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We use a self-assembled two-dimensional Coulomb crystal of ∼70 ions in the presence of an external
transverse field to engineer a simulator of the Dicke Hamiltonian, an iconic model in quantum optics which
features a quantum phase transition between a superradiant (ferromagnetic) and a normal (paramagnetic)
phase. We experimentally implement slow quenches across the quantum critical point and benchmark the
dynamics and the performance of the simulator through extensive theory-experiment comparisons which
show excellent agreement. The implementation of the Dicke model in fully controllable trapped ion arrays
can open a path for the generation of highly entangled states useful for enhanced metrology and the
observation of scrambling and quantum chaos in a many-body system.
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Introduction.—Quantum many-body systems featuring
controllable coupled spin and bosonic degrees of freedom
(d.o.f.) are becoming a powerful platform for the realization
of quantum simulators with easily tunable parameters.
These include, for example, cavity QED (CQED) systems
[1–8] and trapped-ion arrays [9,10]. Most often, these
systems have been operated in the far detuned regime
where the bosons do not play an active role in the many-
body dynamics and, instead, are used to mediate spin-spin
coupling between particles. Great progress has been real-
ized in this effective spin-model regime including the
implementation of long range Ising models with and
without an external transverse field and the exploration
of rich physics with them such as entanglement dynamics
[1,2,11–17], many-body localization [18], time crystals
[19], and dynamical phase transitions [20,21]. On the other
hand, excluding few particle implementations [22–30], the
regime where the bosonic d.o.f. actively participate in the
many-body dynamics has remained largely unexplored.
In this work, we focus on this regime and report the

implementation of a simulator of the Dicke model, an
iconic model in cavity QED which describes the coupling
of a (large) spin and an oscillator, in a self-assembled two-
dimensional (2D) crystal of ions. The Dicke model is of
broad interest as it exhibits rich physics including quantum
phase transitions and nonergodic behavior [31]. More
recently, it has gained renewed attention due to the
implementation of the closely related Tavis-Cummings
model in circuit QED [32] and its realization in CQED
experiments with cold bosonic atoms [6–8,33,34]. In the

latter, the Dicke model emerged as an effective Hamiltonian
when one encodes a two-level system in two different
momentum states of a Bose-Einstein condensate (BEC)
coupled by the cavity field. Within this framework, the
normal to superradiant transition maps to a transition
between a standard zero momentum BEC and a quantum
phase with macroscopic occupation of the higher-order
momentum mode and the cavity mode.
While CQED experiments have used the intracavity light

intensity and time of flight images to monitor the phase
transition, here, instead, we probe the two distinct quantum
phases of the Dicke model by using various controlled
ramping protocols of a transverse field across the critical
point (see Fig. 1). We benchmark the dynamics by
experimentally measuring full distribution functions of
the spin d.o.f. and then comparing them with theoretical
calculations. The spin observables also allow us to infer the
development of spin-phonon correlations.
Our implementation of the Dicke model and correspond-

ing observation of the phase transition in a trapped ion
setup represents a complementary work with respect to the
CQED platform and illustrates the power and universal
nature of quantum simulation. It also opens a path for using
the high level control and tunability of trapped ion experi-
ments for the generation of highly entangled states suitable
to quantum metrology in the near term future, and for the
exploration of regimes currently intractable to theory.
Spin-boson system.—Our experimental system is com-

prised of a 2D single-plane array of laser-cooled 9Beþ ions
in a Penning trap. The internal states forming the spin-1=2
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system are the valence electron spin states in the Beþ ion
ground state which, in the 4.46 T magnetic field, are split
by 124 GHz [16,17,36,37]. The interplay of the Coulomb
repulsion and the electromagnetic confining potentials
supports a set of normal vibrational modes of the crystal
[38], which we couple to the spin d.o.f. via a spin-
dependent optical dipole force (ODF), generated by the
interference of a pair of lasers with beat note frequency ωR
[36]. The frequency ωR is detuned from the center-of-mass
(c.m.) mode frequency, ωc:m:, by δ≡ ωR − ωc:m: (Fig. 1).
The detuning is chosen to predominantly excite the c.m.
mode which uniformly couples all the ions in the crystal
[16]. In the presence of an additional transverse field,

generated by resonant microwaves, we implement the
Dicke Hamiltonian [39–41]

ĤDicke=ℏ ¼ −
g0ffiffiffiffi
N

p ðâþ â†ÞŜz þ BðtÞŜx − δâ†â: ð1Þ

in the frame rotating with ωR. The operator âðâ†Þ is the
bosonic annihilation (creation) operator for the c.m. mode,
BðtÞ is the time-varying strength of the applied transverse
field, and g0 represents the homogeneous coupling between
each ion and the c.m. mode. Here, δ < 0. We have
introduced the collective spin operators Ŝα ¼ ð1=2ÞPjσ̂

α
j

where σ̂αj is the corresponding Pauli matrix for α ¼ x, y, z
which acts on the jth ion.
The Dicke Hamiltonian exhibits a quantum phase

transition at Bc ¼ g20=jδj in the thermodynamic limit,
i.e., N → ∞, [42–44], separating the normal (B > Bc)
and superradiant (B < Bc) phases. The Hamiltonian
remains unchanged under the simultaneous transformations
Ŝx → Ŝx, Ŝz → −Ŝz, Ŝy → −Ŝy, and â → −â. These are

generated by the parity operator Π̂ ¼ eiπ½â†âþŜxþðN=2Þ�.
In the strong-field regime of the normal phase, B ≫ Bc,

the spins and phonons decouple into a product state. When
jBj > jδj the corresponding ground state, jψNor

