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Abstract Risk, as the product of failure probability and failure consequence, has
been estimated and applied by engineers andmanagers to helpmake critical decisions
on (a) maintenance of aging plants, and (b) planning of new infrastructure. For
aging plants, failure probabilities are more difficult to estimate than consequences,
primarily because of a shortage of time-varying data on the condition of the complex
systems of hardware and software at varying scales after years of service. A different
argument holds for yet-to-be-built infrastructure, since it is also hard to estimate the
time-varying nature of future loadings and resource availability. A dynamic, or, time-
dependent risk analysis using a time-varying failure probability and a consequence
with uncertainty estimation is an appropriate way to manage aging infrastructure and
plan new ones. In this paper, we first introduce the notion of a time-varying failure
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probability via a numerical example of a multi-scale fatigue model of a steel pipe,
and then the concept of a dynamic risk for decision-making via an application of
the analysis to the inspection strategy for a cooling piping system of a 40-year-old
nuclear power plant. Significance and limitations of themulti-scale fatigue lifemodel
and the risk analysis methodology are presented and discussed.

Keywords Aging structures · Coverage · Dynamic risk analysis · Engineering
decision-making · Failure probability · Fatigue · Inspection strategy ·Maintenance
engineering · Predictive limits · Reliability · Risk analysis · Statistical analysis ·
Tolerance limits · Uncertainty quantification

1 Introduction

The failure of a complex engineering structure, such as a long-span suspensionbridge,
or a simple component such as an aircraft window, has a common feature, namely
the initiation and propagation of one or more microscopic discontinuities such as
voids, micro-cracks, etc.

To illustrate this common root cause of failure known as “fatigue,” we show in
Fig. 1 the distribution of micro-cracks as a function of crack length at three stages
(48%, 60%, 100%) of life of a corrosion fatigue test specimen of steel as recorded
by Kitagawa and Suzuki [1]. In Fig. 2, we show a statistical representation of the
distribution of fiber lengths in a sample of currency paper before and after 80,000
flexes in a folding fatigue test, as reported by Fong et al. [2, 3]. In Fig. 3, we show a
series of images, observed at Level 1 (Micro) by Nisitani et al. [4], of crack initiation
and growth in a steel specimen undergoing a cyclic stress test at Level 2 (Specimen).
In addition, we characterize in Fig. 3 a 3-part fundamental model of structural fatigue
testing, namely,

(Part 1): The microscopic data set collected at Level 1 provides a scientific basis,
with statistical representation and analysis, for the fatigue mechanisms discovered
in test specimens at Level 2,
(Part 2): The fatigue failure data set collected at Level 2 from a sample of n specimens
provides a statistical basis for predicting the fatigue lives of an infinite number of
specimens at Level 2 with uncertainty estimated by “predicted limits,” and
(Part 3): The same set of fatigue failure data set collected at Level 2 from a sample of
n specimens provides a statistical basis for predicting, with a new statistical concept
known as “coverage,” the fatigue lives of an infinite number of full-size structure or
component of the same material at Level 3 (Component) with uncertainty estimated
by “tolerance limits.”

The second and third parts of the model provide a methodology for engineers
to use the fatigue test data of a finite number of specimens at Level 2 to predict the
fatigue life of a full-size structure or component at Level 3 with uncertainty estimated
by “tolerance limits” for any specific coverage less than 100%.
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Fig. 1 Histograms ofmicrocrack lengths ofHT50 high-tensile strength steel in tapwater at selected
stages of corrosion fatigue for a cyclic stress of 12±12 kg/mm2 (after Kitagawa and Suzuki [1])

Fig. 2 Frequency distribution of fiber length for high-grade rag paper before and after Flexes (after
Fong et al. [2])

By postulating a fatigue failure with a lack of coverage at Level 3 as a criterion for
full-size structural fatigue failure, we can derive a time-dependent Level 3 fatigue
failure probability model to yield a new approach to risk-informed decision-making
for maintenance of aging and planning of new infrastructures.

