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Using symmetry to elucidate the importance of
stoichiometry in colloidal crystal assembly
Nathan A. Mahynski 1,3, Evan Pretti2, Vincent K. Shen1 & Jeetain Mittal 2,3

We demonstrate a method based on symmetry to predict the structure of self-assembling,

multicomponent colloidal mixtures. This method allows us to feasibly enumerate candidate

structures from all symmetry groups and is many orders of magnitude more computationally

efficient than combinatorial enumeration of these candidates. In turn, this permits us to

compute ground-state phase diagrams for multicomponent systems. While tuning the

interparticle potentials to produce potentially complex interactions represents the conven-

tional route to designing exotic lattices, we use this scheme to demonstrate that simple

potentials can also give rise to such structures which are thermodynamically stable at

moderate to low temperatures. Furthermore, for a model two-dimensional colloidal system,

we illustrate that lattices forming a complete set of 2-, 3-, 4-, and 6-fold rotational sym-

metries can be rationally designed from certain systems by tuning the mixture composition

alone, demonstrating that stoichiometric control can be a tool as powerful as directly tuning

the interparticle potentials themselves.
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In order to design colloidal systems which self-assemble into
crystals of arbitrary complexity, the interparticle interactions
between colloids are typically treated as degrees of freedom to

be optimized1–3. In practice, this tuning can be achieved through
various means, including particle charge, shape, and functiona-
lization4–10. The breadth of this design space can be appealing,
and previous research efforts have yielded a wide range of dif-
ferent structures via this route11. Unfortunately, interactions
which may be theoretically optimal for creating a given target
structure are often quite complex, involving multiple length scales
and inflections at relatively large distances, making them difficult
to realize experimentally. As an alternative approach to using a
single colloidal component with a complex interaction potential,
exotic lattices may be assembled using multiple components with
a set of relatively simple pairwise potentials. A system in which
each particle is unique is said to have addressable complexity12–
15. In this particular case, it is necessary to select the mixture
composition to provide precisely the correct number of compo-
nents to assemble each structure.

For multicomponent mixtures in general, however, composi-
tion is a tunable thermodynamic parameter which is often
overlooked in the context of self-assembly. Recent work has
shown that stoichiometry can be exploited to make adjustments
to the outcome of equilibrium self-assembly of binary mixtures of
DNA-functionalized particles (DFPs)16–18. DFP systems provide
a particularly useful framework to study these effects in multi-
component mixtures known as the multi-flavoring motif18, which
can be used to readily control the relative strengths of different
pairwise interactions experimentally. However, the implications
of stoichiometric control on stabilizing new phases, especially
with an increasing number of components, have yet to be fully
understood. It is especially unclear if changing stoichiometry
alone can be used to direct assembly into different structures in
the same way as changing pairwise interactions, since this
requires knowledge of the phase diagram for each system of
interest. In principle, if all possible structures which could appear
on a phase diagram for a system were known a priori, their
relative free energies could be calculated and the diagram con-
structed; yet, such a library of structures is difficult to obtain and
its completeness is often unclear.

Indeed, predicting the stable crystal structure of a set of known
constituents remains an outstanding challenge in condensed
matter physics19,20 and is a predominant barrier to the rational
design of functional materials. Numerous mathematical and
computational approaches have been developed to make this
problem tractable, including random structure searching21,22,
optimization and Monte Carlo tools23–29, evolutionary algo-
rithms30–35, and machine learning36. While powerful, the sto-
chastic nature of these methods means that it is not possible to
guarantee all relevant configurations and different symmetries
have been considered. In certain cases where entropic con-
siderations are significant, candidate structures can be found via
direct enumeration schemes based on packing17. Complex net-
work materials such as metal-organic frameworks, zeolites and
other silicates, and carbon polymorphs often require more rig-
orous approaches and have been fruitfully enumerated through
the use of topological methods37,38 to identify crystalline nets and
assess their chemical feasibility20,39–43. To our knowledge, how-
ever, such techniques have yet to be leveraged to explore multi-
component colloidal crystals.

To this end, we present a method based on symmetry to easily
enumerate and refine candidate crystalline lattices with any
number of components: one of the primary barriers to investi-
gating the impact of stoichiometry on equilibrium self-assembly.
We consider two-dimensional systems in this work to readily
demonstrate the nature of our method; however, we emphasize

that it is general and extensible to three-dimensional crystalline
systems as well. Furthermore, there are many important tech-
nological applications for ordered two-dimensional materials
including interfacial films, monolayers, porous mass separating
agents, and structured substrates which require careful tuning of
their crystalline structure44–47. Epitaxial growth and layer-by-
layer assembly also require a detailed understanding of two-
dimensional precursors to grow three-dimensional crystals48–50.
By combining geometric information from symmetry groups with
stoichiometric constraints, it is possible to more systematically
search the energy landscapes of colloidal systems for candidate
structures than with stochastic optimization methods alone.
Ground state phase diagrams may thus be computed with relative
ease and without a priori knowledge of possible configurations.
Our results reveal how stoichiometry, without any changes to
pairwise interactions, can be used to rationally control the sym-
metry of the resulting crystal lattices. We demonstrate how
enthalpically dominated colloidal systems with only two or three
components, interacting with simple isotropic potentials, can give
rise to a wide range of structures, and how selection between
close-packed and open structures can be performed by changing
composition alone. Furthermore, the generality of our method
suggests this tactic is applicable to a range of experimentally
realizable colloidal systems and can provide useful routes to
complex structures for the design of advanced materials.

