IJ were each allowed to vary independently, the 
condition ∂ L/∂ I j = 0 implies nJ = IJ . 

f ) = lnnJ ! − nJ ln IJ (~f )+ IJ (~f )] (15) 

Choosing g( f for this problem is research topic, although there is a good deal of published work, ~ ) a 
such as the q-GGMRF method on the single-material problem [33]. In this work, we simply take g = 0, 
making the MAP estimate the ML estimate. 

The function LML or LMAP may be minimized using the L-BFGS-B algorithm [34]. The BFGS method is 
a quasi-Newtonian method for the minimization of high-dimensional functions. The L refers to the use of 
limited memory. The B refers to the use of bounds. In our case, it is natural to insist that there be at least 

~ none of any given material in any given voxel, i.e., fri ≥ 0. In some cases, there may be plausible upper 
bounds as well. In performing the minimization, a useful expression is � � 

∂ LML ∂ IJ nJ 1− ∑ (16) = . 
~ ~ ∂ fri ∂ fri 

The L-BFGS-B method uses values of the function and its gradient. It is possible to fnd these together with 
considerable reuse of intermediate results. 

Much of the time in the algorithm is devoted to calculating projections through the voxels. The integral 
over energy may be performed after the projection has been calculated. If the number of voxels is large 
compared to the number of energies, the exponential and the sum over energies are not the dominant 
contributions to the run time. 

As an example of the program applied without scatter corrections, we take the case of a binary pattern 
with 128×128×1 voxels using the tube spectrum of Fig. 7d for the expression I( j 

0)
(E) and only a single 

value of j. The average energy is 74 keV. The detector response D(E) is taken to be proportional to E. The 

IJ J 
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Fig. 8. Tomographic reconstruction of a 128×128×1 random dot pattern (left) and its reconstruction (right) within the 
purely projective model. The snow-and-ice model is used, so the low values represent water at a density of 50 kg/m3 and 
the high values represent water at a density of 900 kg/m3. The M150 spectrum is used. The detector has 256×1 pixels, 
and 192 angles are sampled. 

product is normalized to a probability and sampled with the Walker Alias method [35]. Our code for Walker 
Alias sampling is publicly available [32]. 

The observations that are used in Eq. (15) refer to projective tomography, and, as such, they represent 
values after the scatter corrections are made. We obtain scatter corrections with Monte Carlo radiation 
transport, as described above. Inelastic energy loss is accounted for through “Russian roulette” [36]; i.e., if 
there is energy loss, the probability of propagating the photon is proportional to the energy retained. In this 
way, we retain Poisson statistics among the detected photons. Moreover, energy loss is a proxy for a photon 
heading away from the detector. 

3. Results 

3.1 Verifcation 

As discussed in the introduction, the purpose of scatter corrections is to bring the problem back to one 
that can be solved by projective tomography. Accordingly, we begin by illustrating our code based on the 
algorithm given above is capable of reconstructing complex patterns. In Fig. 8, we show the reconstruction 
of a randomly chosen two-dimensional (2D) binary pattern of size 128×128×1 voxels. The reconstruction 
and the original pattern are visually identical, with a root mean square deviation of 2.8 kg/m3. The 
reconstruction parameters are shown in Table 1, although no Monte Carlo photons were used in this case. 
The pattern is in an ice-and-snow model, consisting of water with densities of either 50 kg/m3 or 900 kg/m3 

chosen by an independent Bernoulli trial in each voxel with probability 1
2 . We sample in our standard 

geometry, with the source 300 mm from the center of the pattern, with a pattern width of 100 mm, and with 
the detector also 300 mm from the center of the pattern. The number of angles is 3 times the number of 2 
voxels in 1D (i.e., 192) and the number of detector elements is twice the number of voxels in 1D (i.e., 256). 
In this case, the detector is 256×1 pixels, but it will be chosen as a square in the scattering examples. Both 
the simulated data and the reconstruction treat all interactions as purely attenuating. 
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Table 1. Throughout the paper, we principally use the parameters shown in this table Nvox is the number of voxels 
across 1 edge of the cube, Ndet is the number of pixels across 1 edge of the square detector, Nφ is the number of angles, 
and Nphot is the number of photons used in the Monte Carlo analysis per angle. In some cases, Nphot is reduced by a 
factor of 10 or 100. 