In Sect. 2, we present the concepts and the methods of computing the “predictive
limits” and the “tolerance limits” of the fatigue lives at Levels 2 and 3, respectively.
In Sect. 3, we present the development of a multi-scale fatigue life model in five
steps. In Sect. 4, we present a numerical example of a multi-scale fatigue life model
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Fig. 3 A multi-scale representation of a typical fatigue test information flow with images of crack
initiation and growth at Level 1 of the test as recorded by Nisitani et al. [4]

by applying the first three steps leading to an estimate of the fatigue life at Level 2
(Specimen) with uncertainty estimated by “predictive limits.” In Sect. 5, we present
the same numerical example using Step 4 leading to an estimate of the fatigue life
at Level 3 (Component) with uncertainty estimated by “tolerance limits” for a range
of coverages between 0.75 and 0.999. In Sect. 6, we present Step 5 by introducing
a physical assumption that the fatigue lives at very low failure probabilities cannot
be negative and must approach zero as the failure probability approaches zero. The
consequence of that assumption allows us to fit the nonnegative life results of Sect. 5
with a nonlinear least squares 3-parameter logistic model, and therefore to obtain a
failure probability versus time-to-failure curve for a full-size component at Level 3
based on fatigue test data at Level 2. In Sect. 7, we apply the new time-dependent
failure probability result to a new approach of risk-informed decision-making for
maintenance of a critical structure or component. Significance and limitations of the
multi-scale fatigue life model and the risk analysis methodology are presented in
Sect. 8. Some concluding remarks and a list of references are given in Sects. 9 and
10, respectively.

2 A Statistical Analysis Methodology for a Multi-scale
Fatigue Model

We begin with an introduction to the notion of a “predictive interval” in statistics
that is used in Part 2 of our fatigue model to estimate the Level 2 uncertainty by
“predictive limits”.

Let us consider a cycles-to-failure prediction at Level 2 to be at a 95% confidence
level, with the symbol α defined by 95%� (1−α)100%, or, α � 0.05. As shown by
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Nelson et al. [5, pp. 179–180], when the true mean, μ, and standard deviation, σ , of
a normal distribution are not known, the so-called (1 − α)100% predictive interval
is given by the following expression:

y ± t(α/2; n − 1)s

√
1 +

1

n
, (1)

where y is the estimated mean, s, the estimated standard deviation, n, the sample size,
t, the well-known Student’s distribution function, and α, the quantity associated with
the confidence level given by (1−α) 100%. For engineers dealing with experimental
data at the specimen Level 2, the estimated predictive interval given in Eq. (1) for
a normally distributed sample data is valid only at the Level 2 scale, and not at a
higher level such as Level 3, the level of a full-size component. In short, a predictive
interval is only valid for a single-scale model.

To extrapolate a Level 2 estimate to that of a higher level, we need to introduce a
new concept, i.e., the concept of “coverage”, p, which is defined as the proportion of
the population that is covered by a new statistical interval known as the “tolerance
interval,” (see, e.g., Nelson et al. [5, pp. 179–180]). The upper and lower limits of the
tolerance interval are known as the upper tolerance limit (UTL) and lower tolerance
limit (LTL), respectively. It is the one-sided LTL for a given coverage, p, and the
(1− α) 100% confidence level that engineers are most interested in, whether it is for
finding a code-allowable minimum strength of a material for structural design, or the
minimum cycles-to-failure, minNf , of a material for a rotary equipment.

The reason for choosing the one-sided LTL to work with is that the statistical
quantity called the confidence level, γ , or, (1 − α), is commonly associated with
engineering reliability, which is a safety concept based on the assumed existence of
a minimum strength of a structure, or, in the case of fatigue life design, a minimum
cycles-to-failure, minNf .

The theory of one-sided or two-sided tolerance intervals for a normal population
is well-established in the statistics literature (see, e.g., Prochan [6], Natrella [7], and
Nelson et al. [5]). For example, as shown by Nelson et al. [5], the tolerance interval
of fatigue life, Nf 3, for an infinitely large normal population of full-size components
at Level 3, can be expressed in terms of the estimated sample mean cycles to failure,
y, or, Nf 2, and the sample standard deviation, s, or, sdNf 2, of the experimental data
derived from n specimens at Level 2, as shown below:

Nf3 � y ± r u s, (2)

where y � Nf2, s � sdNf2, the factor, r (n, p), depends on the sample size, n, and the
coverage, p, and the factor, u (df , γ ), depends on the degrees of freedom, df , defined
by n − 1, and the confidence level, γ , defined by 1 − α.