Results
Combining symmetry and stoichiometry. In order to under-
stand how symmetry can be employed to aid in multicomponent
crystal structure prediction, consider a primitive cell with periodic
boundary conditions, as is typically employed for molecular
simulations (cf. Fig. 1a). We may consider discretizing this cell
into nodes upon which particles can be placed—although this is
only an approximation to the continuous nature of configuration
space, this assumption proves very convenient for generating
candidate cells and will be relaxed later to make the method fully
general. Generating all configurations for a multicomponent
mixture on such a grid is effectively impossible for all but the
smallest grids due to a combinatorial explosion of the number of
possibilities as the size of the cell increases32,51,52. For instance, in
our two-dimensional example, a discretization of the unit cell
with area A into equal subunits of size δ2 leads to Nconfig total
configurations:

Nconfig ¼
ðA=δ2Þ!

ðA=δ2 � NtotÞ!
Q

i Ni!
; ð1Þ

where Ni is the number of i-type species (such that Ntot ¼
P

i Ni).
However, all two-dimensional crystals may be classified into

one of 17 different planar symmetry groups, known as wallpaper
groups37,38,53. In three dimensions, 230 space groups are required
to describe all unique symmetries. Wallpaper groups describe the
set of unique combinations of isometries (translation, rotation,
and reflection) of the Euclidean plane containing two linearly
independent translations. These operations act on a tile, or
fundamental domain, to tessellate the plane. In addition to the p1
wallpaper group corresponding to the conventional periodic
simulation cell discussed above, 16 additional groups exist with
differing symmetries: a detailed summary of these groups and
their fundamental domains is available in Supplementary Tables 1
and 2, and elsewhere53. Topology provides a compact representa-
tion of each group, known as an orbifold, which describes how to
fold or wrap the fundamental domain to superimpose all
equivalent nodes (cf. Supplementary Fig. 1)38,54. For p1, this is
a torus; Fig. 1a demonstrates that wrapping a grid onto it brings
nodes on separate edges and corners into contact, effectively
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enforcing boundary conditions and constraining how particles
may be positioned.

For each group there is a different set of connected
fundamental domains that form the primitive cell, which contains
the group’s symmetries and may be used to cover the plane by
translation operations alone. In groups other than p1, between 2
and 12 fundamental domains comprise the primitive cell53; thus,
only a fraction of the primitive cell contains the independent
configurational degrees of freedom in those groups, enabling a
significant reduction of A in Eq. (1). Consider for example p6, in
Fig. 1b, in which the fundamental domain is triangular and has
one sixth the area of the primitive cell. Furthermore, a large
proportion of nodes are now found on the edges and corners,
where symmetry-imposed boundary conditions cause some nodes
to become equivalent to others. Our method leverages this, along
with constraints due to stoichiometry, to achieve a significant
computational advantage over the brute-force, combinatorial
search method which uses only the p1 group. While colloids
placed on face nodes are entirely contained within the domain,
those at edge or corner nodes contribute only a fraction to its
contents since they will be shared across multiple adjacent
domains. Symmetrically equivalent boundary nodes may be
collapsed to a single effective node with a net contribution equal
to the sum of its equivalent nodes. Placing colloids over each
group’s fundamental domain may then be reduced to a constraint

satisfaction problem (CSP) in which the sum of the contributions
from nodes where different colloid types are placed must satisfy a
desired stoichiometric ratio (cf. Methods). The CSP is, in general,
underspecified and admits many different solutions; each solution
specifies how many of each type of colloid to place in different
categories of nodes. For a k-component system with n different
node categories, the number of realizations of each different CSP
solution, W, is

W ¼ Qn
j¼1

Cj!

ðCj �
Pk

i¼1
mi;jÞ!

Qk

i¼1
mi;j!

; ð2Þ

where Cj refers to the number of nodes belonging to category j,
and mi,j refers to the number of colloids of type i assigned to
nodes in that category. As a representative example, Fig. 1c shows
the resulting solutions for a 1:2 stoichiometric ratio in a binary
system for the p6 group.

Equation (2) is very similar to Eq. (1), and W will also undergo
a combinatorial explosion if Cj, the number of nodes in a
category, j, is very large. However, relative to Eq. (1) this
explosion is delayed by two factors. First, we have used symmetry
to reduce the degrees of freedom by considering only the
fundamental domain, which can be as little as one twelfth of the
total primitive cell area. Second, we have reduced these degrees of
freedom even further by using the symmetry of each group to
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remove edge nodes within a fundamental domain’s lattice which
are not independent. The second condition plays a significant role
when the number of edge nodes relative to those on the face
is large.