Nvox Ndet Nφ Nphot 

16 
32 
64 

128 

32 
64 

128 
256 

24 
48 
96 

192 

655360000 
655360000 
655360000 
655360000 

We used a high density of hydrogen located at the origin as a test case. Hydrogen was chosen because it 
has an analytic scattering cross section [37], namely, " � �2 

#−2 
ksa0 FH = 1 + (17) 

2 

for the elastic scattering form factor and 

SH = 1 − F2 (18) H 

for the inelastic scattering form factor, where a0 is the Bohr radius, k = 2π/λ for an X-ray with wavelength 
λ , and s = 2sin(θ/2) is a scattering parameter. 

For a numerical test, we simulated 107 photons of 30 keV. The hydrogen is concentrated in a cube 1 nm 
on a side with a density of 108 kg/m3. The transmission probability is exp(−3.57 × 10−3), so multiple 
scattering can be neglected because it is second order in the argument of the exponential. We take a 
1 m × 1 m square detector with 100 × 100 pixels 2 m from the source. The intensity of particles at a given 
detector pixel includes an inverse square factor as well as an obliquity factor and the KN energy loss factor 
in the case of inelastic scattering. The pixel-by-pixel results of the elastic test are shown in Fig. 9a along 
with theoretical predictions. A χ2 test was performed among the 4420 pixels that had at least 5 counts, a 
validity condition for the test [38]. A value of 4457 was observed, leading to a p value of 0.34, therefore, the 
model does not exhibit lack-of-ft. 

The fourth degree Chebyshev polynomial ft is shown. A second degree ft shows deviations at the level 
of 5 %, whereas sixth- and eighth-degree fts show no noticeable improvement. The inelastic test results are 
shown in Fig. 9b. 

In addition to providing a test of the program, it is helpful to ensure that the EPDL functions are being 
read and interpreted properly. Another verifed aspect is that the integrated differential cross sections of 
EPDL are very nearly equal to the total cross sections given by XCOM. By matching to quantum mechanical 
theory and a second data base, we have verifed the underlying validity of our radiation transport simulation. 

3.2 A Critical Example 

To avoid extensive examples, we select only one which is, however, relatively challenging for scatter 
corrections. 

1. We chose water as the material. Water is commonly found in tomographic subjects, including all 
living things. Oxygen is one of the more challenging elements for elastic scattering, because its 
angular distribution is nearly as tight as that of carbon, but the elastic cross sections are much higher. 
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Fig. 9. Scattering of 30 keV photons through hydrogen as described in the text. (a) Elastic scattering intensity values 
over the 100 × 100 pixels, with a full angular range of 27◦ . (b) Observed counts from part (a) for 107 photons of 30 keV 
(black dots) vs. per pixel results vs. analytically expected results (red, solid) with ±1 standard deviation bounds (green, 
dashed lines) based on the Poisson distribution. (c) Inelastic scatter per photon into each pixel across a central slice from 
theory (red) vs. numerical simulation (black), as described in the text. The numerical data were ft to a 2D cross product 
of fourth degree Chebyshev polynomials. 

2. We considered spheres embedded in a light background. Spheres remain of current industrial interest 
for verifcation and validation of image segmentation software [39]. We call the two materials “ice” 
and “snow.” The ice has a density of 900 kg/m3 (compared to a physical density of 917 kg/m3 [40]), 
and the snow has a density of 50 kg/m3, which is at the low end of the physical range [41]. We 
concentrated on the results from a central slice both to simplify the visualization and in recognition of 
the existence of cone beam artifacts [14], which we do not address in this work to keep the focus on 
scattering physics. 