0;N=2i, and low

lying excitations, jψNor
n¼1;2;…i, are jψNor

n;N=2i¼jni⊗ j−N=2ix.
We use jni to denote Fock states and jMiα¼fx;y;zg to denote
the fully symmetric (S ¼ N=2) eigenstates which satisfy
ŜαjMiα ¼ MjMiα with −N=2 ≤ M ≤ N=2.
In the weak-field limit, B ≪ Bc, of the superradiant

phase, the spin and phonon d.o.f. are entangled and the
ground state becomes degenerate in the thermodynamic
limit. For a finite system, it approaches jψS

0;N=2i¼
ð1= ffiffiffi

2
p Þðjα0;0i⊗ jN=2iz�j−α0;0i⊗ j−N=2izÞ as B→0,

where we have introduced the displaced Fock states
jα; ni≡ D̂ðαÞjni with D̂ðαÞ ¼ eαâ

†−α�â the associated dis-
placement operator [45]. Here, the sign of the superposition
is dictated by the parity symmetry: for even N, the
ground state will be the symmetric superposition with
heiπ½â†âþŜxþðN=2Þ�i ¼ 1, while for odd N, the ground state is
the antisymmetric superposition with heiπ½â†âþŜxþðN=2Þ�i ¼
−1. In this weak-field regime, the spins exhibit ferromag-
netic order, characterized by the nonzero value of the
order parameter jŜzj, while the phonon mode acquires a
macroscopic expectation value equal to jα0j2, where
α0 ¼ g0

ffiffiffiffi
N

p
=ð2δÞ. The low-lying excitations correspond

to displaced Fock states, jψS
n>0;N=2i, if δ2 < g20 and to spin-

flips along ẑ, jψS
0;M<N=2i, if δ2 > g20.

Slow quench dynamics.—At the start of the experimental
sequence (see Fig. 1), we prepare the initial spin state
j−N=2ix with the aid of a resonant microwave pulse.
Doppler-limited cooling of the phonon d.o.f. leads to an
initial transverse phonon thermal state with mean

(a)

(b)

FIG. 1. Implementation and dynamical protocol. (a) The Dicke
model is engineered with a Penning trap ion crystal of N ∼ 70
ions by applying an optical dipole force, resonant only with the
center of mass mode (which generates spin-phonon interactions)
and resonant microwaves (which generate the transverse field).
The system is initially prepared in the normal phase where all the
spins point along the transverse field and are decoupled from the
phonons. (b) As the transverse field is slowly turned off [using
linear or exponential ramp (shown here) profiles with ramp time
τramp] the infinite system enters the superradiant phase after
crossing the quantum critical point at BðtcritÞ ¼ Bc where the gap
closes. The superradiant phase with macroscopic phonon pop-
ulation, ferromagnetically aligned spins and large spin-phonon
entanglement is described by the order parameter hðâþ â†ÞŜzi,
which is tracked closely by the rescaled spin observable
jα0jhjŜzji. (c) In the perfectly adiabatic regime, the ground state
evolves from a separable spin-paramagnetic and vacuum photon
Fock state into a macroscopic spin-phonon cat state: a super-
position of two opposite spin aligned and displaced-coherent
phonon states (with the sign of the superposition dictated by a
parity symmetry, see Supplemental Material [35]).

PHYSICAL REVIEW LETTERS 121, 040503 (2018)

040503-2



occupation n̄ ∼ 6. For these parameters, the system starts in
the normal phase close to the ground state. The transverse
field is then quenched to zero (while the spin-phonon
coupling and detuning are held constant) according to two
different profiles: (i) Linear (LIN): BðtÞ ¼ B0ð1 − t=τrampÞ,
and (ii) Exponential (EXP): BðtÞ ¼ B0e−t=τ. We set τramp ¼
2 ms and τ ≈ 600 μs.
To characterize the performance of the simulator and the

entrance into the superradiant phase, we experimentally
measure the full spin distribution along the z direction
(Fig. 2) by determining the global ion fluorescence scat-
tered from the Doppler cooling laser on the cycling
transition for ions in j↑iz [16,17,36,37]. For repeated
experimental trials, we infer the state populations, N↑

and N↓ and calculate the spin-projection Mz≡N↑−N=2
for each experimental shot by counting the total number of
photons collected on a photomultiplier tube in a detection
period, typically 5 ms. Off-resonant light scattering from
the ODF lasers is our main source of decoherence domi-
nated by single-particle dephasing at a rate Γel [46].
As noted above, the experimental implementation and

corresponding numerical simulations were carried out with
N ≈ 70 atoms. However, a well-defined crossover between
the normal and superradiant phases, signaled by a well-
defined minimum in the energy gap between the ground
and excited states of the same parity sector [see Fig. 1(b)],
appears for crystals larger than N ≳ 5 (see Supplemental
Material [35]).
Our theory-experiment comparisons are based on

numerical solutions of the Dicke model dynamics com-
bined with thermal averaging. If decoherence is neglected,
the spin d.o.f. is constrained to the S ¼ N=2 manifold.
In this reduced Hilbert space, we can exactly treat the
quantum dynamics. While for the non-negligible thermal

phonon occupation in this experiment, a classical treatment
of the dynamics is sufficient to reproduce the measured
observables, a complete formulation of the quantum
dynamics becomes necessary for colder conditions, when
thermal fluctuations are insufficient to drive dynamics, and
instead, quantum correlations must be properly accounted
for. We observe good qualitative agreement between the
experimental spin probability distribution and the theoreti-
cally computed unitary dynamics as shown in Figs. 2(a)
and 2(b). In particular, both show a clear transition to a
bimodal structure as the field strength is ramped down
through Bc (indicated by the black vertical line in each
plot), with some “smearing” due to the thermal occupation
of the phonons.
To quantitatively determine the performance of the

simulator, we plot the evolution of the effective order
parameter hjŜzji=N (experimental values are extracted from
the measured distribution) in Fig. 2(c), which clearly builds
up as one crosses Bc. The transition is not abrupt, and
instead, exhibits small amplitude oscillations, most clearly
evident in the theoretical calculations, which reflect the
active role of the phonons given our initial finite thermal
phonon occupation. In particular, our numerical simula-
tions show a dependence of the oscillation amplitude on
the initial phonon occupation (see Supplemental Material
[35]). However, the frequency of the phonon oscillations is
difficult to determine and interpret, as it depends on the
complex interplay between the magnitude of the initial
phonon occupation and the changing transverse field.
We contrast this behavior with the case when the phonons
can be adiabatically eliminated and realize an effective
spin Lipkin model (LM), ĤLM=ℏ ¼ ðJ=NÞŜ2z þ BðtÞŜx
where J ¼ g20=δ. The Lipkin model dynamics features
a sharper increase in magnetization after the critical