Enumerating structures. Combining symmetry and stoichio-
metry to cast the structure prediction problem as a CSP permits
the tractable enumeration of crystalline configurations satisfying a
given stoichiometric ratio up to moderately sized primitive cells.
To see this, one may compute the number of nodes per edge of
the fundamental domain for each group such that the nodal
density approaches, but does not exceed, that of a chosen p1
reference cell. This reference cell is assumed to have Ng nodes per
edge and represents the case where no internal symmetry is
present so that configurations are generated combinatorially
without constraint. In our approach, an equally weighted average
over all groups suggests that when Ng ≈ 8 the total number
of edge nodes will be equal to the number of face nodes (cf.
Methods). For fundamental domains smaller than this, we expect
that boundary symmetry for the groups will play a dominant role
in determining valid configurations in the CSP. Taking the spatial
discretization to also be on the order of the colloidal diameter,
δ ~ σ, the limiting p1 fundamental domain is on the order of
A ~ 8σ × 8σ. This is as large as boxes used to simulate many
coarse-grained or colloidal fluids, implying that the upper bound
for the primitive cell that can be feasibly generated with this
method is reasonably large.

Examples of binary lattices generated by this scheme are
presented in Fig. 2, along with a more concrete analysis of how it
leads to a reduction in the number of possible configurations.
Ternary examples can be found in the SI. In these cases, we have
also allowed for the p1 reference cell parallelogram to be sheared
to 4 different angles α∈ [π/2, π/3, π/4, π/6] so that the resulting
lattice is commensurate with other symmetries. Compared to p1,
our approach to systematically enumerate non-trivial lattices over
a similar area, i.e., size of primitive cell, for the other 16 wallpaper
groups results in far fewer crystalline candidates that need to be
considered. As anticipated, the total number of configurations
does grow combinatorially at large Ng, which is dominated by
lattices with a small number of fundamental domains per
primitive cell (cf. SI); however, for Ng ≲ 8, the total number of
configurations is quite tractable.

For the binary system with a 1:1 stoichiometry shown in Fig. 2
there are less than 109 configurations compared to an equivalent
combinatorial search with the p1 cell, which results in Oð1022Þ
candidates when Ng= 8; this represents a reduction by over
13 orders of magnitude. A similar reduction occurs with ternary
systems as well (cf. Supplementary Fig. 2). In both cases, the
1:1(:1) stoichiometry generates the most possible candidates; all
other stoichiometries we investigated produced fewer solutions to
the CSP, and thus 109 configurations serves as a benchmark. A
breakdown of these configurations into different groups is also
shown, illustrating that for sufficiently small Ng it is not possible
to observe certain stoichiometries, which is expected from a
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packing perspective. It is important to point out that the
structures resulting from the 16 groups besides p1 are, in
principle, a subset of the configurations resulting from the
random search. This small subset composed of the other 16
groups contains additional symmetry beyond translation alone;
this method simply enables those configurations to found directly
rather than searching over all combinatorial realizations of where
to place different colloids.

Building phase diagrams. To engineer the assembly of multi-
component mixtures, their equilibrium phase behavior must be
understood. We now illustrate how phase diagrams can be
computed using this enumeration scheme. Specifically, we have
applied this methodology to probe the self-assembly of mono-
disperse colloidal monolayers formed from systems inspired by
the multi-flavoring motif used in DFP assembly; this scheme
enables all pairwise interactions in the system to become inde-
pendent of one another, qualitatively ranging from being attrac-
tive to repulsive. In the limit of strong binding, the ground state
(T*→ 0) serves as a reasonable approximation of the thermo-
dynamically stable state55. Multi-flavored binary mixtures of
colloids dominated by enthalpic interactions are known to exhibit
a wide variety of morphologies, both experimentally and
theoretically18,55; however, the full impact of stoichiometry on the
thermodynamics of their self-assembly is not yet understood.
Here we employ a simplified model (cf. Methods and Fig. 3a) to
capture the tunability of the adhesiveness of arbitrary species
pairs via a single parameter, λi,j, which ranges from −1 (repulsive)
to +1 (attractive). This allows our model to maintain relevance
beyond the specific case of DNA-mediated interactions; however,
we emphasize that these kinds of interactions can be realized in
various DFP systems, and that experimental results in such sys-
tems are consistent with simulations employing potentials with
pairwise tunable interactions18. Other, non-multi-flavored
experimental DFP systems have also been successfully modeled
with similar potential forms56.

To predict the assembly of these mixtures, we first employed
our scheme to enumerate a large number of the possible
candidates within our framework. Although the grids constructed
over the fundamental domains are consistent with each group’s
symmetry, they are artificial. Therefore, we subsequently relaxed
these initially proposed candidates with a stochastic global
optimization method known as basin hopping25. Note that lower
symmetry structures which do not belong to any wallpaper group,
such as quasicrystals, are not generally proposed in the initial
candidate pool. A relaxation stage with basin hopping is therefore

important since it allows these lower symmetry structures to
emerge from higher symmetry parent structures. Figure 3b
illustrates an example where we have taken only the 25 candidates
with the lowest energy from each group initially proposed
(unrelaxed), and then performed this optimization procedure.
The final, structurally unique lattices are plotted in the main
panel, as only a few minima, including the ground state, tend to
dominate the landscape and are found repeatedly. The ground
state was often found multiple times by direct enumeration,
which corresponds to the low-energy plateau in the inset. In fact,
all stable periodic lattices reported in this work were found by
direct enumeration, ultimately requiring no stochastic relaxation,
demonstrating the robustness of this enumeration scheme.