Both factors of r and u in Eq. (2) for a normal population are available for a broad
range of n, p, and γ , in tabular forms in many statistics books such as Natrella [7] and
Nelson et al. [5]. Unfortunately, Nelson et al. [5] gives only tables of the two-sided
LTL, whereas Natrella [7] gives both two-sided and one-sided LTL. As mentioned
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earlier, for engineering applications, it is the one-sided LTL that is of interest, so in
this paper, we will only use tables from Natrella [7] to develop a multi-scale fatigue
life model where the uncertainty in the fatigue life, Nf 3, at the full-size component
level (Level 3) is quantified by applying the one-sided LTL formula of Eq. (2) using
the mean fatigue life, Nf 2, and its standard deviation, sdNf 2, as computed from data
at the specimen level (Level 2).

3 Development of a Multi-scale Fatigue Model in Five Steps

Using the statistical tools of “predictive intervals” and “tolerance intervals”, we
develop a multi-scale fatigue model in five steps:

Step 1: Level 2 Life versus Stress Model. Identify and adopt a fatigue model based
on a fatigue life formula at the specimen level (Level 2).
Step 2: Collect experimental data at Level 2. Run fatigue experiments to obtain
cycles-to-failure, Nf 2, as a function of the applied stress amplitude, σa, or, in the
absence of available experimental data, compute Nf 2 using the formula identified
in Step 1 with the parameters in the formula estimated from either available experi-
mental data or handbook values at specimen Level 2.
Step 3: Level 2 Life with Uncertainty Quantification at Operating Stress, (σa)op.
Use the linear least squares fit algorithm to obtain a log-log plot of Nf 2 versus σa,
and obtain, for some operating stress amplitude, (σa)op, an estimate of the predicted
fatigue life, (Nf 2)op, and its standard deviation, (sdNf 2)op.
Step 4: Level 3 Life with Uncertainty Quantification at Operating Stress, (σa)op.
Apply the tools of tolerance intervals and use the tables of the one-sided Lower
Tolerance Limits, LTL, of Natrella [7], to compute the minimum fatigue life of
a full-size component, (minNf 3)op, at the operating stress amplitude, (σa)op, as a
function of the sample size, n, the confidence level, γ , and the lack or “Failure” of
coverage, Fp (= 1 − p).
Step 5: Minimum Level 3 Life at Operating Stress, (σa)op, and Extremely Low
Failure of Coverage. Using a nonlinear least squares fit algorithm and the physical
assumption that the one-sided Lower Tolerance Limit (LTL), at 95% confidence
level, of the fatigue life, i.e., the minimum cycles-to-failure, minNf 3, of a full-size
component, cannot be negative as the lack or “Failure” of coverage (Fp), defined
as 1 − p, approaches zero, we estimate the minimum cycles-to-failure, minNf 3, at
extremely low “Failure” of coverage, Fp, say, between 10−3 and 10−7.
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4 Steps 1–3 of a Fatigue Model for a Steel
Pipe––A Numerical Example

For Step 1, we choose to work a simple model described in a book by Dowling
[8, p. 364]. As shown below in Eq. (3), the number of cycles of a constant-amplitude
fatigue fracture failure, Nf , and the applied stress amplitude, σa, are in a power-law
relationship:

σa � A(Nf )B, or equivalently, Nf � (σa/A)
1/B, (3)

where A and B are two empirical material property parameters that can either be
estimated with uncertainties from a linear least squares fit of a set of log (Nf ) versus
log (σa) data, or obtained from material properties handbooks and databases for
specific materials.

After a Level 2 (specimen) life formula is identified (Step 1), we begin our Step 2
by either running fatigue experiments to obtain cycles-to-failure, Nf 2, as a function
of the applied stress amplitude, σa, or compute Nf 2 using the formula identified in
Step 1 with the material property parameters in the formula estimated from either
available experiments or handbooks.

In this paper, we choose to work with finding the minimum cycles-to-failure of
a critical nuclear power plant component made of an alloy steel named AISI 4030.
Its fatigue life formula is a power-law relationship as shown in Eq. (3). The fatigue
experimental data for that material (after Dowling [8, 9]) are listed in Table 1.

