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Semicrystalline polymer melts are commonly used in material extrusion (MatEx)
for 3D printing. Although flows have a profound effect on polymer crystallization,
the relationship between typical MatEx deformation rates and printed-part crystal
morphology is yet to be understood. Here, MatEx is used to print a wall of
polylactic acid filaments. The linear rheology and quiescent crystallization kinetics
are characterized, infrared imaging is used to measure temperature variations
during the MatEx process, and optical microscopy is employed to determine the
resulting crystal morphology before and after a postprinting thermal annealing
process. Our flow-enhanced crystallization model demonstrates that MatEx-
induced polymer stretch leads to a higher nucleation density and greater space
filling in the weld regions between deposited filaments. Consequently, after
annealing, the weld regions feature smaller spherulites than the filament center, as
shown by optical microscopy. Finally, flow-induced crystallization is proposed as
a method to improve weld toughness.

Introduction

Material extrusion (MatEx) remains the cheapest additive manufacturing technique for printing
high-performance thermoplastics, offering advantages such as mass customization, locally controlled
properties, and streamlining of traditional methods (1). However, advanced application of MatEx
is limited by the vast variability in part properties. In particular, the mechanical strength of MatEx-
printed parts is yet to rival that of traditionally manufactured parts. Furthermore, a method to predict
strength directly from the printing conditions is lacking.

MatEx involves extrusion of molten polymer material through a nozzle onto a build plate
followed by rapid cooling and solidification. This deposition process is repeated layer by layer to
construct a three-dimensional object consisting of a number of partially welded filaments. A number
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of three-dimensional computation fluid dynamics models have recently been developed to capture
this deposition process (2–4). Gleadall et al. (5) employ a new computationally efficient method
based on volume conservation; however, temperature and non-Newtonian effects are neglected from
this approach. It has been shown that the feed velocity and temperature profile within the extruder
are correlated (6), and a method to predict temperature from the pressure drop is proposed. A review
focusing on the thermal modeling is included in the chapter titled “Thermal Modeling of Material
Extrusion Additive Manufacturing” in this book.

There are a large number of parameters that influence the part quality, such as build orientation,
layer thickness, air gap, infill density, and feed rate (7). Moreover, the interfaces between adjacent
filaments are likely to possess different material properties than the bulk of the filaments (8).
Ultimately, the strength of a printed part relies on successful interdiffusion of the polymers across
these filament–filament interfaces (9). However, the rapid cooling required for maintaining the
structural integrity of the part means that interdiffusion is arrested at the onset of the glass transition.
If the temperature of the weld reaches the glass transition temperature before a fully entangled
network has formed across the interface, then the mechanical strength of the weld will be
compromised (10).

Carefully calibrated infrared imaging has been developed to measure the temperature profile of
the weld (11), and finite-element simulation methods have been employed to overcome limitations
in spatial and temporal resolution (12). Although increasing the print temperature leads to longer
welding times and can therefore increase the mechanical strength of the weld, bulk strength is not
usually achieved (13), and the underlying reason remains unclear. Laser-assisted heating has been
proposed as a method for improving welding (14); however, this technique cannot be used optimally
without understanding the effects of temperature on the material microstructure.

Polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) are the two most-commonly
used thermoplastics in MatEx. PLA has the advantage of biodegradability, so it is ideal for biomedical
applications and, because of its lower printing temperature, is better suited to parts requiring fine
details. Unlike ABS, PLA has a semicrystalline microstructure. Thus, during cooling, the polymers
will nucleate and spherulites will grow depending on the conditions. It is suggested that interdiffusion
must precede crystallization to ensure sufficient adhesion at the weld lines (15).

Crystallinity also plays a major role in the ultimate strength of thermoplastic parts. For example,
there is a precedent for using postprinting thermal annealing to increase the crystal fraction, and
consequently the strength, of printed parts (16). Without postprocessing, the degree of crystallinity
can vary with print temperature, plate temperature, layer thickness, and even the color of the
feedstock material (17–19). Furthermore, MatEx deformation rates are expected to be sufficiently
large that the polymer molecules will become stretched and oriented during the deposition process
(20). If the polymer backbone remains stretched at the onset of nucleation, then crystallization
will be enhanced, leading to a significantly shorter crystallization time, as well as different crystal
morphologies (21, 22). Although this flow-induced crystallization (FIC) phenomenon has been
extensively investigated for traditional polymer processing methods, there is much less research
focusing on molecular deformation and FIC during MatEx. However, knowledge of how the crystal
morphology, that is, both the degree of crystallinity and spherulite size, varies throughout a part and
even throughout a single filament is crucial to understanding and ultimately controlling mechanical
properties.

Recent in-situ Raman spectroscopy experiments have shown that FIC can occur under certain
MatEx conditions for polycaprolactone (PCL) feedstock (23). A recently developed model is able to
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quantitatively predict the measured crystallization times (24) and highlights important features not
captured by a single transient measurement of crystallization. In particular, the model shows that
FIC leads to a dramatic cross-sectional variation of morphology in a single deposited filament, with
smaller spherulites forming in an outer skin layer. Since FIC is expected to increase the availability
of spherulites to form across the weld interface, therefore eliminating chain pull out as a failure
mechanism, FIC may play a role in optimizing weld strength. Thus, the integration of experiments
with accurate molecularly aware models of the crystallization process is essential to predicting part
properties directly from printing conditions.