For all sets of pairwise interactions, enumeration and
optimization runs were performed for each canonical system
corresponding to a fixed mole fraction. Phase diagrams were then
computed by constructing the convex hull of (free) energy points
in composition space (see schematic, Fig. 3c)8,17,21. States that lie
on the hull are the thermodynamically stable states a system can
attain, while all points above the hull represent metastable states.
If a system’s composition is prepared so it exactly matches one of
the vertices on the hull, the associated structure will be produced.
However, when the system’s composition is intermediate between
two vertices it will phase separate into the two corresponding
structures, each with a different stoichiometry, as determined by
the lever rule.

Stoichiometric control. Phase separation can, therefore, be har-
nessed as a powerful mechanism for controlling self-assembly. A
system with a fixed set of interparticle potentials that assembles
into one structure out of a solution initially prepared at one
composition, can give rise to a completely different structure
when the solution is prepared with a different ratio of the same
components. In this way, a single system can be designed so that
simply by varying the solution mixing ratio of constituents, a
number of structures with different stoichiometries can be pro-
duced. Figure 4a shows a ground state phase diagram computed
for a binary system. In Fig. 3b, we have illustrated how the square
lattice is the lowest energy configuration for this system’s set of
pairwise interactions at a 1:1 stoichiometry; this forms the point
on the convex hull at x1= 0.5 in Fig. 4a. However, other hon-
eycomb phases intervene on the hull and enable the set of pair
potentials to provide either square or honeycomb structures
depending on the composition of the initial mixture.

We have validated our predictions using canonical molecular
dynamics simulations, as shown in Fig. 4b. This demonstrates
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that the phase diagram accurately represents the composition
dependence of the system’s behavior, and that this effect is
realizable at finite temperatures and can be used to select
structures under actual self-assembly conditions. The molecular
dynamics results also show phase separation into the stable
structures occurring when compositions between the vertices of
the phase diagram are chosen. Note that in the red panel
corresponding to x1= 0.17, a mixture of honeycomb crystals and
a non-interacting vapor of particles have formed (expected since
this species is self-repulsive, λ1,1=−0.50). Similarly, in the green
panel with x1= 0.42, a mixture of the honeycomb and square
lattice structures are obtained. Clearly, for this system with a
single set of pairwise interactions, changing the mixture
stoichiometry from x1= 0.33 to x1= 0.50 allows for controlling
assembly into these two different lattices which possess entirely
different structural ordering and symmetry.

Interactions vs. stoichiometry. To understand the generality of
this mechanism, we performed a broad survey of binary multi-
flavored systems, computing phase diagrams at various λ, to
elucidate how stoichiometry changes the relative stability of dif-
ferent lattices. We found a plethora of transitions that can be
driven by stoichiometric effects alone, and overall, found that
stoichiometric control can be as powerful as tuning the inter-
particle interactions themselves. For a binary mixture there can be
up to two coexisting phases in the ground state, and for each set
of λ= (λ1,1, λ1,2, λ2,2) values we considered, we report the most
stable phase or phases as determined by the phase diagram
constructed at those conditions. The key findings of this extensive
set of calculations are summarized in Fig. 5.

In the ground state, the absolute values of the λi,j do not matter,
only the ratio of their values. In other words, a system where λ=
(0.25, 0.5, 0.2) will yield an identical structure to the case of λ=
(0.5, 1, 0.4). As a result, we can cast these λi,j coordinates onto the
surface of a unit sphere; in fact, since we are only concerned with
the case where unlike species have a favorable interaction and will
not simply phase separate into their pure component states
(λ1,2 ≥ 0), we need only consider one hemisphere. In Fig. 5, we
report the structures found for three different representative
stoichiometries. Unless explicitly shown, where the stoichiometry
of the structures found is not equal to the composition of the
solution, the remaining particles were found to coexist in an
unstructured gas-like phase. In the parlance of Fig. 5, the fact that
the color-coded structural changes occurring at a fixed λ point
between different mole fractions can be as dramatic as color-
coded changes occurring at a fixed mole fraction as λ is varied

illustrates that stoichiometric control (changing x1) is as potent as
engineering the potentials themselves (changing λ).

Transitions occurring in Fig. 5 are discussed at greater length
in the Supplementary Discussion; however, the formation of the
open honeycomb lattice is of special interest, as this 3-fold
symmetric structure is an open, low-density lattice which is
stabilized energetically, rather than entropically. In fact, although
the pairwise interactions themselves follow a simple
Lennard–Jones-like form, the ground state phase diagram
contains numerous low-density lattices. When x1= 0.66 (2:1 stoi-
chiometry), the lower left quadrant contains several cluster
phases. In particular, where the open honeycomb structure was
stable at x1= 0.5, now we find coexistence between extended
rings, which follow a Kagome pattern (cf. Supplementary Fig. 8),
and heptamer clusters. At x1= 0.75, these larger Kagome rings
and heptamers give way to tetramer clusters. These predictions
have been validated with molecular dynamics simulations as
shown in Fig. 5. The native stoichiometry for this Kagome lattice
is x1= 0.6, and once the mixture composition has been changed
to this value, the system indeed forms only a single Kagome phase
instead of coexisting with a second cluster phase. Self-assembly
continues to occur well as density is increased up to its ideal value
determined by that of the perfect lattice (ρ*= 0.382). Addition-
ally, the square and various hexagonal phases have been realized
in other simulations as well as experiments on multi-flavored
DFP assembly18, once again illustrating the consistency of this
style of pairwise interactions with real physical systems, and the
potential of this stoichiometric control scheme to be exploited for
material design applications.