(a) (b) (c) (d) (e)

FIG. 2. Benchmarking the simulator: Column (a) shows the experimentally measured distribution function along z, and (b) the
corresponding theoretical simulations neglecting decoherence. Column (c) shows the corresponding mean values of the magnetization
hjŜzji, (d) spin projection hŜxi, and (e) Csp−ph ≡ hðâþ â†ÞŜyi. The filled circles are experimental measurements (statistical error is on
the order of marker size), the colored solid and black dashed lines are the theory results without and with dephasing [the latter curve
is absent in panel (c) as the z magnetization is less sensitive to this dominant source of decoherence] and the colored dotted lines are
the Lipkin model results. We indicate the time at which Bc is reached in each ramp by a vertical line. The initial field is
Bðt ¼ 0Þ=ð2πÞ ≈ 7.1 kHz, g0=ð2πÞ ≈ 1.32 kHz, δ=ð2πÞ ¼ −1 kHz, and J=ð2πÞ ¼ 1.75 kHz. Respective ion numbers areN ¼ 68 [EXP
—row (i)] and N ¼ 69 [LIN—row (ii)].
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point, and significant disagreement with the experimental
observations.
To further benchmark the simulator, we carry out similar

measurements of the spin distribution along the x direction,
extracted by applying a global π=2 pulse before the
fluorescence measurement. Figure 2(d) shows the mean-
value of the spin projection hŜxi. We observe x depolari-
zation as the system exits the normal phase. The Lipkin
model dynamics also exhibits a sharper depolarization
across Bc than the one seen in the experiment. In this
case, however, we do observe deviations between the
experiment and the ideal theory. The reason is that, unlike
the z magnetization, this observable is strongly affected by
dephasing. Since treating the full spin-boson system in the
presence of decoherence is computationally challenging,
we model the effect of dephasing as hŜxi → hŜxie−Γt and
hŜzi → hŜzi where Γ ¼ Γel=2, which is asymptotically
valid in the B ≫ Bc and B ≪ Bc limits [47]. We can
determine Γel experimentally when B ¼ 0, and we find
Γel ≈ 120 s−1. However, at large B, most clearly evidenced
in the LIN protocol, the demagnetization is faster than this
estimate and is consistent with Γel ¼ 280 s−1 [48]. For both
ramps, we observe excellent agreement to the experiment
when dephasing is accounted for.
Although measuring the phonon population might be

possible following the protocol reported in Ref. [49],
instead, we infer the buildup of spin-phonon correlations
from the time evolution of the spin observable hŜxi.
Specifically, we assume the dynamics of the system are
captured by the Lindblad master equation for the density
matrix of the spin-phonon system ρ̂,

dρ̂
dt

¼ −
i
ℏ
½ĤDicke; ρ̂� þ Γel

2

XN
i¼1

ðσ̂zi ρ̂σ̂zi − ρ̂Þ; ð2Þ

where single-particle dephasing is taken to be the dominant
decoherence mechanism. From the master equation, we
derive the equation of motion ðd=dtÞhŜxi, and rearrange to
obtain the relation (see Supplemental Material [35])

Csp−ph ≡ hðâþ â†ÞŜyi≡
ffiffiffiffi
N

p

g0

�
ΓelhŜxi þ

d
dt

hŜxi
�
: ð3Þ

We extract the spin-phonon correlation from the exper-
imental data by evaluating the rhs of the above expression,
and calculating the time-derivative numerically with a one-
sided derivative. The results are plotted in Fig. 2(e). We
use the same value of Γel as in Fig. 2(d). The results are
compared with a theoretical calculation of Csp−ph [again
modeling dephasing using hŜxiΓ ≡ hŜxiΓ¼0e

−Γt]. In prin-
ciple, the correlator vanishes when evaluated for the ground
state at any field strength. However, for these slow
quenches, it acquires a finite value, which, in particular,
grows in the superradiant phase due to population of

excited states. This is attributable due to diabatic excita-
tions created during the ramping protocol or the initial
thermal phonon ensemble. Thus, while the correlation
Csp−ph shows similar dynamical features observed in the
other observables, it gives an alternative insight into the
excitations created during the ramp.
While we have used the two ramp profiles to benchmark

the experiment, we note that the EXP ramp has more utility
in preparing a final state close to the expected ground state
jψS

0;N=2i in the superradiant phase. For instance, the EXP
ramp produces a clearer bimodal structure in the spin
probability distribution along z, and the associated larger
mean absolute spin projection hjŜzji. Future experiments
could improve assessment of the adiabaticity of the quench
protocols by measuring any coherences present between
the different spin components, as discussed below.
Accounting for spin-phonon entanglement will be key to

properly diagnosing the generated many-body quantum
state. For example, tracing out the phonons from jψS

0;N=2i
will exponentially suppress the coherence between the
spin states j�N=2iz (see Supplemental Material [35]).
To benchmark the performance of the adiabatic dynamics,
it is then highly desirable to, first, perform a protocol to
disentangle the spins and phonons and, only after that,
characterize the state by independently measuring the spins
and the phonons without information loss.
To disentangle spin and phonons, we propose to

instantaneously quench the detuning δ → δ0 ¼ 2δ at the
end of the ramp (B → 0) and, then, let the system evolve for
a time td ¼ π=δ0. At td, the phonons are coherently
displaced by −g0

ffiffiffiffi
N

p
=ð2jδjÞhSzi back to the origin, while

the spins only acquire an irrelevant global phase [41].
The resulting disentangled state ideally becomes
ð1= ffiffiffi