Unlike PCL, which reaches full space filling (maximum crystallinity) under typical MatEx
conditions because of its low glass transition temperature (below room temperature), the
crystallization kinetics of PLA may be arrested by its comparatively higher glass transition. In this
chapter, we apply the previously developed model of McIlroy et al. (24) for PLA material properties
to investigate the interaction between FIC and the glass transition during MatEx printing. The model
contains only a single fitting parameter—all other parameters are derived directly from experimental
measurements of the material properties—and predicts the nucleation density profile resulting from
a combination of MatEx temperature history and flow effects. We then model a typical postprinting
thermal annealing process to investigate spherulite growth from a fixed nucleation density. For the
first time, a modeling approach for predicting the crystal morphology within an annealed MatEx-
printed filament is compared to optical microscopy images for a range of printing conditions. The
model reveals how feed rate and print temperature influence FIC during MatEx printing and appear
as “templated” crystallinity after annealing, in agreement with experimental observations.

This chapter is organized as follows. First, we describe the experimental methods employed,
including the techniques used to characterize PLA as well as the printing and imaging methodology.
Second, we summarize the FIC model presented in ref (24). The Results section comprises details
of the model parameters obtained from material characterization; the observed and predicted crystal
morphology postprinting and postannealing is then presented. Finally, we discuss the model
predictions and future directions.

Experimental Methods

Certain commercial equipment, instruments, or materials are identified in this chapter in order
to specify the experimental procedure adequately. Such identification is not intended to imply
recommendation or endorsement by the National Institute of Standards and Technology, nor is it
intended to imply that the materials or equipment identified are necessarily the best available for the
purpose.

Material Characterization

Sample

The material used is the “natural” color Premium PLA Filament (Airwolf 3D) (25). The mass
average molar mass of the sample is 103.3 ± 0.4 kg/mol with a dispersity of 1.64 ± 0.05 as measured
by gel permeation chromatography of the sample dissolved in tetrahydrofuran, measured against
polystyrene standards. Prior to material characterization and MatEx printing measurements, the
filament is dried at 60°C under vacuum for at least 12 h. Reported variation is 1 standard variation
from 3 GPC injections.
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Linear Rheology

Small-amplitude oscillatory rheology measurements are performed on a rheo-Raman
microscope (26) using an 8 mm parallel plate geometry in a nitrogen atmosphere. Filament segments
are loaded into the rheometer and pressed at 200°C to a gap of 1 mm prior to measurement. Samples
are visually inspected using the optical microscope attachment to confirm that gas bubbles are not
trapped in the polymer melt within the imaging window. Measurements are performed in the
temperature range of 140–216°C using a strain of 0.05.

Optical Microscopy

Optical imaging of isothermal crystallization processes is performed on an optical shear cell
(CSS450, Linkam). Filament sections are melted at 200°C and pressed to a nominal thickness
of 10 µm. Samples are then held for 180 s prior to cooling at a rate of 30°C/min to the desired
crystallization temperature (30°C/min was chosen as the maximum cooling rate). Polarized optical
imaging in transmission mode is performed on an Olympus BX-51 microscope using extra-long
working distance objectives.

Raman Spectroscopy

Raman spectroscopy measurements of isothermal crystallization processes are performed on
the rheo-Raman microscope. The filament is loaded at 200°C, pressed to a thickness of 0.8 mm
in parallel plate geometry, and then held for 180 s to melt the polymer prior to cooling at a rate
of 10°C/min to the desired crystallization temperature. Raman spectra are measured using a 780
nm excitation wavelength with a power of 24 mW focused onto the sample using a 10x objective.
Three exposures of 10 s each are averaged together for each recorded spectrum. The C=O stretch
region of the spectrum 1670–1850 cm−1 is analyzed using multivariate curve resolution using a
constrained alternating least squares algorithm (MCR-ALS), which has been used previously to
analyze polymer crystallization (27). The MCR-ALS algorithm is implemented in MATLAB (28)
under the assumptions that there are two principal components with nonnegative intensities in
the component spectra and nonnegative concentrations. Under these constraints, the relative
concentration of one of the components varies from 0 at early times to 1 at the end of the
crystallization process, which is identified as the relative crystallinity.

MatEx Printing and Imaging

Printing Conditions

Samples were printed on an Axiom Direct Drive Dual (AirWolf3D) using a range of
temperatures (200, 225, and 250 °C) and print speeds (10, 30, and 100 mm/s) amenable to the
PLA used in the study. The selected print speeds correspond to filament feed rates of approximately
0.23, 0.70, and 2.3 mm/s for a 2.85 mm diameter filament and 0.3-by-0.5–mm printed filament
cross section. The sample geometry is similar to previously published work on infrared thermography
(11, 13). For this work, measurements were made on samples with the following dimensions: 100
mm long (y-axis), 4.8 mm tall (z-axis, 16 layers at 0.3 mm), and 0.5 mm wide (x-axis, extruder
diameter). The sample was printed 30 mm from the left of the build plate. To prevent the sample from
detaching from the build plate during the printing process ,15 mm (y-axis) by 15 mm (x-axis) feet
were added to the start and end of the first layer. The first layer is always printed at 30 mm/s with
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125% over extrusion. Subsequent layers are printed at the described speed and always printed in the
same direction (front to back).

Infra-Red Imaging

Temperature profiles were acquired using the procedure found here (11, 13), with minor
modifications. Unlike previous work, regions-of-interest (ROIs) were selected algorithmically using
the MATLAB™ edge detection function with a Canay filter. Default settings were sufficiently
accurate to pick out the top edge of the print and ROIs were selected 5 pixels below the top edge for
the center of the print layer, 15 pixels for the first sublayer, and 25 pixels for the second sublayer. The
lens configuration and subsequent processing steps are detailed in the above work. ROIs were taken
from the center of the print, 50 mm from the edge. The Axiom printer was modified by cutting a 3 in
(7.62 cm) hole in the left panel to allow access for the IR lens and to prevent blocking of IR photons.