Extension to ternary mixtures. Among other transitions, Fig. 5
shows that tuning the stoichiometry alone can induce a ring
opening event from a 3-fold open honeycomb lattice to an even
lower density Kagome lattice in binary mixtures. To understand
this further, and as a demonstration of our structure prediction
approach for ternary systems, next we consider the impact of
introducing a third component. We repeated our enumeration
and optimization procedure for various ternary mixtures; as a
representative result, here we restrict our discussion to the case
where the third component is self-avoiding (λ3,3=−1), yet
interacts favorably with the second component (λ3,2= 1) and
essentially as a hard sphere with the first (λ3,1= 0). Figure 6
summarizes the resulting phase diagram. We find that this third
component can exert significant influence over the resulting
morphology. While the ground-state phase diagram contains
many different structures, a clear pattern emerges, which is
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entirely controlled by the composition of the initial mixture.
When species 3 is absent, the relative amounts of species 1 and 2
can be tuned to drive the system through transitions from gas-like
phases (0-fold rotational symmetry), to clusters, to Kagome rings,
to open honeycomb (3-fold rotational symmetry). Upon intro-
ducing species 3, depending on the composition of the parent
solution, we may drive the system into 4-fold square lattices, 6-
fold hexagonal ones, or even more extended ring structures (cf.
Fig. 6a, b). The complete binary phase diagram is included for
reference in Fig. 6c. These principal directions are highlighted by
colored arrows and provide a basic compass for navigating the
phase diagram (cf. Supplementary Discussion for more details).

We emphasize that this set of transformations, resulting in a
complete range of rotational symmetries from gas-like (0-fold) up
to hexagonal (6-fold) structures including low density rings and
clusters, is brought about by changing the mixing ratio of the
components alone. Furthermore, although temperature is
expected to have a significant impact on the quantitative stability
of different lattices, especially the cluster phases and rings, we
achieved most of the predictions in molecular dynamics
simulations at temperatures within an order of magnitude of
the temperature at which we observed initial aggregation of the
components. Thus, entropic contributions are not expected to
change the qualitative conclusion that controlling stoichiometry
in multicomponent mixtures can be a tool as powerful as

engineering the interparticle potentials for designing complex
structures.

Discussion
In summary, we have presented a method for investigating the
stability of enthalpy-dominated multicomponent colloidal lattices
and have used it to demonstrate that tuning the mixture com-
position can have as much impact as adjusting the interparticle
potentials between the colloids themselves. Our approach is
premised on recasting the structure prediction problem as a CSP
in which symmetry and stoichiometry combine to form the
constraints; the solutions to this problem, which may be enum-
erated and subsequently optimized with relative ease, are the
candidate lattices to be considered. This method effectively gen-
erates a library of structures using only an upper bound for the
size of the lattice’s primitive cell and the desired stoichiometry.
Such a library must otherwise be found by methods which are
generally incomplete and prone to miss important candidates. In
fact, every stable crystal structure reported in this work was found
initially via enumeration, and subsequent optimization did not
reveal additional stable candidates. This approach serves as an
efficient way to explore all possible symmetry groups which helps
ensure that the correct ground state is discovered.

It is important to highlight the general applicability of both the
presented method and the results regarding stoichiometric
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control. Although we have focused on presenting results from
two-dimensional systems, the concepts presented here are
extensible to higher dimensions as well. The interaction potentials
considered here are very general, but experimental schemes for
realization of such interactions in multicomponent systems exist
using multi-flavored DFPs. These DFP systems are not limited to
two dimensions, and simulations and experiments in both
two18,55 and three57,58 dimensions have been performed on these
systems to show the capacity of simple pairwise models to capture
DFP assembly effects. They additionally demonstrate the feasi-
bility of fine-tuning interactions in multicomponent mixtures as
necessary to achieve self-assembly of particular structures. Finally,
the results presented here have the potential to be particularly
useful for physical realization of many superlattices including
unique open structures, given that mixture stoichiometry is often
easier to control than pairwise interactions, and has the potential
to be just as powerful in terms of controlling structural ordering
during self-assembly.

Methods
Creating regular grids on fundamental domains. First, a regular grid, as depicted
in Fig. 1a, is created over the surface of a group’s fundamental domain. Nodes are
placed along each edge with as close to the same spacing as possible such that there
exist nodes at the termini of each edge. If this domain is triangular, the number of
nodes along each edge must be identical so that interior nodes fall on the resulting
parallelogram’s diagonals. This happens regardless of the relative lengths of the
sides. If this domain is a parallelogram, the number of nodes placed along adjacent
edges may sometimes be different if the two sides have unequal lengths, as allowed

by symmetry constraints. This scheme covers different wallpaper groups differ-
ently, but in a consistent fashion which is commensurate with each group’s unique
symmetry.