2
p Þ½jþα0;0ijþN=2izþj−α0;0ij−N=2iz�→ð1= ffiffiffi

2
p Þj0i⊗

½jþN=2izþj−N=2iz� which has maximal spin coherence.
Summary and discussion.—We have reported the exper-

imental realization of a simulator of the Dicke model with
a 2D ion crystal of ∼70 ions and verified its dynamics
through extensive theory-experiment comparisons. Our
trapped-ion simulator provides a complementary approach
to related realizations in cold atoms [6–8], which is a key
step in benchmarking quantum simulators which go
beyond the capacity of classical computation. Our reali-
zation of a many-ion simulator of the Dicke model also
paves the way for future investigation of dynamical phase
transitions [20,21], quantum chaos, and fast scrambling via
out-of-time order correlation measurements [17,50–53].
Moreover, the tunability of the trapped-ion setup opens
the possibility of investigating more general spin-boson
models [54], in particular, by operating beyond the uniform
coupling regime or the preparation of states outside the
fully symmetric Dicke manifold.
The slow quench protocols demonstrated above present a

path to generate highly entangled states useful for quantum
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enhanced metrology [55,56]. Cat states are a useful
metrological resource as they are composed of a coherent
superposition of states that are macroscopically displaced
in phase space, leading to quantum-enhanced phase sensi-
tivity up to the Heisenberg limit [57,58]. In particular, the
spin-boson cat state jψS

0;N=2i would be a metrological
resource for sensing collective spin rotations [57], motional
rotation [24,59], and coherent displacements for force
sensing applications [60]. This could be achieved by using
smaller systems (e.g., N ∼ 20), reducing the initial thermal
population of the phonon mode, and shifting the detuning δ
away from Bc, which increases the minimum energy gap
at the critical point, and consequently, the characteristic
timescale to remain adiabatic (see Supplemental Material
[35]). We expect this regime will be accessible in the near
term future in part due to the successful implementation of
electromagnetic induced transparency cooling [61].

The authors acknowledge fruitful discussions with J.
Marino, M. Holland, and K. Lehnert. A. M. R. acknowl-
edges support from the Defense Advanced Research
Projects Agency (DARPA) and the Army Research
Office Grant No. W911NF-16-1-0576, NSF Grant
No. PHY1521080, JILA-NSF Grant No. PFC-173400,
and the Air Force Office of Scientific Research and its
Multidisciplinary University Research Initiative Grant
No. FA9550-13-1-0086. M. G. acknowledges support from
the DFG Collaborative Research Center Grant
No. SFB1225 (ISOQUANT). J. E. J. also acknowledges
support from the Leopoldina Research Fellowship, German
National Academy of Sciences Grant No. LPDS 2016-15.
J. K. F. and J. C. acknowledge support from NSF Grant
No. PHYS-1620555. In addition, J. K. F. acknowledges
support from the McDevitt bequest at Georgetown.
Financial support from NIST is also acknowledged.

A. S.-N. and R. J. L.-S. contributed equally to this
research.

[1] I. D. Leroux, M. H. Schleier-Smith, and V. Vuletić, Phys.
Rev. Lett. 104, 073602 (2010).

[2] O. Hosten, R. Krishnakumar, N. J. Engelsen, and M. A.
Kasevich, Science 352, 1552 (2016).

[3] H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger,
Rev. Mod. Phys. 85, 553 (2013).

[4] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger,
Nature (London) 464, 1301 (2010).

[5] F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and
T. Esslinger, Nature (London) 450, 268 (2007).

[6] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger,
Nature (London) 464, 1301 (2010).

[7] K. Baumann, R. Mottl, F. Brennecke, and T. Esslinger,
Phys. Rev. Lett. 107, 140402 (2011).

[8] J.Klinder,H.Keler,M.Wolke, L.Mathey, andA.Hemmerich,
Proc. Natl. Acad. Sci. U.S.A. 112, 3290 (2015).

[9] D. Porras and J. I. Cirac, Phys. Rev. Lett. 92, 207901 (2004).

[10] K. Kim, M.-S. Chang, R. Islam, S. Korenblit, L.-M. Duan,
and C. Monroe, Phys. Rev. Lett. 103, 120502 (2009).

[11] R. Blatt and C. F. Roos, Nat. Phys. 8, 277 (2012).
[12] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R.

Blatt, and C. F. Roos, Nature (London) 511, 202 (2014).
[13] C. Senko, P. Richerme, J. Smith, A. Lee, I. Cohen, A.

Retzker, and C. Monroe, Phys. Rev. X 5, 021026
(2015).

[14] P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M.
Foss-Feig, S. Michalakis, A. V. Gorshkov, and C. Monroe,
Nature (London) 511, 198 (2014).

[15] R. Islam, E. E. Edwards, K. Kim, S. Korenblit, C. Noh, H.
Carmichael, G.-D. Lin, L.-M. Duan, C.-C. J. Wang, J. K.
Freericks, and C. Monroe, Nat. Commun. 2, 377 (2011).

[16] J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall, A. M.
Rey, M. Foss-Feig, and J. J. Bollinger, Science 352, 1297
(2016).

[17] M. Gärttner, J. G. Bohnet, A. Safavi-Naini, M. L. Wall, J. J.
Bollinger, and A. M. Rey, Nat. Phys. 13, 781 (2017).

[18] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P.
Hauke, M. Heyl, D. A. Huse, and C. Monroe, Nat. Phys. 12,
907 (2016).