Microtoming and Annealing

Prior to microtoming, printed samples were cut in half and each half was further cut to
approximately 1 cm in length using a wet saw. The cut sections were dried under a dynamic vacuum
at 60 °C. A 1-cm section from each printing condition was annealed under a dynamic vacuum for 1 h
at 140 °C to grow the spherulite size; the other 1-cm section was used as received after printing. The
1-cm sections were clamped directly and microtomed into 5 µm to 8 µm sections using a Histo Cryo
45° diamond knife (DiATOME) on an EM UC7 (Leica); water was used to capture the sections.
Microtomed sections were taken from the center of the print, 50 mm from the edge to match the
IR ROIs. Cross sections were stored on microscope slides at 60 °C under dynamic vacuum until
imaging.

FIC Model for MatEx

MatEx Process Model

To establish a fundamental representation of the key processes occurring during MatEx, the
method of depositing a single filament onto the build plate is deconstructed into two distinct regions,
as shown in Figure 1.

• Region I: The Flow Region
Here the melt flows through the hot nozzle and is deposited onto the build plate. Since the
flow direction changes from the vertical to the horizontal (parallel with the build plate), the
melt must deform to make a 90° turn (Figure 2). The shape of the deposition is prescribed
as elliptical to eliminate the need for a computationally expensive non-Newtonian Navier-
Stokes calculation, and the velocity profile is given by conservation of mass. The polymers
are deformed because of velocity gradients in the flow, and the deposition flow is assumed
to be sufficiently fast that no polymer relaxation occurs. Furthermore, as assumed in
previous work and considered a reasonable approximation (20), the temperature of the
material in the nozzle and during the deposition process is assumed to be constant and
above the melting point so that the material is fully amorphous.

• Region II: The Cooling and Crystallization Region
In this region, the melt cools and the polymer deformation relaxes in the absence of
velocity gradients (i.e., we assume no further spreading occurs after deposition). Cooling
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of a single filament is assumed to be axisymmetric, and the boundary condition is
prescribed by experimental observations. In this way nonisothermal effects are captured
without the need for a computationally expensive thermal calculation. Once the
temperature falls below the melting temperature TM, the polymer spontaneously nucleates
and spherulites begin to grow according to the Schneider rate equations. Crystallization is
enhanced if there is residual stretch at the onset of nucleation. The computation is stopped
near the glass transition.

This framework has been used in previous work for both amorphous polymers (10) and
semicrystalline polymers (24). In this way, the flow and crystallization kinetics are decoupled. In
this work, we do not consider the effect that deposition of multiple layers has on the crystallization
kinetics.

Figure 1. Schematic illustrating how flow and crystallization are decoupled in the MatEx model. Adapted
with permission from ref (24). Copyright 2018 Wiley.

Figure 2. Shape of the deposited filament from four perspectives. The melt exits a circular nozzle, radius RN,
at speed UN and traces a smooth elliptical arc. The melt is deposited onto a build plate transformed into an
elliptical cross section of height H. In a frame fixed with the nozzle the build plate moves at speed UL. The
shape of the deposit is parameterized by angle θ. Adapted with permission from ref (20). Copyright 2017

AIP.
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For completeness, in the following sections, we briefly describe the key equations that form the
basis of this MatEx process model. Further details of the flow model are given in ref (20), and the
cooling and crystallization model is discussed in detail in ref (24).

Constitutive Model

To describe the deformation and relaxation of the polymer microstructure, we employ the Rolie-
Poly model (29), which provides a single one-mode constitutive equation for the stress tensor based
on the Doi-Edwards tube model for linear monodisperse polymer melts (30).

A melt is characterized by its dimensionless entanglement number

where Mw is the molecular weight of the polymer chain, and Me is the molecular weight between
entanglements. The relaxation time of a single entanglement segment at some reference temperature
T0 is denoted .

The Rouse time and the reptation time of a polymer chain is then given by

respectively, where a(T) is the Williams-Landel-Ferry (WLF) equation (see ref (31)):

for constants C1 and C2.
The total stress in a polymer melt is given by

where p is the isotropic pressure, Ge is the plateau modulus, and μs is the contribution to the
background viscosity from Rouse modes shorter than Me, which is usually defined as the following
(see ref (32)):

The identity tensor is denoted I, and the velocity gradient tensor is given by Kij = ∂ui/∂xj for some
velocity field ui. Finally, the polymer configuration tensor is defined by

where R is the end-to-end vector of a single polymer chain and Rg is the polymer’s root mean squared
radius of gyration.

Tensor A obeys the so-called Rolie-Poly equation:
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where the stretch of a polymer chain is denoted

for the trace of tensor A. The convective constraint release parameter β is set to 0.5 to ensure a

monotonic constitutive curve. The material derivative is given by . The first term of
the Rolie-Poly equation represents deformation due to velocity gradients, whereas the last two terms
represent the two relaxation mechanisms: reptation along the polymer tube and Rouse relaxation of
the polymer chain, respectively.

Region I: Molten Flow

Flow through the Nozzle

Assuming that the nozzle is axisymmetric, in cylindrical polar coordinates, the velocity profile is
given by

for radial coordinate r. Assuming steady-state flow, conservation of momentum becomes

where the shear stress is given by

The polymer orientation Arz is calculated by the Rolie-Poly equation (Eq 7), and the pressure
gradient dp/dz is chosen to give a prescribed radially averaged extrusion velocity

where RN is the nozzle radius. We assume no slip at the nozzle walls such that w = 0 at r = RN. This
calculation gives an initial condition for the deposition flow.