Different groups have differently shaped fundamental domains, with the
number of domains per primitive cell ranging from 1 to 12; therefore, we cannot
simply place nodes at a fixed spacing along the edges of each group’s fundamental
domain and compute all possible resulting primitive cells as they would vary
significantly in size. A more even-handed comparison can be made by working in
reverse to compute the requisite grid spacings for each group’s fundamental
domain so that their primitive cells all cover a similar area. Although fundamental
domains vary in shape, an approximate comparison may be made as follows.

As a reference, we consider a p1 primitive cell containing N2
g total nodes, and

attempt to make the primitive cells of other groups have the same number of
nodes. The number of nodes per edge of a group’s fundamental domain may be
estimated as

N1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2
g

rNd 1� 1
2 ´ ðNs mod 2Þ� �

s$ %
; ð3Þ

where N1 is the number of nodes along the shorter of the two edges which define
the group’s primitive cell, r ≥ 1 is the ratio of the lengths of these edges, Nd is the
number of fundamental domains per primitive cell, and Ns is the number of sides
the fundamental domain has. The number of nodes on the longer edge is given by
N2 ¼ rN1b c. A more detailed derivation is presented in the Supplementary
Methods. The result is always a lattice that has no more than N2

g total nodes;
consequently, Ng should be viewed as a parameter that simply provides a way to
compare the groups to each other by making their primitive cells congruent.

The constraint satisfaction problem (CSP). For a system with k total different
colloid types, the number of times a colloid of type i may be placed in a certain
node category isMi= (mi,1, mi,2,… mi,n), which is a vector whose length is equal to
the number of categories that exist on a given fundamental domain, n. If the
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number of nodes in each category, j, is Cj, then Nnodes ¼
Pn

j Cj , where Nnodes is the
total number of independent nodes on the fundamental domain. For the p6 group
depicted in Fig. 1b, Nnodes= 10. The total number belonging to each category is
bounded 0 � Pk

i mi;j � Cj , if we allow only one colloid per node.
Each node has a net fractional (stoichiometric) contribution, F= (f1, f2, … fn),

which is determined by symmetry and is independent of colloid type. For example,
in Fig. 1b there are two distinct types of corners, one with f1= 1/6, and another
with f2= 1/3. The total number of i-type colloids is Ni=Mi ⋅ F; F is generally
converted to whole numbers so that Ni strictly contains integers. In principle, the
categorization of nodes based on anything other than net fractional contribution is
fictitious and those with the same value may be combined; in Fig. 1c the blue
histogram shows this combined result, whereas the orange keeps the categories
distinct. The total number of realizations,

P
i Wi , is the same in both instances, and

is on the order of 103; however, keeping categories distinct can be advantageous.
This tends to create more solutions, each with less individual realizations. When
sorted by frequency, solutions with less combinatorial realizations tend to involve
using fewer different categories of nodes, or nodes with special constraints, to solve
the CSP. Consequently, solutions with less realizations (left side of Fig. 1c) tend to
produce simpler structures which grow in apparent complexity as the number of
solutions increases (right side).

We impose the constraints that at least one of each type of colloid must be
placed somewhere, Ni > 0 ∀i, and require that the final ratio of Ni values satisfies the
desired stoichiometry, Starget= (1, N2/N1, N3/N1, …, Nk/N1), where we have
arbitrarily used N1 to normalize. The value of Ni is implicitly bounded above by the
total number, and fractional contribution, of nodes available, though in principle
this may also be constrained further. All �M ¼ M1

TM2
T ¼Mk

T
� �

, where it is
understood that eachMi

T forms a column in the �M matrix, represent solutions that
may be enumerated using a recursive backtracking algorithm. Each solution, �M,
defines a prescription of how many of each type of colloid to place at each type of
node. Some solutions will use only a small fraction of the available nodes, whereas
others may employ them all.

All solutions to the CSP simply produce point patterns on lattices without any
intrinsic length scale, and any lattice may be uniformly scaled without changing its
symmetry. As a result, we choose to scale the resulting patterns to the contact point
to produce the final candidate. For monodisperse, hard-sphere systems this is well
defined. For other softer potentials one may use some characteristic length scale for
the pairwise interactions; if there are multiple such length scales, e.g., multiple
minima in the pairwise potential or if the system contains colloids of different
diameters, multiple lattices can be generated from the same point pattern. The size-
asymmetric case is illustrated in Fig. 2 with the p6m group. Also note that identical
structures may sometimes be obtained from different groups as a given solution to
the CSP may not use all of the edges or subtle features that distinguish groups from
each other; e.g., consider the p6m and p3 for the binary case in Fig. 2. Each CSP
solution does not violate any rules imposed by a group’s symmetry constraints, but
does not necessarily make use of them all (cf. Supplementary Methods for more
details).