[19] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee,
J. Smith, G. Pagano, I. D. Potirniche, A. C. Potter, A.
Vishwanath, N. Y. Yao, and C. Monroe, Nature (London)
543, 217 (2017).

[20] P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C.
Hempel, B. P. Lanyon, M. Heyl, R. Blatt, and C. F. Roos,
Phys. Rev. Lett. 119, 080501 (2017).

[21] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker,
H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and C. Monroe,
Nature (London) 551, 601 (2017).

[22] J. S. Pedernales, I. Lizuain, S. Felicetti, G. Romero, L.
Lamata, and E. Solano, Sci. Rep. 5, 15472 (2015).

[23] D. Lv, S. An, Z. Liu, J.-N. Zhang, J. S. Pedernales, L.
Lamata, E. Solano, and K. Kim, Phys. Rev. X 8, 021027
(2018).

[24] K. G. Johnson, J. D. Wong-Campos, B. Neyenhuis, J.
Mizrahi, and C. Monroe, Nat. Commun. 8, 697 (2017).

[25] D. Kienzler, C. Flühmann, V. Negnevitsky, H.-Y. Lo, M.
Marinelli, D. Nadlinger, and J. P. Home, Phys. Rev. Lett.
116, 140402 (2016).

[26] C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland,
Science 272, 1131 (1996).

[27] K. Toyoda, R. Hiji, A. Noguchi, and S. Urabe, Nature
(London) 527, 74 (2015).

[28] S. Debnath, N. M. Linke, S.-T. Wang, C. Figgatt, K. A.
Landsman, L.-M. Duan, and C. Monroe, Phys. Rev. Lett.
120, 073001 (2018).

[29] J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys.
73, 565 (2001).

[30] I. Aedo and L. Lamata, Phys. Rev. A 97, 042317 (2018).
[31] A. Altland and F. Haake, Phys. Rev. Lett. 108, 073601

(2012).
[32] J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen,

S. Filipp, P. J. Leek, A. Blais, and A. Wallraff, Phys. Rev.
Lett. 103, 083601 (2009).

[33] Z. Zhiqiang, C. Hui Lee, R. Kumar, K. J. Arnold, S. J.
Masson, A. S. Parkins, and M. D. Barrett, Optica 4, 424
(2017).

PHYSICAL REVIEW LETTERS 121, 040503 (2018)

040503-5

https://doi.org/10.1103/PhysRevLett.104.073602
https://doi.org/10.1103/PhysRevLett.104.073602
https://doi.org/10.1126/science.aaf3397
https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1038/nature09009
https://doi.org/10.1038/nature06120
https://doi.org/10.1038/nature09009
https://doi.org/10.1103/PhysRevLett.107.140402
https://doi.org/10.1073/pnas.1417132112
https://doi.org/10.1103/PhysRevLett.92.207901
https://doi.org/10.1103/PhysRevLett.103.120502
https://doi.org/10.1038/nphys2252
https://doi.org/10.1038/nature13461
https://doi.org/10.1103/PhysRevX.5.021026
https://doi.org/10.1103/PhysRevX.5.021026
https://doi.org/10.1038/nature13450
https://doi.org/10.1038/ncomms1374
https://doi.org/10.1126/science.aad9958
https://doi.org/10.1126/science.aad9958
https://doi.org/10.1038/nphys4119
https://doi.org/10.1038/nphys3783
https://doi.org/10.1038/nphys3783
https://doi.org/10.1038/nature21413
https://doi.org/10.1038/nature21413
https://doi.org/10.1103/PhysRevLett.119.080501
https://doi.org/10.1038/nature24654
https://doi.org/10.1038/srep15472
https://doi.org/10.1103/PhysRevX.8.021027
https://doi.org/10.1103/PhysRevX.8.021027
https://doi.org/10.1038/s41467-017-00682-6
https://doi.org/10.1103/PhysRevLett.116.140402
https://doi.org/10.1103/PhysRevLett.116.140402
https://doi.org/10.1126/science.272.5265.1131
https://doi.org/10.1038/nature15735
https://doi.org/10.1038/nature15735
https://doi.org/10.1103/PhysRevLett.120.073001
https://doi.org/10.1103/PhysRevLett.120.073001
https://doi.org/10.1103/RevModPhys.73.565
https://doi.org/10.1103/RevModPhys.73.565
https://doi.org/10.1103/PhysRevA.97.042317
https://doi.org/10.1103/PhysRevLett.108.073601
https://doi.org/10.1103/PhysRevLett.108.073601
https://doi.org/10.1103/PhysRevLett.103.083601
https://doi.org/10.1103/PhysRevLett.103.083601
https://doi.org/10.1364/OPTICA.4.000424
https://doi.org/10.1364/OPTICA.4.000424


[34] Z. Zhiqiang, C. Hui Lee, R. Kumar, K. J. Arnold, S. J.
Masson, A. L. Grimsmo, A. S. Parkins, and M. D. Barrett,
Phys. Rev. A 97, 043858 (2018).

[35] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.121.040503 for details
of calculation and experiment.

[36] B. C. Sawyer, J. W. Britton, A. C. Keith, C.-C. Joseph
Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J.
Bollinger, Phys. Rev. Lett. 108, 213003 (2012).

[37] M. J. Biercuk, H. Uys, A. P. Vandevender, N. Shiga, W.M.
Itano, and J. J. Bollinger, Quantum Inf. Comput. 9, 920
(2009).

[38] C.-C. Joseph Wang, A. C. Keith, and J. K. Freericks, Phys.
Rev. A 87, 013422 (2013).