For example, Figure 3 shows the cross-sectional stretch profile during flow through the nozzle
for print conditions UN = 100 mm/s and TN = 200°C. The nozzle radius is RN = 0.25 mm. The
polymer molecules become more stretched near to the nozzle walls due an increase in the shear rate.

Deposition Flow

The cross section of the deposited filament is given by an ellipse with prescribed thickness H
and width W = 2RN. The shape of the corner region is assumed to trace a smooth arc from the
nozzle exit to the build plate, as shown in Figure 2. In this way, the velocity profile and the polymer
stress are decoupled during deposition, eliminating the need for a full non-Newtonian calculation of
conservation of momentum.
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In Cartesian coordinates, the velocity profile is then given by

and the changing flow direction is written as

where θ ∈ [0, π/2] denotes the angle between the nozzle exit and the deposited filament cross section
(Figure 2). In order to conserve mass, we require

where A is the area of the cross section at angle θ.
For steady-state deposition flow, which is sufficiently faster than polymer relaxation, the Rolie-

Poly equation reduces to

This calculation gives an initial deformation profile for the cooling and crystallization that occurs in
Region II.

For example, Figure 3 shows the cross-sectional stretch profile after deposition flow for print
conditions UN = 100 mm/s and TN = 200°C. The height of the deposited filament is H = 0.3 mm,
and the width is W = 2RN = 0.5 mm. The polymer becomes more stretched in the bottom half of the
cross section due to the 90° turn combined with the assumption that the flow is faster than polymer
relaxation.

Figure 3. Polymer stretch profile Λ in the nozzle cross section (left) and the deposited filament cross section
(right). This stretch profile provides the initial condition for the crystallization calculation.
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Region II: Cooling, Relaxation, and Crystallization

Cooling and Polymer Relaxation

Once the filament has been deposited, the velocity gradients become zero (i.e., K = 0) and the
polymer microstructure begins to relax via

Simultaneously, the filament begins to cool. Assuming axisymmetric cooling, the temperature
profile in cylindrical polar coordinates T ≡ T(t,r) is given by

where α is thermal diffusivity, Hf is the latent hear of crystallization, Cp is the specific heat capacity,

and is the crystallization rate. The thermal parameters α, Hf, and Cp are assumed to be constant for
simplicity, as in ref (24).

The boundary condition at the free-surface of the deposited filament Tsurf(t) is prescribed by
the infrared imaging measurements detailed in the Experimental Methods section and is discussed in
more detail in Results I.

FIC

Once T < TM, the polymer will nucleate and crystals will grow. Polymer nucleation and
crystallization kinetics are well described by the Schneider rate equations (see ref (33)):

where N is the total number of nuclei per unit volume, Rtot is the total radius, Stot is the total surface
area, and Vtot is the total volume of nuclei. To correct for impingement we use the Avrami equation
(see ref (34))

where is the degree of space filling. The degree of space filling is related to the degree of crystallinity
via , where Vmax is the maximum degree of crystallinity.

The crystal growth and nucleation rates are temperature dependent and denoted G and ,
respectively. Under quiescent conditions, the nucleation rate is given by

where is the quiescent nucleation rate and the maximum number of nuclei that are allowed
due to saturation effects is given by Nq,max.
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In the case of flow, the total number of nuclei is written as a linear combination of the quiescent
nuclei plus flow-induced nuclei. Thus, the nucleation rate that enters the Schneider rate equations is
given by

where

as determined by kinetic Monte-Carlo simulations (22). Here, η is the single fitting parameter that
allows us to tune the number of extra nuclei due to flow effects. The Rolie-Poly model is thus coupled
to the crystallization kinetics via the polymer stretch Λ.

Results

Results I: Material Characterization and Model Parameters

In this section we determine from material characterization of PLA the various properties
required for the general FIC model described above. These material properties are summarized in
Table 1. The model is thus reduced to a single fitting parameter. A simple test based on the stretch
relaxation time allows us to determine the conditions under which FIC will occur; these results are
summarized in Table 2.

Stretch Relaxation and Surface Cooling

In order to determine if FIC is possible under the prescribed MatEx conditions, a simple test has
been proposed (24), where the stretch relaxation time τR is compared to the time taken to reach to
melting point τM. We detail this procedure for PLA filament rheology here.

Due to the nonisothermal conditions of the MatEx process, the temperature-dependent
rheology must be considered. In particular, the constitutive model requires the temperature
dependence of the reptation time and Rouse time, as determined by the WLF equation, as follows.
First a time-temperature superposition of the linear rheology data (G′, G′′) is performed to create
a master curve at reference temperature T0. The two constants C1 and C2 appearing in the WLF
equation are then obtained by fitting the exponential function to the shift factors required for
superposition.

Fitting the same linear rheology data to the Likhtman and McLeish model (35) using Reptate
software (36) yields the entanglement molecular weight Me, the plateau modulus Ge, and the

relaxation time of one entanglement segment at the reference temperature T0. Thus, the
entanglement number for this PLA feedstock is found to be Z = 25, and the Rouse time and the
reptation time can be computed at any temperature above the glass transition temperature Tg (where
both relaxation times diverge) via Eq 2. The material properties derived from the linear rheology are
listed in Table 1.
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Table 1. Material Properties for PLA Feedstock

Figure 4 shows measurements taken using the infrared imaging technique detailed in the
Experimental Methods section for print temperatures TN = 250 °C and 200 °C with print speed UN
= 100 mm/s. The temperature of the weld region is determined by the average of the two adjacent
filaments (layers 8 and 9).