Faces vs. edges of fundamental domains. Consider a parallelogram with an
equal number of nodes, Ng, along each edge. The number of nodes on the face, Nf

= (Ng− 2)2, exceeds the number of edge nodes, Ne= 4(Ng− 1), when Ng ≥ 7. For a
triangular domain, Ne= 3(Ng− 1) and Nf= (Ng− 2)(Ng− 3)/2, so that Ng ≥ 10
represents this bound. In our systems there are 10 groups with parallelograms for
fundamental domains, and 7 with triangular ones. Thus, an equally weighted
average suggests that when Ng ≈ 8, the number of edge nodes will be equal to the
number of nodes on the face of the fundamental domain.

Multi-flavored pairwise interactions. The set of pairwise interactions used in this
work are inspired by multi-flavored DFP systems18,58,59. With conventional DFPs,
complementary strands of DNA are grafted on different particles inducing a
favorable cross interaction due to DNA hybridization. However, when two colloids
of the same type approach each other they simply repel each other as their grafts
are identical. In multi-flavored systems, mixtures of different strands of com-
plementary DNA are blended on the surfaces of different colloids decoupling the
self- and cross-interactions in these mixtures. Controlling the surface composition
of many different strands has the effect that one can independently tune the
effective interactions between each pair of colloids. These enthalpy-dominated
systems are typically assembled at relatively low density and ambient
conditions58,59, which corresponds to the limit where (osmotic) pressure effectively
approaches zero. Furthermore, in the limit of strong binding, the ground state
(T* ~ 0) serves as a reasonable approximation of the system’s thermodynamic state.
In this case, the lowest energy lattice represents the most thermodynamically stable
crystal as the Gibbs free energy is equal to potential energy in this limit.

To qualitatively model this behavior, all colloids interacted through a pair
potential akin to Lennard–Jones which has been divided into its attractive and
repulsive portions, then recombined according to some modulus, λi,j55,60, which we
refer to as the adhesiveness parameter:

Ui;jðrÞ ¼ U r
i;jðrÞ þ λi;jU

a
i;jðrÞ; ð4Þ

where

U r
i;jðrÞ ¼

4ϵi;j
σ i;j
r

� �12� σ i;j
r

� �6h i
þ ϵi;j r � 21=6σ i;j

0 r > 21=6σ i;j;

8<
: ð5Þ

and

Ua
i;jðrÞ ¼ 4ϵi;j

σi;j
r

� �12

� σ i;j
r

� �6
" #

� U r
i;jðrÞ: ð6Þ

The parameter, λi,j, effectively scales the energy from Ui;jð21=6σ i;jÞ ¼ �ϵi;j at

λi,j= 1, to Ui;jð21=6σi;jÞ ¼ þϵi;j at λi,j=−1 (cf. Fig. 3a)55,60. Each pair of
interactions has its own λi,j value which may be tuned independently, mimicking
the multi-flavoring motif of DFPs58,59. As a result, the characteristic contact point
for this model is taken to be 21/6σi,j. All colloids were given equal diameters, σi,j= σ,
and energy scales, ϵi;j ¼ ϵ. Only the value of λi,j was varied to control the relative
degree to which pairs of colloids attracted or repelled each other. Thus, all units
reported herein are given in terms of ϵ and σ. All interactions were cut off at rc=
3σ.

Sampling wallpaper ensembles. As described previously, a grid is generated for
each wallpaper group in question, over which the CSP defined by the desired
stoichiometric ratio of components in the final structure is solved recursively to
enumerate all solutions. For wallpaper groups where the ratio between the lengths
of the fundamental domain’s sides, r, is not constrained by symmetry, we sampled
r 2 ½1; ffiffiffi

2
p

;
ffiffiffi
3

p
; 2�. In addition, for groups where the angle α between two adjacent

edges of the fundamental domain is not constrained by symmetry, we generated all
realizations of α∈ [π/2, π/3, π/4, π/6]. Each solution to the CSP yields a pre-
scription to place a certain number of each colloid type on different types of nodes
in the fundamental domain; the total number of realizations of each prescription is
given by combinatorially choosing the number of colloids to be placed at each
designated location. In all cases, we discarded p1 as the trivial method of prediction
which quickly undergoes a combinatorial explosion for even a small grid. For all
stoichiometries of interest in the binary mixture, we considered three cases: Ng= 6,
Ng= 8, and a variable Ng. When Ng= 6 we exhaustively enumerated all primitive
cells. These were scaled so that the minimum distance between colloids was 21/6σ,
then ranked based on energy; the lowest energy candidates from each group were
subsequently refined with basin hopping. We did not repeat fully exhaustive
sampling for Ng= 8, instead taking only 50,000 realizations of primitive cells from
each group. Subsequent ranking and optimization yielded identical results. As a
final check we also allowed Ng to be variable, increasing to the point where each
group yielded at least 105 solutions to the CSP; from these ranked candidates we
drew the best 100 structures from each group and optimized them. Again, the final
results were the same.