In Step 3, we apply a standard linear least squares fit algorithm (see, e.g., Draper
and Smith [10]) to obtain first a log-log plot of Nf 2 versus σa, as shown in Fig. 4,
and then an estimate of the predicted fatigue life, (Nf 2)op, and its standard deviation,
(sdNf 2)op, for some operating stress amplitude, (σa)op, as shown in Fig. 5.We assume
in our numerical example that the operating stress amplitude, (σa)op, is 398MPa,with
the corresponding value of the quantity, log10 {(σa)op}, equal to 2.60. A complete
listing of a computer code that solves the linear least squares fit with uncertainty
problem and is written in an open-source language named DATAPLOT [11, 12], is
available upon request.

Table 1 Fatigue Data for
AISI 4340 Steel
(Dowling [8, 9])

Stress amplitude σa , MPa Cycles-to-failure Nf 2, Cycles

948 222

834 992

703 6004

631 14,130

579 45,860

524 132,150
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Fig. 4 A linear least squares fit of six fatigue specimen data (after Dowling [8, 9])

Fig. 5 A screen output of a linear least squares fit code written in Dataplot and used to produce
the graphical results shown in Fig. 4

5 Step 4 (Life at Level 3) of a Fatigue Model for a Steel
Pipe––A Numerical Example

In Step 4, we apply the statistical theory of tolerance intervals (see, e.g., Nelson et al.
[5]) and use the tables of the one-sided Lower Tolerance Limits, LTL, of Natrella [7],
to compute the minimum fatigue life of a full-size component, (minNf 3)op, at the
operating stress amplitude, (σa)op, as a function of the sample size, n, the confidence
level, γ , and the lack or “Failure” of coverage, Fp (= 1 − p). The result of our
calculations is given in Table 2, using Fig. 5.
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Table 2 One-sided LTL versus (1 − p) between p � 0.75 and 0.999 for n � 6 and γ � 0.95

Confidence level, γ � 0.95

Coverage, p 0.75 0.90 0.95 0.99 0.999

Lack or “Failure”
of coverage Fp �
1 − p

0.25 0.10 0.05 0.01 0.001

For n � 6

From Natrella [6]
K

1.895 3.006 3.707 5.062 6.612

From Step 3
(Nf 2)op

2.26986 E + 6 2.26986 E + 6 2.26986 E + 6 2.26986 E + 6 2.26986 E + 6

From a special
computational
procedure given
in Eq. (8)**
(sdNf 2)op

0.44112 E + 6 0.44112 E + 6 0.44112 E + 6 0.44112 E + 6 0.44112 E + 6

K* (sdNf 2)op 0.83592 E + 6 1.32601 E + 6 1.63523 E + 6 2.23295 E + 6 2.91669 E + 6

(minNf 3)op �
one-sided LTL �
(Nf 2)op—K*
(sdNf 2)op

1.43393 E + 6 0.94385 E + 6 0.63463 E + 6 0.03691 E + 6 − 0.64683 E + 6

**The estimation of the standard deviation of (Nf 2)op from a log-log plot of Nf 2 versus σa requires a
special computational procedure as described below
From Fig. 5, we obtain log10 [(Nf 2)op] � 6.3560, and sd {log10 [(Nf 2)op]} � 0.0844
From the statistical theory of error propagation (see, e.g., Ku [12]), we find a closed-form relationship
between the standard deviation of loge (Nf ), or, sd{loge (Nf )}, and sd (Nf ) as follows:
sd

{
loge(Nf )

} � {sd(Nf )}/Nf . Since loge(Nf ) � loge 10 ∗ log10(Nf ), we now have
loge 10 ∗ sd

{
log10(Nf )

} � {sd(Nf )}/Nf , and
(sdNf2)op � loge 10 ∗ sd

{
log10(Nf2)

} ∗ Nf2 � 2.30259 ∗ 0.0844 ∗ 2.26986E + 6

� 0.44112E + 6

6 Step 5 (Life at Small Failures of Coverage) of a Fatigue
Model for a Steel Pipe

It is interesting to observe that in the last Step 4, an estimate of the quantity,
(minNf 3)op, at small “Failure” of coverage, Fp, say, 0.001, turns out to be negative.
This is physically meaningless, because the fatigue life of an engineered product
cannot be negative. In this final tep 5, we first ignore the estimates of (minNf 3)op at
low Fp such as 0.01 and 0.001, and recalculate (minNf 3)op at a reasonable range of
Fp, namely, between 0.25 and 0.05, to obtain a revised result of Table 2 as shown in
Table 3.