Figure 4. Cooling profile of filaments L9 and L8 measured using infrared imaging technique. The
temperature profile at the weld is given by the average. The boundary condition imposed at the free surface of

the filament is given by the line.
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Under the assumption of axisymmetric cooling, the surface temperature of a single deposited
filament is assumed to decay exponentially such that

where A is chosen to fit the experimental measurement of the weld line temperature. The cooling rate
1/A is found to depend on both the print temperature and print speed. The ambient temperature Ta
is assumed to be equivalent to the build plate temperature.

According to one-dimensional modeling of a two-filament system (10), when a hot layer at TN
is placed atop a cooled layer at Ta, the temperature of the weld region instantaneously jumps to the
average temperature of the two filaments. Thus, we choose T0 = (TN − Ta)/2 in order to give Tsurf
(t = 0) = (TN + Ta)/2. Eq 25 forms the boundary condition for the temperature model discussed
in the previous section and is plotted in Figure 4. This modeling approach has proved successful in
capturing MatEx-induced crystallization kinetics of a filament of PCL (19). The implications of this
boundary condition are detailed in the Discussion section.

For this temperature model, we find that Tsurf (t = 0) < TM for all printing conditions. Thus, the
time taken to reach the melting point is tM = 0, and nucleation will occur immediately. Since tM <
τRfor all cases, any stretch induced by the MatEx printing flow will accelerate the nucleation rate at t =
0 and lead to flow-enhanced crystallization for all the tested printing conditions. Table 2 summarizes
the model parameters used for each printing condition.

Table 2. Filament Cooling Rate Parameters, Time Above the Melt Temperature, and Rouse
Times for All Print Conditions

Quiescent Nucleation and Crystal Growth Rate

In this section we determine the appropriate temperature-dependent forms of the quiescent
nucleation rate and the crystal growth rate G, which enter the Schneider rate equations (eq 19)
through characterization of the crystallization kinetics.

Figure 5 shows the quiescent nucleation and crystal growth rate measured using the optical
microscopy technique described in the Experimental Methods section. Crystal growth is fastest
around 120 °C, and decays rapidly to zero near to the melting temperature and the glass transition
temperature.
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Figure 5. Crystal growth rate G and quiescent nucleation rate as measured using optical microscopy
technique over a range of crystallization temperatures. The fits used in the model are plotted as lines.

The temperature dependence of the crystal growth rate takes a Gaussian distribution of the form

as shown in Figure 5. The constants Gmax, Ts and bg are found by fitting Eq 25 to the optical
microscopy measurements and are listed in Table 1. We note that this equation is not the Hoffman-
Lauritzen theory (37); it was chosen for agreement with experimental results.

The temperature dependence of the nucleation rate is determined by the existence of two
competing effects, as described by Lauritzen and Hoffman (37). That is

as shown in Figure 5. Again, the constants nmax and bn are found by fitting Eq 26 to the optical
microscopy measurements as well as data found in the literature (38) and are listed in Table 1.

Saturation Limit

Figure 6 shows the evolution of the degree of space filling , measured using the Raman
spectroscopy technique described in the Experimental Methods section. The crystallization
transients are measured under quiescent, isothermal conditions at three crystallization temperatures
90, 100, and 110 °C. The maximum degree of crystallinity, as estimated using the univariate (peak
intensity ratio) methods of Qin and Kean (39), is found to be between 0.2 and 0.25 in these cases.
Thus, the degree of space filling is related to the crystal fraction via , where Vmax = 0.2 to
0.25. This data is used to establish the saturation limit Nq,max required in the FIC model.

If we relax the assumption of saturation and assume Nq,max → ∞, then the Schneider rate
equations (Eq 19), along with the nucleation and crystal grow rates given by Eqs 25 and 26, are
unable to capture the measured crystallization transients; in particular, crystallization is much slower
at 100 and 110 °C than the kinetics predicted by the model, as shown in Figure 6.
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Figure 6. Degree of space filling measured over time via Raman spectroscopy technique for three
crystallization temperatures (points). Model predictions neglecting saturation effects (left) and incorporating

a finite saturation limit (right) are shown by the lines.

Defining a finite saturation limit Nq,max restricts the total number of nuclei that are created and
therefore slows down crystal growth. We find that the saturation limit required to fit the experimental
data is temperature dependent such that

where constants and bsat are given in Table 1. The corresponding nucleation transient is shown
in Figure 7.

Figure 7. Isothermal, quiescent nucleation kinetics for three crystallization temperatures and corresponding
temperature-dependent saturation limit Nq,max.

The fact that the number of nuclei saturates well before the growth of crystallinity indicates that
crystallization proceeds through heterogeneous nucleation, with more heterogeneous nucleation
sites becoming active at lower temperatures. This behavior is well documented in the heterogeneous
crystallization kinetics of polymers (40).
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Results II: Morphology of Printed Filaments

In this section we compare the model predictions of the crystal morphology to optical
microscopy images taken immediately after MatEx printing, where the polymer melt has nucleated
but there is little crystal growth. The printed samples are then annealed and reimaged to investigate
spherulite growth from the fixed number of nuclei induced by the printing conditions. Similar
thermal annealing processes are used to increase the strength of printed parts by increasing the degree
of crystallinity (18).

Although this annealing process leads to full space filling (i.e., maximum crystallinity), the size of
the spherulites that grow depends on the nucleation density via the Schneider rate equations (eq 19).
Since spherulite size is also expected to affect strength (43), full comprehension of the mechanical
properties after annealing requires understanding how the nucleation density induced by the printing
conditions varies cross-sectionally.