3. We chose the simulated M150 beam shown in Fig. 7d. This tube voltage is on the high side for use in 
practical tomography, which leads to tighter patterns in the scattering as discussed above. 

4. Noting that single scatter is the most challenging, and the proportion of photons undergoing single 
scatter is maximized when the system diameter is one interaction length, we chose a system where the 
interaction lengths are roughly that size. The XCOM cross section for water at 74 keV is 
0.1888 cm2/g, leading to an interaction length of 58.9 mm for a density of 0.9 g/cm3. Hence, we 
choose one or two spheres with a diameter of 50 mm to be placed in a cube having a side given by 
a = 100 mm. 

In the example, we spanned the extremes of the photon energies likely to be encountered in practice. We 
argued above that carbon is the most challenging case for scatter corrections among commonly studies 
elements. Water is the traditional subject in scattering studies. Water, dominated by the scattering by 
oxygen, is seen in Fig. 3 to have scattering properties very similar to carbon. With thicker samples, we 
would have more multiple scattering, which is smoother. With thinner samples, the scattering distributions 
would be only marginally tighter, but the Monte Carlo calculation would become increasingly ineffcient as 
fewer samples would be scattered at all. 
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Fig. 10. A central slice from the 64x64x64 two sphere ice-and-snow model with white at 0 kg/m3 and black at 
900 kg/m3. (left) The ideal object with white at 0 and black at 900 kg/m3; (middle) the sinograms are generated and 
reconstructed treating all interactions as absorptive; and (right) the sinograms are generated with scatter corrections but 
reconstructed without scatter corrections. To ensure uniform scaling of the gray scales, the upper-right and lower-left 
voxels have been set to the minimum and maximum values, respectively, in each image. The “ice” appears as dark balls 
and the “snow” appears as a light gray background. 

Our detector geometry is somewhat arbitrary, but it is representative of microtomography instruments. 
The source is taken to be a point 300 mm from the center of the sample, and 600 mm√ from the detector. The 
detector width may be determined using Eq. (1) with L = R = 300 mm, and r = a/ 2 = 71 mm, so 
W ≥ 291 mm is required. We pick W = 300 mm. In the study, we scaled the number of voxels in the 
reconstruction region and the number of pixels in the detector and held the overall physical sizes (i.e., a and 
W ) fxed. 

Our reconstruction is shown in Fig. 10. Only a central slice is given. The ideal spheres are shown in 
Fig. 10a. Partial volume effects were accounted for by making a 256×256×256 voxel binary pattern with 
the snow-and-ice densities then averaging over 4×4×4 voxel blocks to create a 64×64×64 voxel target 
structure. The reconstruction with scatter corrections is shown in Fig. 10b. If the scatter corrections are 
omitted in the reconstruction but are present in the simulated sinogram, the reconstruction of Fig. 10c 
results. Although the basic result of two spheres is present in the fgure, the spheres are not uniform, and 
their overall level is off by about 25 %. 

3.3 Angular Variation of the Scatter Corrections 

Scatter corrections for selected detector pixels as a function of viewing angle are shown in Fig. 11a for 
the 16×16×16 voxel case and Fig. 11b for the 64×64×64 voxel case. There are two points to observe: (1) 
The angular variation for each pixel is a relatively gentle function of angle. (2) The number of detector 
pixels increases, but the patterns do not become more complex. 