[39] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[40] B. M. Garraway, Phil. Trans. R. Soc. A 369, 1137 (2011).
[41] M. L. Wall, A. Safavi-Naini, and A.M. Rey, Phys. Rev. A

95, 013602 (2017).
[42] C. Emary and T. Brandes, Phys. Rev. Lett. 90, 044101

(2003).
[43] C. Emary and T. Brandes, Phys. Rev. E 67, 066203 (2003).
[44] P. A. Ivanov and D. Porras, Phys. Rev. A 88, 023803 (2013).
[45] A. Wunsche, Quantum Opt. 3, 359 (1991).
[46] H. Uys, M. J. Biercuk, A. P. VanDevender, C. Ospelkaus,

D. Meiser, R. Ozeri, and J. J. Bollinger, Phys. Rev. Lett.
105, 200401 (2010).

[47] S. F.Huelga,C.Macchiavello, T. Pellizzari,A. K.Ekert,M. B.
Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865 (1997).

[48] This dephasing could be a result of the experimental system
going beyond the Lamb-Dicke regime, which is implicitly
assumed in the derivation of the Dicke Hamiltonian,
Eq. (1).

[49] K. A. Gilmore, J. G. Bohnet, B. C. Sawyer, J. W. Britton,
and J. J. Bollinger, Phys. Rev. Lett. 118, 263602
(2017).

[50] S. H. Shenker and D. Stanford, J. High Energy Phys. 03
(2014) 67.

[51] A. Kitaev, in Proceedings of the Fundamental Physics Prize
Symposium, 2014 (unpublished).

[52] J. Maldacena, S. H. Shenker, and D. Stanford, J. High
Energy Phys. 08 (2016) 106.

[53] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden,
Phys. Rev. A 94, 040302 (2016).

[54] A. Shankar, J. Cooper, J. G. Bohnet, J. J. Bollinger, and M.
Holland, Phys. Rev. A 95, 033423 (2017).

[55] P. Feldmann, M. Gessner, M. Gabbrielli, C. Klempt, L.
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I. FINITE SIZE EFFECTS IN OBSERVING THE
PHASE TRANSITION

The quantum phase transition of the Dicke model only
truly emerges in the thermodynamic limit N →∞ [1, 2].
It is thus important to consider the relevance of finite
size effects, specifically pertaining to the number of ions
N and thus the collective spin length S = N/2.

In this spirit, we plot the order parameter 〈(â+ â†)Ŝz〉
and energy gap ∆ between the ground-state and excited
state in the same parity sector, for various ion numbers
in Fig. 1 and as a function of transverse field strength
B. A minimum in the energy gap, as a function of B,
emerges for N & 5. This minimum is associated with the
crossover between the normal and superradiant phase,
and thus we predict that features of the crossover should
be observable for N & 5. This is consistent with the
increasingly sharp transition observable in the order pa-
rameter for N & 5. Similarly, calculation of the spin
observables |Sz| and Sx from dynamical ramps [plotted
as a function of B(t), parameters taken as per Fig. 2b
of the manuscript], indicate that the crossover between
normal and superradiant phases is evident for N & 5,
which is easily satisfied by the experimentally considered
crystal of N ∼ 70.

II. EFFECT OF THE RESONANCE ON THE
ENERGY GAP

As discussed in the main text, the Dicke Hamiltonian
features a spin-boson resonance at B = |δ|. At this field
strength, the states |m〉|−N/2〉x and |m−k〉|−N/2+k〉x,
with k a positive integer, become nearly degenerate and
can be resonantly coupled. The location of this res-
onance, relative to the critical field strength Bc, can
greatly affect the energy spectrum of the Dicke model
and in particular the magnitude of the energy gap ∆ be-
tween the ground-state and excited states in the same
parity sector. In this context, we can separate the effects

∗ These two authors contributed equally

of the resonance into two cases, defined by the relative
position of the resonance to the critical field strength:

• Case (i): |δ| � Bc. In this regime the resonance
B ' |δ| is well separated from the critical point.
The ground-state |ψNor

0,N/2〉 = |0〉| − N/2〉x is de-

coupled from other states at resonance. Thus, the
dynamics can be affected by resonant couplings to
other states (as above) only if excited states have
become occupied throughout the quench.

• Case (ii): |δ| ∼ Bc. If the resonance is in the prox-
imity of the quantum critical point then the low-
lying excitations near the critical point of the Dicke
Hamiltonian are non-trivial superpositions of spin
and phonon excitations. A radical consequence of
this complex interplay is the relative reduction of
the energy gap between the ground and the first ex-
cited states of the same parity at the critical point.
We illustrate this in Fig. 2 as a function of detun-
ing δ, with the spin-phonon coupling g0 scaled such
that the critical field strength Bc = g2

0/δ is held
fixed.

III. ADDITIONAL SEQUENCE TO
DISENTANGLE THE SPIN CAT-STATE

In the main text, we briefly outline a procedure to dis-
entangle the pure spin-cat state from adiabatic prepara-
tion of the ground-state of the Dicke Hamiltonian. Here,
we expand upon this discussion and give the appropriate
details to verify this step.

In the weak-field limit, B � Bc, the ground-state of
the Dicke Hamiltonian is the spin-phonon cat-state:

|ψS0,N/2〉 =
1√
2

(
|α0, 0〉|N/2〉z±|−α0, 0〉|−N/2〉z

)
, (1)

where α0 = g0

√
N/(2δ). Without loss of generality we

fix the sign of the superposition due to conservation of
the spin-phonon parity symmetry, which dictates that
the positive superposition is prepared by an adiabatic
quench from the strong-field ground-state |ψNor

0,N/2〉.
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superradiant phases. The energy gap at the critical point
eventually saturates to a maximum value ∆Emax

gap .