Thus, through validation of the cross-sectional nucleation density profile, the model can be
employed to predict and quantify variations in spherulite size, which are difficult to measure
experimentally. The model can then be used as a tool to explore variations in mechanical strength and
failure mechanisms.

Nucleation Density after Printing

Figure 8 shows optical microscopy images of the printed filament cross sections for each of the
nine printing conditions. The profiles of the individual filaments are concave towards the nozzle,
which is expected when the nozzle extrusion height is less than the nozzle diameter (41). The profiles
are also transparent under bright-field illumination. It is clear that little crystallization has occurred
during the MatEx cooling period; any existing spherulites are smaller than the microscope resolution
of approximately 1 μm. Since the model can predict how the nucleation density varies spatially in a
printed cross section, we are able to quantify the degree of space filling achieved during printing.

Figure 8. Images of the cross sections of the printed filament (pre-annealing) under bright-field illumination.
The cross sections are dark in cross-polarized light. The scale bar is 200 µm.
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Figure 9 shows the predicted nucleation density achieved after printing a single filament for each
of the nine printing conditions. In each case, we observe a boundary layer near the free surface of
the cross section having a larger nucleation density than the bulk of the filament; this boundary
layer becomes more distinct for lower print temperatures and faster print speeds. In the following,
we demonstrate how this high nucleation density boundary layer arises because of flow-enhanced
crystallization occurring only at the surface of the deposited filament.

Figure 9. Predicted cross-sectional nucleation density for nine printing conditions. A boundary layer of flow-
enhanced nuclei can be observed in each case, which becomes more distinct at lower print temperatures and

faster print speeds.

To probe this spatially dependent behavior, we consider the kinetics at three locations on the
filament cross section; the top (apex) a, the middle m and the bottom b (as illustrated in Figure 3).
The surface locations a and b correlate to positions that reside in the weld regions after deposition of
multiple filaments. In particular, Figure 10 shows how temperature, polymer stretch, the number of
nuclei, and the degree of crystallinity evolve over time at these three locations until the temperature
reaches the glass transition. These kinetics are presented for two printing conditions.

For both cases, the surface immediately drops below TM so that nucleation at the surface is
enhanced by the polymer stretch determined by the MatEx flow. Model parameter η is sufficiently
large that the total number of nuclei surpasses the quiescent kinetics within the Rouse time, and
nucleation stops once the polymer stretch has relaxed. On the other hand, the stretch imposed at
the middle of the filament has sufficient time to relax before the melting temperature is reached.
Thus, nucleation follows quiescent kinetics and is arrested once the temperature reaches the glass
transition. Consequently, we find that the surface of the filament reaches a higher degree of space
filling than the middle of the filament, which is unapparent in the optical microscopy images.
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Figure 10. Evolution of the temperature, polymer stretch, number of nuclei and degree of space filling at the
top (a), middle (m) and bottom (b) of the cross section for two printing conditions. The initial stretch profile
is shown as an inset. Flow-enhanced crystallization occurs only at the surface of the filament in both cases.

Comparing TN = 200 and 250 °C, we find that fewer nuclei are created at the surface at the
higher print temperature, since there is less polymer stretch under this condition. Thus, the high
nucleation density boundary layer shown in Figure 9 is less defined. More nuclei are created
quiescently in the center of the filament at the higher print temperature due to a longer cooling rate
1/A. Figure 11 shows how the total number of nuclei created at the middle of the filament m varies for
each of the printing conditions. The total number of nuclei created increases with increasing cooling
rates 1/A, as detailed in Table 2 for each case.
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Figure 11. Total number of nuclei created at the middle of the filament (m) for each of the nine printing
conditions plotted against the cooling rate 1/A, as determined by a fit to infrared imaging measurements.

The corresponding print speed for each case is detailed in Table 2.

Figure 12 shows how the choice of parameter η, which allows tuning of the number of extra
nuclei created due to flow effects, affects the final degree of crystallinity for TN = 200 °C and UN =
100 mm/s. By increasing η, full space filling can be achieved at the surface. We choose η = 108, as
this yields a degree of space filling consistent with spherulites of the size of approximately 0.1 μm in
diameter, in other words, less than the resolution of the microscope (see Figure 12).

Figure 12. Degree of space filling achieved for different values of the model tuning parameter η. Since
spherulites are too small for observation after printing (pre-annealing), we choose η = 108. In this way, the
(pre-annealed) spherulite sizes predicted by the model are smaller than the microscope resolution and space

filling remains small .

Spherulite Size Distribution after Annealing

Figure 13 shows optical microscopy images of the microtomed cross sections after annealing
at 140 °C for 1 h. At this temperature, the nucleation rate is small so that the number of nuclei
will remain approximately constant. The annealing process therefore increases the size of the
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semicrystalline domains templated into the printed part from the printing conditions. Under crossed
polarizers, the microtomed sections are now strongly birefringent. As the temperature decreases and
the print speed increases, the weld region appears to exhibit a lower birefringent intensity at the weld
line.

Figure 13. Images of the annealed cross sections of the prints using cross-polarized illumination. The cross
sections are dark in cross-polarized light, with the polarizer and analyzer oriented at 45° to the image. The

scale bar is 200 µm.