We then use a nonlinear least squares algorithmand a 3-parameter logistic function
(see, e.g., Fong et al. [14, 15]) to fit the five data points of (minNf 3)op versus Fp in
Table 3 with the assumption that the one-sided Lower Tolerance Limit (LTL), at 95%
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Table 3 One-sided LTL versus (1 − p) between p � 0.75 and 0.95 for n � 6 and γ � 0.95

Coverage, p Confidence Level, γ � 0.95

0.75 0.80 0.85 0.90 0.95

Lack or
“Failure” of
Coverage Fp �
1 − p

0.25 0.20 0.15 0.10 0.05

For n � 6

From Natrella
[6] K

1.895 2.265# 2.635# 3.006 3.707

From Step 3
(Nf 2)op

2.26986 E + 6 2.26986 E + 6 2.26986 E + 6 2.26986 E + 6 2.26986 E + 6

See Step 4,
Eq. 8
(sdNf 2)op

0.44112 E + 6 0.44112 E + 6 0.44112 E + 6 0.44112 E + 6 0.44112 E + 6

K* (sdNf 2)op 0.83593 E + 6 0.99914 E + 6 1.16235 E + 6 1.32601 E + 6 1.63523 E + 6

(minNf 3)op �
(Nf 2)op—K*
(sdNf 2)op

1.43393 E + 6 1.27072 E + 6 1.10751 E + 6 0.94352 E + 6 0.63463 E + 6

#Values of K for p � 0.80 and 0.85 are obtained by interpolating tabulated values in Natrella [7]

Fig. 6 A nonlinear least
squares fit of five Lower
Tolerance Limit data
(denoted by blue circles)
with a series of predicted
minimum cycles-to-failure,
minNf , by red dots

confidence level, of the fatigue life, i.e., the minimum cycles-to-failure, (minNf 3)op,
of a full-size component approaches zero as the lack or “Failure” of coverage (Fp),
defined as 1− p, approaches zero. This nonlinear fit allows us to estimate (minNf 3)op
at extremely low “Failure” of coverage, Fp, say, between 10−3 and 10−7. The result
is shown in Fig. 6, and this completes our 5-step multi-scale fatigue life modeling of
a full-size component or structure.

In Figs. 7 and 8, we show the results of applying the multi-scale model to a real-
life situation, where a nuclear power plant rotary equipment made of AISI 4340
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Fig. 7 Predicted minimum
time-to-failure, mintF, versus
Log10 (failure probability)

Fig. 8 Predicted minimum
time-to-failure, mintF, versus
Log10 (failure probability) at
very low failure probabilities

steel is designed to run at 60 RPM for 25% of continuous runtime at the operating
stress amplitude of 398 MPa. We also assume that the lack or “Failure” of coverage,
Fp, can be equated to a fatigue failure probability, FP, with the implication that our
multi-scale model can become a probabilistic failure model as the basis for a risk
analysis.

In Fig. 9, we complete a failure probability versus minimum time-to-failure plot
based on a numerical example of a multi-scale fatigue life model for a full-size
component made of AISI 4340 steel. A comparison of the curve in Fig. 9 with Fig. 10
the bathtub curve (see, e.g., Wilkins [16]) at the End-of-Life Wear-Out (fatigue)
regime shows a very good agreement.
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Fig. 9 A time-dependent
failure probability plot based
on a multi-scale fatigue life
model with the blue dots
denoting the tolerance lower
limits at 95% confidence and
the red dots the predicted
failure probabilities due to
fatigue and lack of coverage

Blue dotsdenote
Tolerance Lower Limits
at  95     Confidence.  %    
Red dotsdenote predicted
probabilites based on a
nonlinear least squares fit
using a 3-p logis c func on.

7 From a Multi-scale Fatigue Model to a Dynamic Risk
Analysis of a Maintenance Strategy

To illustrate this new approach of linking a fatigue model with a risk analysis, we
continue our numerical example on the prediction of a time-to-failure (days) of
a critical nuclear power plant equipment versus failure probability, FP, as shown
in Fig. 9. Assuming that the consequence of an accident due to the failure of that
equipment varies from a low of $10million to a high of $100millionwith amedian of
$50 million, and accepting the validity of the simple equation that risk is the product
of failure probability and consequence, we arrive at a graphical plot, as shown in
Fig. 11, of an estimate of risk with uncertainty versus a predicted most likely date
of a high consequence failure event at a nuclear power plant. This plot, and similar
ones for other critical components, can become a valuable tool for a risk-informed
inspection strategy associated with the maintenance of any aging plant (Fig. 10).