The choice of the sign in the superposition state Eq. (1)
is dictated by the spin-phonon parity symmetry of the
Dicke Hamiltonian. Specifically, Ĥ is preserved under the
simultaneous transformation of Ŝz → −Ŝz, Ŝy → −Ŝy
and â → −â, and the associated conserved quantity
of the Hamiltonian is the generator of the symmetry

Π̂ ≡ eiπ(â†â+Ŝx+ N
2 ). This symmetry dictates that when

ramping from high to low field, the state |ψNor0,N/2〉 will

adiabatically connect to the superposition |ψS0,N/2〉, to

conserve the parity 〈Π̂〉 = eiπN . Specifically, for even
N the ground-state will be the symmetric superposition
with 〈Π̂〉 = 1, whilst for odd N the ground-state is the

anti-symmetric superposition with 〈Π̂〉 = −1. Without
loss of generality, we assume for the following that N is
even and thus we fix the sign of the superposition to be
positive.

Since the spin and phonon degrees of freedom are en-
tangled in the ground-state [Eq. (1)], the state obtained
by tracing over the phonon degree of freedom is charac-
terized by the reduced density operator

ρ̂s =
1

2

[
|N/2〉z〈N/2|z + | −N/2〉z〈−N/2|z

]
+
e−|α0|2

2

[
| −N/2〉z〈N/2|z + |N/2〉z〈−N/2|z

]
.

As the displacement amplitude |α0| is increased, the re-
duced density matrix exponentially loses any informa-
tion about the coherences which are exhibited in the
spin-phonon superposition state. As a concrete exam-
ple, the ground-states of the main text typically have
a mean phonon occupation |α0|2 ∼ 2–30 depending on
the chosen parameters (i.e., detuning and spin-phonon

coupling), leading to e−|α0|2 . 0.1. To fully probe the
available coherences via only the spin degree of freedom,
we must first transform Eq. (1) to a spin and phonon



3

product state,

|ψSB〉 = |φ〉 ⊗ 1√
2

(
|N/2〉z + | −N/2〉z

)
, (2)

where |φ〉 is some arbitrary state characterizing the
phonon degree of freedom.

A possible procedure to achieve this decomposition is
the following: At the conclusion of the ramp protocol, we
fix the transverse field at B = 0 and quench the detuning
δ → δ′ = 2δ. The spin-phonon state is then allowed to
evolve for a duration td = π/δ′. In the interaction pic-
ture, the initial spin-phonon superposition state evolves
as

|ψSB〉 = Û(t)|ψS0,N/2〉, (3)

where

Û(t) = ÛSB(t)ÛSS(t), (4)

ÛSS(t) = exp

(
−i J
N
Ŝ2
z t

)
, (5)

ÛSB(t) = D̂(β(t, δ′)Sz). (6)

Here, Û(t) is the propagator corresponding to the Dicke
Hamiltonian with B = 0 [Eq. 1 of the main text]. The
propagator is comprised of two parts, the spin-spin prop-
agator ÛSS(t) and the spin-phonon propagator ÛSP(t)

where β(t, δ) = −g0(1 − e−iδt)/(2δ
√
N) (see [3] for a

more detailed discussion).
If at the end of the ramp we quench the detuning to

δ′ = 2δ and apply Û(t) for td = π/δ′, such that β(td, δ
′) =

−gN/(2δ), it is then clear that ÛSB will displace the
phonon coherent states (in a direction dependent on the
sign of the Sz component) back to vacuum, | ± α0, 0〉 →
|0〉. We illustrate this displacement in Fig. 3. Note that

the action of ÛSS on the spin component of the ground-
state imprints an irrelevant global phase ϕ = JNtd/2 on
the decoupled state Eq. (2).

An alternative, but closely related, procedure to disen-
tangle the spin-phonon state is to drive the spin-phonon
coupling on resonance, δ → δ′ = 0. In this case, one
must shift the phase of the drive by π/2 such that the

spin-phonon coupling transforms as g0√
N

(â + â†)Ŝz →
ig0√
N

(â − â†)Ŝz, and subsequently evolve the system for

a duration td = 1/|δ|. Following this procedure results
in a spin-dependent coherent displacement of the phonon
state back to vacuum, | ± α0, 0〉 → |0〉, in a manner sim-
ilar to the previously discussed protocol.

We make one further point regarding the disentangling
protocols. In the experimental system we generally char-
acterize the initial state of the phonons as a thermal en-
semble ρ̂n̄ while the spin-degree of freedom is prepared
in a pure state, such that the initial spin-phonon state
is ρ̂SB(0) = ρ̂n̄ ⊗ | − N/2〉x〈−N/2|x. If the protocol is
adiabatic and there is no coupling between the excited
energy levels, then not only is the ground-state compo-
nent of this initial ensemble mapped to the weak-field

x x
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FIG. 3. Schematic of the disentangling protocol to extract
a pure spin cat-state from the spin-phonon ground-state
|ψS

0,N/2〉. At the end of the ramp, we quench the detuning
δ → 2δ and evolve the system for an additional duration
td = π/|2δ| at fixed B = 0. The phonon states start at
opposing coherent amplitudes and undergo a spin-dependent
coherent displacement which maps them to the phonon vac-
uum state.

ground-state of the Dicke Hamiltonian, but the excited
fraction due to the thermal distribution is also mapped
identically. This implies that the final state at the end of
the ramp protocol will be a mixture of the true ground-
state and the low-lying excitations, which, if δ2 < g2N ,
can be characterised as displaced Fock states | ± α0, n〉
where n corresponds to the number of phonon excitations
above the true ground-state.

The action of this protocol on these states is to identi-
cally displace the phonon state such that |±α0, n〉 → |n〉.
This maps the spin-phonon excited states to the form of
a product state identical to Eq. (2). Hence, tracing the
phonons out of these excited states also recovers the spin
cat-state.