In Fig. 12a–d, we show the power spectrum, i.e., the squared magnitude of the Fourier transform from 
the azimuthal angle φ to its conjugate m. (We have a Fourier series with basis functions eimφ .) Using the 
data in Fig. 12a–d, we construct a signal model 

|S(m)|2 = 10−β [exp(−m/m0)−1] − 10−β (19) 

and a noise model 

|N(m)|2 = 10−β . (20) 

We use these to construct a second Wiener flter, in analogy with Eq. (10), 

|S(m)|2 
Φ(m) = (21) 

|S(m)|2 + |N(m)|2 . 
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Fig. 11. Scatter corrections for detector pixels for a middle column (16 of 32) and the lower half of the rows as a 
function of angle index for the (a) 16×16×16 voxel example and (b) 64×64×64 voxel example. The corresponding 
angles run from 0◦ to (a) 174.4◦ in steps of 5.625◦ and to (b) 178.6◦ in steps of 1.406◦ . 

Fig. 12. The power spectrum (i.e., square of the Fourier transform) for 1024 representative detector pixels is shown for 
(a) the 16×16×16 voxel case, (b) the 32×32×32 voxel case, (c) the 64×64×64 voxel case, and (d) the 128×128×128 
voxel case, along with a signal and noise model described in the text with parameters from Table 2. Here, m is the 
conjugate variable to φ and is known in quantum mechanics as the azimuthal quantum number. (e) The Wiener flter 
derived from the signal and noise models of parts (a-d) and Table 2. 

Note that S(k) and S(m) are unrelated, and N(k) and N(m) are also unrelated. The characteristic size may be 
parameterized by the value � � 

log10 2 
m1/2 = −m0 ln (22) 

β 

which obeys Φ(m1/2) = 1/2 by defnition. 
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Table 2. Parameters β and m0 in Eq. (19) and Eq. (20), for the ft to the signal and noise models of Fig. 12. The 
parameter m1/2, determined by β and m0 as shown in Eq. (22), is defned by Φ(m1/2) = 1/2 in the Wiener flters shown 
in Fig. 12e. The standard error of each ftting parameter, determined by bootstrap resampling [42], is given in 
parentheses. 

Nvox 10β (dB) m0 m1/2 

16 61.41(19) 4.229(55) 12.75(17) 
32 60.57(7) 4.195(23) 12.59(7) 
64 63.35(4) 4.464(13) 13.60(4) 

128 68.26(2) 5.000(7) 15.61(2) 

As anticipated by the similarity between Fig. 11a and Fig. 11b, as well as the similarity among parts 
Fig. 12a–d, the Wiener flters, shown in Fig. 12e, with parameters tabulated in Table 2, do not show much 
dependence on the size of the system. As Nvox increases, we see the standard errors of the ft decrease and 
the parameter β , the m = 0 signal to noise in bells, increases. The m0 and m1/2 parameters increase 
modestly as well. While the main message is that these parameters are roughly constant we attribute the 
small changes to the fact that we have a fxed number of photons per angle, so there are more total samples 
as Nvox increases. Recall from Table 1, Nφ = 3

2 Nvox. 

3.4 Timing 

In Table 3, we show the time required to perform reconstructions for the various size systems. The 
evaluation machine we used has two Intel Xeon E5-2680 v4 Broadwell Processors (28 physical cores, 56 
logical cores) with 512 GB of DDR4 memory.1 The time to create the simulated data is dominated by the 
scatter corrections, and these are linear in the number of Monte Carlo photons as seen in column 3. For the 
reconstruction, adding more photons has decreasing importance as the system size increases, as seen in 
column 4. In our implementation, we used the same number of Monte Carlo photons for each view. The 
previous section suggests that it would be sensible to use the same number of Monte Carlo photons per 
reconstruction, which would reduce the scaling of the time to make the scatter correction by one power of 
the linear system size. 

Although the scatter corrections take most of the time, if the voxel size of the reconstruction were 
decreased, the time for projective tomography would increase, perhaps as the inverse fourth power of the 
voxel size, whereas the time to compute scatter corrections would increase much less quickly. Moreover, if 
the scatter corrections were made on a coarse-resolution version of the reconstruction, their computational 
time could be independent of the voxel size. 