We can characterize the weld region using image analysis to determine the width and optical
intensity difference between the weld region and the filament midsection. A section of the image
taken at a high magnification (Figure 14a) is first thresholded and binarized (Figure 14b), and then
column averages of the pixel intensity I in each image are plotted as a function of distance and fit to a
Gaussian profile

where I0 is the intensity of the region far away from the weld, IA is the intensity loss at the center of
the weld located at position x0, and wI is the peak width. An example of the Gaussian fit is shown

in Figure 14c. For all printing conditions, the full-width at half maximum
of the weld region is in the range of 35 to 52 µm, independent of temperature or feed rate. The
relative intensity loss IA/I0 is shown in Figure 15, which shows that the highest intensity loss occurs
at the printing temperature of 200 °C and higher feed rates. This loss in intensity is not due to a
lower crystallinity in the weld region; spot measurements of the Raman spectrum in the weld region
and in the middle of the printed filament indicate negligible differences in the spectrum for a given
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microtomed section. This indicates that the crystallinity in the weld is not significantly different from
the bulk. The relative intensity loss is therefore higher because of the presence of crystalline domains
in the weld region that are below the diffraction limit (approximately 1 µm) for optical imaging.

Figure 14. (a) Annealed cross section of the part printed at 200°C and 10 mm/s. Spherulites within 50 µm
of the weld are outlined with a red circle, and spherulites outside the weld region are indicated with a yellow
circle. The grey box indicates the region selected for intensity analysis. (b) The thresholded, binarized image
of the selected region. (c) The pixel intensity as a function of distance. The points indicate the average pixel

intensity and the line indicates the Gaussian fit to the intensity profile.

Figure 15. Normalized birefringent intensity loss at the weld versus feed rate. The error bars indicate the
standard deviation based on measurements of four welds at each printing condition.

Spherulites can be measured by manually fitting regions where a Maltese cross pattern is
observed in the image, in both the weld region and towards the middle of the printed filament,
examples of which are shown Figure 14a. Measurements of the spherulite diameter from polarized
optical microscopy are shown in Figure 16. The spherulites in the middle of the printed filament
decrease in size at higher feed rates and lower temperatures, and under all conditions, the spherulites
near the weld are smaller than those in the middle of the printed filament. At the lowest printing
temperature, the spherulites at 30 and 100 mm/s in the weld region begin to look more granular,

105
 Seppala et al.; Polymer-Based Additive Manufacturing: Recent Developments 
ACS Symposium Series; American Chemical Society: Washington, DC, 2019. 



and the Maltese cross pattern is no longer clearly observed. The average diameter of the measurable
spherulites in that region is approximately 5 µm, but we extend the lower error bar to zero to indicate
that crystalline domains below the optical resolution limit are present.

Figure 16. Average spherulite diameter measured from optical imaging versus feed rate. Filled symbols
indicate spherulites measured towards the middle of the filament, and open symbols indicate spherulites

within 50 µm of the weld. The error bars indicate the standard distribution from an average of five
spherulites.

Using the crystal morphology induced by each printing condition as an initial condition, the
model is used to simulate this annealing process; the temperature is instantaneously set to T =
140°C, and the nucleation rate is set to in the Schneider rate equations (Eq 19). Thus,
spherulites will grow from the fixed nucleation density created during the MatEx cooling period;
this nucleation density is cross-sectionally nonuniform (see Figure 9) due to a combination of
temperature history and flow effects. Impingement of the spherulites is accounted for via the Avrami
equation (Eq 20. The model predicts that uniform space filling is achieved across the filament during
the annealing process, in agreement with the experimental observation.

Figure 17 shows the corresponding spherulite diameter Dsph after 1 h of annealing for each
printing condition. We find qualitative agreement with the optical microscopy images, with much
smaller spherulites found in the weld regions for all printing conditions. The model demonstrates that
this cross-sectional variation in morphology arises due to FIC at the surface of a deposited filament.
Note that this boundary layer cannot be reproduced without enhanced nucleation due to stretch.
That is, if η is set to zero, then a similar number of nuclei are created at the surface and the middle
of the filament despite the surface spending a significantly longer time below TM; during this (early)
time the temperature at the surface is high enough that the nucleation rate in this region is small.
Thus, the final nucleation density at Tg is not significantly different at a, b, or m and does not lead to a
difference in spherulite size after annealing, as shown in the experiments.
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Figure 17. Predicted cross-sectional spherulite diameter after annealing for 1 h at 140 °C for each of the nine
printing conditions. A flow-enhanced boundary layer of smaller spherulites can be observed in each case,

which becomes more distinct at lower print temperatures and faster print speeds.

Quantitatively, Figure 18 shows how spherulite diameter Dsph varies with z, in other words,
between the middle and weld lines of printed filaments (note that the results of a single filament
are repeated to demonstrate a two-filament wall of height 600 μm). As seen in the experiments,
the smallest spherulites (≈ 5 μm) are produced at the lowest print temperature TN = 200 °C and
the fastest print speeds UN = 30 mm/s and 100 mm/s. Spherulites smaller than the microscope
resolution are also present in the center of the flow-enhanced boundary region. This boundary region
is approximately 50 μm in width and independent of print speed, in agreement with the experimental
measurements. At higher print temperature TN = 250 °C, the spherulites in the weld region are much
closer in size to the spherulites created in the bulk so that the flow-enhanced boundary layer is much
less distinct.

The predicted diameter of spherulites residing in the bulk of the filament is quantitatively larger
than the measured spherulite size. We believe this to be a result of further nucleation during the
subsequent heating/cooling cycles that occur when multiple filaments are deposited to create the
wall; for example, ref (42) shows that multiple layers rise above the melting point during a build.
Furthermore, it is possible that further nucleation also occurs during the annealing process. Finally,
the model does not demonstrate a decrease in bulk spherulite size with feed rate, as observed in the
experimental data. This discrepancy is discussed further in the next section.
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Figure 18. Predicted spherulite size as a function of z for two filaments placed adjacently. The thickness of
the boundary layer is independent of feed rate and increases with decreasing temperature.