IV. QUALITATIVE EFFECTS OF INITIAL
PHONON OCCUPATION

In the main text we comment that the oscillations in
the spin observable 〈|Ŝz|〉 at short times is an indica-
tion of a non-negligible initial thermal occupation of the
phonon mode (Fig. 2 of main text). Here, we support
this conclusion by comparing results of theoretical calcu-
lations with different initial phonon occupation. Taking
relevant parameters as per Fig. 2 of the main text and
considering only the EXP ramp for simplicity, we plot
the theoretical results for evolution of 〈|Ŝz|〉 in Fig. 4.
We observe that if the phonons are taken to be initially
in a vacuum state, the short time dynamics displays only
extremely weak signs of oscillations. In contrast, when
the phonons are taken to be initially described by a ther-
mal ensemble with mean occupation n̄ = 3-9 there are
signficant oscillations at short-times, consistent with the
observed experimental data. Moreover, the final magne-
tization at the conclusion of the ramp protocol is much
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FIG. 4. Comparison of magnetization 〈|Ŝz|〉 from experimen-
tal data and theoretical calculations for different initial ther-
mal occupation 〈â†â〉 = n̄ of the phonon mode. The ampli-
tude of the oscillations at t . 1 clearly increase with n̄, whilst
the frequency appears to remain comparitively fixed. Data
is for an EXP ramp, with all other parameters taken as per
Fig. 2b of the manuscript.

larger than that predicted from the vacuum case. The
various values of n̄ plotted give relatively similar agree-
ment with the experimental data. However, n̄ = 6 is
chosen in the main text as this is consistent with the
estimated limit from Doppler cooling in the experiment.

V. INFERENCE OF SPIN-PHONON
CORRELATIONS

As detailed in the main text, we infer the presence
of spin-phonon correlations from the time evolution of
the spin observable 〈Ŝx〉. Specifically, starting from the
Lindblad master equation for the density matrix of the
spin-phonon system ρ̂,

dρ̂

dt
= − i

~

[
ĤDicke, ρ̂

]
+

Γel
2

N∑
i=1

(σ̂zi ρ̂σ̂
z
i − ρ̂) , (7)

wherein we have assumed single-particle dephasing is the
dominant decoherence mechanism, it then follows that

d〈Ŝx〉
dt

=
g0√
N
〈
(
â+ â†

)
Ŝy〉 − Γel〈Ŝx〉. (8)

From here it is straightforward to rearrange for the rela-
tion between the spin-phonon correlation and the evolu-
tion of 〈Ŝx〉:

Csp−ph ≡ 〈
(
â+ â†

)
Ŝy〉 =

√
N

g0

(
Γel〈Ŝx〉+

d〈Ŝx〉
dt

)
.

(9)
We emphasize that evaluation of this spin-phonon

correlation directly from either ground-state |ψNor
0,N/2〉

|ψS0,N/2〉 yields Csp−ph = 0, and this result has been con-

firmed numerically for all transverse field strengths B
for the systems considered in the main text. This di-
rectly implies that the finite value reported in the main
text is due to contributions from excited states. Such
contributions may come from diabatic excitations cre-
ated throughout the ramping protocol or from the initial
thermal phonon ensemble.

In the main text, we extract the spin-phonon cor-
relation from the experimental data using the RHS of
Eq. (9) and evaluating the time-derivative numerically
with a one-sided derivative. We model dephasing using
〈Ŝx〉Γ = 〈Ŝx〉Γ=0e

−Γt in our theoretical calculations, and
extract the theoretically predicted spin-phonon correla-
tion in an identical manner.

VI. EXPERIMENTAL OPTIMISATION OF
RAMP PROTOCOLS

To experimentally optimize the ramp protocols demon-
strated in this work, we chose to optimize with respect
to the total magnetization 〈|Ŝz|〉 at the end of the ramp.
For the EXP ramp, we compared approximately 20 dif-
ferent ramp profiles that utilized different exponential de-
cay rates. Specifically, we would perform an experiment
where the effective transverse field was ramped from the
initial field B(t = 0) at a fixed decay rate to B ≈ 0, where
we then measured the spin-projection M exp

z along the ẑ-
axis. This experiment was repeated, typically 500− 700
times, to gather statistics on the resulting distribution
and obtain a measurement of 〈|Ŝz|〉 from the histogram of
M exp
z measurements. We then picked a ramp profile with

a different exponential decay rate, and repeated this pro-
cedure. After identifying the exponential decay rate that
optimized the final magnetization 〈|Ŝz|〉, we performed
experiments that measured the magnetization distribu-
tion P (M exp

z ) when stopping the ramp at different times,
as discussed in the main text.

When performing these ramp sequences and observing
the distributions of M exp

z , in some cases the distributions
would be biased to positive or negative spin-projection.
This can be observed in the distribution of Fig. 5(a) at
zero offset frequency. Such an effect can be explained
by a small longitudinal magnetic field that breaks the
symmetry of the ground state. The small longitudinal
field was likely due to imperfect nulling of the Stark shift
from the off-resonant laser beams that generate the spin-
dependent force [4]. We would observe that this effect
varies day to day. To compensate for this effect, during
the ramp we would apply a small frequency offset to the
microwaves that provided the effective transverse field.
For each frequency offset, we would measure the distribu-
tion of measurements M exp

z at the end of the transverse
field ramp as shown in Fig. 5(a). For the appropriate
offset, the distribution would be balanced, with large,
separated peaks at positive and negative values of M exp

z .

To choose the optimum, we plot 〈Ŝz〉 as a function of the
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FIG. 5. Balancing the P (Mexp
z ) distributions. (a) P (Mexp

z )
distribution functions extracted from experimental measure-
ments of the spin-projection Mexp

z at the end of an EXP ramp
of the transverse magnetic field to zero. The distribution
functions are plotted as a function of frequency offset of the
microwaves that generate the effective transverse magnetic
field from the spin-flip resonance in the absence of the spin-
dependent force. (b) Plot of the average magnetization 〈Ŝz〉
from (a) as a function of the microwave offset frequency. An
offset frequency that balanced the distributions at the end of
the ramping sequence, defined by 〈Ŝz〉, was used in studies
described in the main text that measured the spin-projection
distribution when stopping the ramp at different times.

frequency offset and extract the zero crossing, as shown
in Fig. 5(b).
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