1Certain commercial equipment, instruments, or materials are idetifed in this paper to foster understanding. Such identifcation does 
not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials 
or equipment are necessarily the best available for the purpose. 
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Table 3. Timing for runs. The number of photons is given per view, using the parameters from Table 1. The value of 1 
for N(rel) 

phot corresponds to Nphot given in Table 1. N(rel)
= 0 means no scatter corrections were applied in either the phot 

creation of the sinogram or its reconstruction. For reference, 3600 s = 1 h and 86400 s=1 d. 

Nvox 

1D 
N(rel) 

phot Sinogram 
Time (s) 

Reconstruction 
Time (s) 

16 
16 
16 
16 

0 
0.01 
0.1 
1 

0.3 
13 

128 
1198 

1.4 
65 

162 
1263 

32 
32 
32 
32 

0 
0.01 
0.1 
1 

0.9 
39 

367 
3664 

16 
846 

1113 
4249 

64 
64 
64 
64 

0 
0.01 
0.1 
1 

3.2 
150 

1139 
11123 

333 
17153 
17997 
25083 

128 
128 
128 
128 

0 
0.01 
0.1 
1 

15.5 
992 

4910 
40312 

4738 
297479 
309908 
311514 

4. Concluding Remarks 

The main question that we addressed in this work was how to set up a sampling scheme for scatter 
corrections in X-ray CT that will be close to its necessary and suffcient bounds. We do not claim to have 
achieved rigorous bounds, but merely to suggest approximately where these bounds lie. 

We presented an analysis of the sampling requirements for CT scattering based on the underlying 
physics, assuming the independent atom approximation. We frst showed that these would be determined by 
single scattering events — as opposed to multiple scattering which is smoother. We considered both the total 
and differential cross sections as tabulated for the range of photon energies relevant to X-ray tubes. We 
discussed the geometric effects associated with translating angular ranges to spacing on the detector. We 
identifed a highly accurate approximation to make the inelastic scattering smoother by transferring a 
portion of the elastic scattering cross section to it. Atomic physics guarantees such a transfer is always 
possible without creating negative differential cross sections in the untransferred portion. Although this 
work concentrated on the smoothing in 2D, smoothing in 3D is possible, as shown earlier [23]. Here, we 
develop principles for choosing the angular spacing. We used fxed forced detection (FFD) like other 
authors [23], but we greatly reduced the number of FFD collection points through our analysis and through 
the use of ftting functions that span the whole detector. FFD, as implemented, samples at the spatial 
resolution of the elastic scattering over the whole detector. This scales badly if the detector has a large solid 
angle. Our FFD sampling was based on the inelastic scattering angular resolution that is about 3 orders of 
magnitude larger in solid angle. Moreover, we avoided the high spatial resolution which elastic scattering 
would require by using Monte Carlo, which was appropriate because the small elastic scattering angles 
imply that the detector was hit in a large proportion of the cases, so FFD was not necessary. Moreover, it 
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was not desirable because a given scattered photon will have very little weight on most of the detector. The 
heart of our proposal to achieve numerical effciency is to recognize that the elastic scattering and inelastic 
scattering (after the transfer approximation) have different angular scales and should be treated with 
different numerical methods. 

We implemented these ideas in the context of a Bayesian iterative reconstruction algorithm. We found 
that the scatter correction can be found at low resolution. Going forward, this suggests a multi-grid approach 
may lead to an effective algorithm, wherein the scatter corrections are always found in an appropriately 
sparse volume. The method of Levine and Pintar [31] may be used to improve the scatter corrections 
iteratively given further knowledge of the ultimate reconstruction. If a multi-grid approach is taken, the 
scatter corrections need to change only to the extent that high-resolution changes lead to changes at low 
spatial frequencies. The hope is that, using the methods of this paper, the time to compute an iterative 
reconstruction will ultimately be dominated by the time required to solve the projective problem iteratively. 