Discussion

The thermal annealing of parts printed using PLA reveals a nonuniform semicrystalline structure
that is templated into the part from the temperature and flow history during printing. Since thermal
annealing is a proposed mechanism for increasing strength (16) and variation in spherulite size due to
this templating effect is expected to affect mechanical properties (43), it is important to understand
where and how these inhomogeneities arise.

In particular, we find that the crystalline microstructure varies spatially in the annealed wall,
with smaller spherulites present near the weld between two printed filaments. This is captured,
qualitatively and quantitatively, by a theoretical model that incorporates polymer melt rheology,
heat transfer, and crystallization kinetics. Thus, our work highlights the critical need for materials
characterization, in-line measurements, and physics-based models to adequately understand the
relationship between printing conditions and properties in polymer-based additive manufacturing.

Inducing smaller spherulites in the weld region by controlling FIC could be exploited as a
method to improve the mechanical properties of printed parts. In particular, decreasing spherulite
size is found to lead to more ductile fracture (43). Furthermore, flow-enhanced crystallization can
lead to a higher crystalline fraction (44, 45), thus it may also be possible to exploit FIC to increase the
number of tie chains across filament–filament interfaces and consequently improve weld strength.
Future work will be to measure weld strength as a function of FIC to test this hypothesis.

Similar FIC behavior also occurs in MatEx-printed PCL (24), with smaller spherulites forming
near to the surface of a singly deposited filament, while the bulk of the filament is governed by slower
quiescent kinetics. In contrast to ref (24), in this work, a discrepancy arises predicting the bulk crystal
morphology found in the middle of a PLA filament comprising a multifilament wall. In particular,
the bulk spherulite size increases with print speed, in contrast to the experimental observations. This
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discrepancy arises from neglecting to capture additional (asymmetric) heating and cooling cycles that
occur during the creation of a multiple-filament wall.

For instance, it is evident in Figure 4 that the temperature of the weld line, as measured by
infrared imaging, increases slightly to a peak prior to the exponential decay to the ambient
temperature. This early-time temperature variation is absent in the temperature measurements of
a single PCL filament, discussed in ref (24), and is not currently captured by the axisymmetric
temperature model employed here. We propose that by combining the initial jump to the average
temperature, as employed in this work, followed by a small degree of heating prior to the exponential
decay region, then both the bulk crystal morphology, as well as the flow-enhanced weld region
morphology, will be predictable.

In particular, in the proposed temperature model (Eq 24), T0 is chosen to ensure that the
temperature at t = 0 is equivalent to the average (TN + Ta)/2, as seen in one-dimensional modeling
(10). Although this choice results in tM < τR so that surface FIC occurs under all tested print
conditions, as suggested by the experimental data, the resulting fitting parameter A increases with
print speed; equivalently, the cooling rate 1/A decreases with print speed. Since smaller cooling rates
produce fewer nuclei (Figure 12), larger spherulites grow at faster print speeds for this modeling
approach. A second choice is to fit T0 to the infrared imaging data. This results in a cooling rate
1/A that increases with print speed and consequently spherulite size decreasing with print speed, in
agreement with the experiment. Yet, for these temperature parameters, a flow-enhanced boundary
layer is not created for all printing conditions since tM > τR.

Clearly, in order to predict both the bulk and the weld morphology, further modeling efforts
are required to accurately capture the early-time temperature evolution induced by deposition of
multiple layers during the creation of a wall. Quantitative predictions also rely on knowledge of the
quiescent nucleation rate at low temperatures, which is extremely difficult to measure. Furthermore,
the model as developed can predict structural differences in three dimensions, although we have only
focused on the cross section of the printed parts in this work. Additional structural and orientational
characterization of the printed part in the flow direction can be performed using optical microscopy
or microbeam X-ray scattering techniques and is the subject of future work.

Conclusion

In this chapter, we have combined material characterization and in-line crystallization
measurements with a nonisothermal, molecularly aware, flow-enhanced crystallization model to
demonstrate how MatEX flow can affect the crystal morphology of a PLA printed part. In particular,
the model demonstrates that residual stretch induced by the deposition process enhances nucleation
at the surface of a deposited filament, while the bulk of the filament is governed by slower quiescent
kinetics. Thus, more nuclei and a greater degree of space filling is achieved along the outer edge,
compared to the middle of a deposited filament; an effect that is unapparent in the experimental
measurements post-printing. However, since the crystal fraction remains small at the free surface, it is
unlikely to affect interdiffusion dynamics or mechanical strength at the filament–filament welds (24),
at least prior to annealing.

Thermal annealing is a proposed method for increasing the strength of printed parts by
increasing the crystal fraction (18, 46). However, full comprehension of the mechanical properties
requires understanding how the resulting morphology (i.e., spherulite size) varies across a single
filament. In particular, nonuniform crystal morphology will lead to variations in the elastic moduli
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(47, 48). In this chapter, optical microscopy of the thermally annealed wall reveals a nonuniform
spherulite size that emerges from the cross-sectional variation in nucleation density predicted by the
model. In particular, smaller spherulites are formed in the weld regions between deposited filaments
due to FIC, whereas spherulites at the center of the filaments are larger. We have demonstrated that
only a single-filament model is required to accurately capture the flow-enhanced weld regions found
in an annealed PLA MatEx-printed wall.

We propose that FIC in the weld region may be employed as a method to improve the strength
of MatEx-printed parts. In particular, better space filling near the interface is suggested to increase
the availability of spherulites to form tie chains across the weld line (24). Furthermore, inducing
smaller spherulites in the weld region may also lead to more ductile fracture (43). However, further
experiments measuring weld strength as a function of FIC are required to explore this hypothesis.
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