Basin hopping. Basin hopping is a stochastic optimization approach well-suited to
locating the global minimum of systems with hundreds of degrees of freedom and
local minima separated by large barriers25,61,62. Atomistic, molecular, and colloidal
systems often fall in this category and we adopted this approach here. The pri-
mitive cell is constructed from the fundamental domain according to the pre-
scription provided by the CSP, which is the cell that is optimized. Basin hopping
follows an iterative procedure where each cycle is composed of a perturbation
followed by a deterministic relaxation to generate a new candidate, which is
accepted as the new state of the system stochastically; here we used a Metropolis
acceptance criterion:

pacc ¼ min 1; exp � ufinal � uinitial
T̂

� �� �
; ð7Þ

where u is the potential energy per particle in each state and T̂ is a parameter which
controls the rate of acceptance. This was usually set to T̂ ¼ 0:50 but is not related
to the system’s actual temperature, which in the ground state, is zero. Up to 104

iterations were used to optimize each structure. We used the L-BFGS-B algorithm63

to relax the initial candidate structure before performing the basin hopping, which
also employed this algorithm. The total potential energy is a function of the
coordinates, ri, of each of the m colloids present and the primitive cell’s vectors, U
= f(r1, r2, …, rm, L1, L2)= f(ψ); all variables in ψ were optimized simultaneously.
For precision, the candidate structure with the lowest energy resulting from basin
hopping was further minimized with the Nelder–Mead simplex method64 to
achieve the final result.

Perturbation moves consisted of displacing a set of randomly chosen colloids,
exchanging the locations of a randomly chosen set of pairs of colloids, perturbing
the cell’s vectors, shearing the cell, uniformly scaling the cell, and displacing local
clusters of colloids as determined by a k-means algorithm65. These typically
occurred with a 4:2:1:1:1:1 ratio. After each perturbation the cell’s vectors were
iteratively checked to find a more orthorhombic unit cell, if possible, to reduce the
number of nearest neighbor images needed to compute the energy of the cell. This

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10031-4 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2028 | https://doi.org/10.1038/s41467-019-10031-4 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


is done by computing the distortion factor, C29,30:

CðL1; L2Þ ¼
1
4

k L1 k þ k L2 kð Þ P
2A

; ð8Þ

where P is the perimeter of the cell, and A is its area. For a given primitive cell, new
vectors are subsequently proposed: (L1 ± L2, L2), (L1, L2 ± L1). C is recomputed for
each of these candidates, and the lattice with the lowest C is taken. This process is
repeated until either C is not reduced by an iteration, or falls below a threshold of
C � 1:5. No more than 10 iterations are performed. A square cell has C ¼ 1.
Importantly, symmetry was not constrained during optimization which allows an
initially proposed structure to transform from one group into another and allows
lower symmetry structures to emerge from higher symmetry parents.

Structural similarity. Various methods exist for determining the structural simi-
larity of lattice configurations66–72. Our algorithm does not depend on differ-
entiating lattices; however, we often removed similar structures from the final
optimized set of non-ground-state structures to reduce the number to be examined
a posteriori. This screening may also be performed as an intermediate stage to
remove proposed candidates to be sent to basin hopping that may be considered
too similar and therefore redundant. We employed radial distribution functions to
determine this similarity, as this information is readily available on-the-fly fol-
lowing pairwise energy calculation. For two configurations, denoted α and β, we
consider the cosine similarity of each colloid type to produce a vector, S= (S1,1,
S1,2, …, Sn,n), such that

Si;j ¼
gαi;jðrÞ � gβi;jðrÞ
gαi;jðrÞ

			 			 gβi;jðrÞ
			 			 ; ð9Þ

where gi,j(r) denotes the radial distribution function for the (i, j) pair. We consider
two configurations to be only as similar as their least similar pair; thus, S=min[S]
and we consider two configurations to represent different structures if S < 0.90. A
more restrictive threshold of S < 0.99 did not change our final results. The radial
distribution functions were computed out to a cutoff of rcut= 3σ with bins of width
δr= 0.2σ.

Phase diagrams. Convex hulls of total energy per particle vs. mole fraction(s) were
constructed using the QuickHull algorithm73, as implemented in SciPy62. All
points along the hulls reported were checked for energetic degeneracy, that is,
unique structures that had energies per particle within δ(U/Ntot) ≤ 10−6; no
degeneracies were found for any of the conditions reported here. For ternary
mixtures, the three-dimensional hull of U/Ntot vs. x1 and x2. is projected onto the
(x1− x2)-plane; the faces of the three-dimensional hull indicate which phases are in
coexistence and are depicted by the orange lines in Fig. 6, where the vertices
correspond to the structures on the hull. All unique, integer stoichiometries ξ1:ξ2 up
to ξi ≤ 6 were considered for binary mixtures, and similar bounds were used for
ternary mixtures (cf. Supplementary Discussion).

Molecular dynamics. Canonical (NVT) molecular dynamics simulations were
performed in LAMMPS74 using a Langevin thermostat with a time constant
τ ¼ σm�1=2ϵ�1=2. Simulations were run with at least 103 particles for at least 108

timesteps, with each step Δt= 10−2τ. Numbers of components were rounded from
the desired stoichiometric ratios to nearest integers. Temperatures T� ¼ ϵ�1kBT
and number densities ρ*= ρσ2 were set as desired. Here, kB is the Boltzmann
constant and T is the absolute temperature. Initial configurations were generated by
random placement of particles, followed by energy minimization and equilibration
at T*= 1 for 105 timesteps. The potential described previously, with a cutoff rc=
3σ, was used.

Data availability
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