We introduced an approximation based on the underlying physics to split the scattering into two 
components: the inelastic scattering, which can be made quite smooth, and the elastic scattering which is 
much more strongly peaked. The traditional approach to X-ray scattering has two terms that have about the 
same degree of angular variation. After the transfer from the elastic cross section to the inelastic cross 
section, the inelastic part is much smoother. Since inelastic scattering is dominant, this leads to both 
conceptual and algorithmic simplifcations. We used a derivation from the early days of quantum 
mechanics [18, 25] to guarantee that the transfer is always permitted without generating negative quantities 
in the now-reduced elastic channel. 

In our implementation, we treated the two types of scattering differently: The inelastic scatter, which 
tends to miss the detector, was found using FFD. We chose our FFD points to permit Chebyshev 
interpolation. After the transfer approximation, the inelastic scattering is smooth. This permitted us to use a 
small number of FFD points. Because inelastic scattering is the dominant type, the time to compute scatter 
corrections is greatly reduced with this separation. 

However, the elastic scattering, which tends to hit the detector, was found using ordinary Monte Carlo 
calculation followed by Fourier smoothing. We introduced an extended detector to avoid having to deal with 
end effects introduced by the artifcial periodicity of the Fourier domain representation. These are not the 
only schemes available, but in general, we recommend acquiring the inelastic and elastic scatter on different 
grids. In some geometries, the elastic scattering may also be better handled with FFD points. Even if these 
are used, we nevertheless recommend that elastic and inelastic scatter be collected on different grids, since 
the inelastic grid can have many fewer FFD points. 

We provide a theorem to enhance convergence based on the idea that scatter with more angular variation 
needs to be sampled more than the natural odds ratio allows in the Appendix. Future work might generalize 
the theorem to account for the cost of calculating one type of scattering event vs. the other. 

The angular dependence of the scatter corrections appears to be largely independent of the resolution in 
the range we considered. We believe that this is tied to the underlying physics of scattering: The functions 
have a certain smoothness, which is defned by the differential cross sections and the sampling geometry. 
Looking ahead to algorithms, this suggests that it may be possible to obtain the scatter corrections at low 
spatial resolution and use them to correct a high spatial resolution projective algorithm. The fnding that 
m = 14 is suffcient to capture the angular resolution would, for 2D Nyquist sampling, require 28 samples 
around the circle, which, in turn could be represented by a cube (2/π)28 ≈ 20 voxels on a side. Given that 
applications typically generate reconstruction regions that are 512 voxels on a side, there is a huge potential 
computational savings by calculating the scatter corrections at a fxed coarse-resolution that does need not to 
vary as the spatial resolution of the reconstruction increases. Topics for future research include exactly how 
to communicate the information from the coarse to the fne grids, and whether any calculation of the scatter 
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correction on the fne grid needs be done. It may also be useful to defne an algorithm in which the inelastic 
scatter is calculated on a smaller (and hence cheaper) set of voxels than the elastic scatter. In our algorithm, 
we have two loops, an inner loop given by the L-BFGS-B algorithm, and an outer loop where scatter 
corrections were given using the moving, expanding window method [31]. We converged the solution to the 
same level of accuracy at each iteration. This probably is not necessary, and an improved algorithm could 
gradually impose stricter convergence criteria as the scatter corrections are accumulated blending the two 
iterative processes. Under the Moving Expanding Window method, the scatter correction is changed slowly. 
Given that the BFGS method keeps a limited history, it may be possible that the adjustment to the scatter 
correction is small enough that the BFGS method may be used without change. 

The broader challenge ahead is to design an algorithm for which scatter corrections are not a dominant 
part of the computation for a typical reconstruction (e.g., 512×512×512 voxels). We hope that the present 
work contributes towards that goal. 