Fig. 10 A graphical
representation of a
hypothetical product failure
behavior of a population of
products in the form of a
bathtub curve with 3
regimes: Infant Mortality,
Normal Life, and
End-of-Life Wear-Out
(fatigue) (after Wilkins [16])
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Fig. 11 A dynamic risk
analysis of a nuclear
component made of an AISI
4340 alloy steel

8 Significance and Limitations of the Multi-scale Fatigue
Life Model and Risk Analysis

Statistical methods and concepts have been known to and applied by workers in
fatigue for at least 70–80 years. A 1977 review of the literature by Harter [17] on
the specialized topic of the size effect on material strength alone, for example, listed
about a thousand papers. The subject of a multi-scale fatigue life modeling based
on measurement data and imaging at microscopic, specimen, and component levels
was addressed by the first author [3] in 1979 with a concluding remark that said,

…There is a qualitative difference between the use of statistical tools in mechanism research
and that in fatigue specimen and component life testing.

The model presented in this paper clearly belongs to the second category. Never-
theless, the idea of using quantitative information at one level, say, Level 1-Micro,
to predict fatigue life with uncertainty quantification at a higher level, say, Level
2-Specimen, at extremely high coverage or, equally plausible, high reliability, is
generic. The modeling methodology presented in this paper is, therefore, significant
not only to the advancement of knowledge in the second category, but also in the
first, namely, fatigue mechanism research, where a huge amount of information is
available at Level 1-Micro, and life prediction at Level 2-Specimen may similarly
be modeled with uncertainty quantification.

The multi-scale life model presented in this paper is also new and significant,
because for the first time, a physical assumption on the impossibility of a negative
life at extremely high coverage has been made to extract from the model new life
predictions that are useful to planning inspection of critical components. For high
consequence systemswith very low failure probability events, a credible risk analysis
is generally very difficult because of the lack of data at low failure probabilities. The
results of our 5-step multi-scale model should help engineers in making better risk-
informed design and maintenance decisions.
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However, the proposedmodel does have limitations that need to be discussed. First
of all, the use of the one-sided lower tolerance limit tables of Natrella [7] is strongly
linked to the assumption of a normal distribution for the fatigue life. Recent work by
Fong et al. [18] on relaxing the normality assumption to include 2-parameterWeibull,
3-parameter Weibull, 2-parameter Lognormal, and 3-parameter Lognormal, should
be capable of addressing that shortcoming. Second, the use of a linear least squares
fit for the specimen fatigue life data implies a linear model without the existence of
an endurance limit. A recent paper by Fong et al. [19] using a nonlinear least squares
logistic fit for plain concrete fatigue data showed that endurance limit could exist for
that material.

9 Concluding Remarks

Anuncertainty-basedmulti-scale fatigue lifemodel has been presentedwith a numer-
ical example using the 1973 published fatigue data of six specimens of an AISI 4340
alloy steel.

Themodelingmethodology is presented infive steps,with thefirst three describing
the statistics and uncertainty quantification of Level 2, the specimen level, and the
last two, that of Level 3, the component level. The effort of the first three steps is
innovative, because it allows the modeler to estimate the uncertainty of the predicted
Level 2 life at any operating stress or stress amplitude. The effort of the last two steps
is also new, because it transforms the uncertainty of the predicted Level 2 life into
that of the predicted Level 3 life with an added uncertainty due to a new statistical
concept known as “coverage.”

The combined effort of the five modeling steps is to yield a predicted minimum
life vs. failure of coverage or failure probability curve such that for the first time it is
feasible for an engineer to predict minimum life at extremely low “failure” of cov-
erage or failure probability between, say, 10−3 and 10−7. This curve has been found
to be useful to engineers when they are required to make risk-informed decisions on
operation and maintenance.

Disclaimer Certain commercial equipment, instruments, materials, or computer software are iden-
tified in this paper in order to specify the experimental or computational procedure adequately. Such
identification is not intended to imply recommendation or endorsement by the U.S. National Insti-
tute of Standards and Technology, nor it is intended to imply that the materials, equipment, or
software identified are necessarily the best available for the purpose.
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