5. Appendix: Monte Carlo Sampling Requirements for Scattering Processes with 
Unequal Angular Resolution 

The inelastic scattering cross sections are much larger than the elastic scattering cross sections in the 
photon energy range of interest in X-ray tomography, as shown in Fig. 3. After the transfer approximation 
discussed in Sec. 4, the inelastic scattering is much smoother in angle. The transfer approximation involves 
a relatively small amount of the total cross section, so the values in Fig. 3 are still valid within the linewidths 
on the graph. Intuitively, we expect the increased smoothness to lower the sampling requirement. Here, we 
give a formula for the sampling requirement. 

As discussed already, we limit the analysis to single scattering, because single scattering requires the 
highest angular resolution. Suppose we are doing a radiation transport Monte Carlo calculation and we 
choose the number of photons to sample from a Poisson distribution with mean N. Of these, on average N p 
scatter inelastically, and N(1− p) scatter elastically. 

The random number of inelastically scattered photons, Y , follows a Poisson distribution with mean N p. 
We model the difference in angular resolution as follows. We imagine that there is a section of the detector 
wherein the inelastic scattering is more or less uniform, but for elastic scattering, we must divide the 
detector into Nd bins wherein the elastic scattering is more or less uniform. The relative frequencies of 
elastically scattered photons in the Nd bins are given by µ j, where ∑N

j 
d µ j = 1. Hence, the random number 

of elastically scattered photons arriving at bin j, Z j, is Poisson distributed with mean N(1 − p)µ j. 
Let Tj be the distribution of the total number of photons arriving in bin j. Tj is Poisson distributed with 

N p Y mean + N(1 − p)µ j. Said differently, Tj = + Z j. By defnition, Tj is an unbiased estimator of its Nd Nd 
N p mean, + N(1− p)µ j. Nd 

If we need to estimate the mean of Tj for all j, can we use importance sampling to reduce the total 
variance given that the contribution from the inelastic scattering is constant over the bins? Let p1 be the 
probability of an inelastic event. Let Y1 be a Poisson-distributed random variable with mean N p1 and let Z1 j 

be a Poisson distributed random variable with mean N(1− p1)µ j. The sum process 

p 1 − p 
T1 j = Y1 + Z1 j (23) 

p1 1− p1 

N p has the same mean as Tj, i.e., + N(1 − p)µ j. The variance of T1 j is given by Nd � � 2p (1− p)2 
Var(T1 j) = + µ j N. (24) 

p1N2 1− p1 d 
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Minimizing ∑ j Var(T1 j) with respect to p1 will yield the answer. 
As p1 → 0 or p1 → 1, Var(T1 j) approaches infnity. Since Var(T1 j) is differentiable in the interval (0,1), 

it must reach a minimum in that interval. The minimizing point is given by � �2 � �2 p1 1 p 
= (25) 

1 − p1 Nd 1− p 

which says that the best odds ratio of inelastic to elastic scattering for the program to use is the natural odds 
ratio scaled down by the number of bins over which the inelastic scattering is roughly constant. 
Equation (25) may be solved explicitly as � �−1 1− p 

p1 = 1+ N1/2 
. (26) d p 

For our application, we may estimate Nd as the ratio of the angular resolution of inelastic scattering to 
elastic scattering squared (for two dimensions). Averaging over different views will increase Nd further, 
perhaps at the 3/2 power. 

We may estimate typical values of p and p1 from the differential cross sections given by the EPDL and 
the KN formulas. At 100 keV, a Legendre expansion up to ` = 3 is suffcient to contain 99 % of the sum of 
the coeffcients vs. ` = 15 for the effective elastic scattering coeffcients. Hence, an resolution ratio of 
4 = (15 + 1)/(3+ 1) is a reasonable estimate. We expect the estimate to apply both in-plane and over 
angles, so Nd = 43 = 64 is a reasonable expectation. In the limit in which 1 − p << 1 the fraction of 
resources going into elastic scattering may be increased by a factor of N1/2, or 8 in the estimate. Assuming d 
that the sampling requirement is dominated by the requirement of resolving the highest spatial frequency 
features, the overall number of samples could be reduced by about a factor of 8. 
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