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ABSTRACT: We combine the recently proposed spherical
harmonic expansion (SHE) method [Phys. Rev. X 2017, 7,
031003] with a modified network model to analyze the small-
angle neutron scattering (SANS) spectra from deformed
entangled polymers. Focusing on the leading anisotropic
component and the isotropic component in the SHE, the
analysis gives a reliable value of the stretch ratio of the end-to-
end vector, and a reasonable estimation of the radius of gyration,
of a single chain in polymers undergoing uniaxial deformation
and relaxation. Moreover, it provides a practical way to evaluate
the stress of deformed entangled polymers with the SANS spectra from a viewpoint of rubber elasticity.

I. INTRODUCTION

The study of the microscopic structure and dynamics of
polymeric systems has been greatly promoted by the use of
small-angle neutron scattering (SANS). By mixing protonated
chains with selectively deuterated counterparts, it can extract
the form factor of the labeled path.1 From the 1980s, extensive
SANS investigations have been made in illustrating the
molecular conformation of deformed linear polymers based
on the concept of “tube”, which was proposed by de Gennes,
Doi, and Edwards2,3 to give an elegant treatment on the
entanglement effect. For example, Pyckhout-Hintzen and
collaborators systematically investigated the microscopic strain
and the deformation of tube in polymer networks.4−8

Blanchard et al.9 and Boue ́ et al.10,11 tested the prediction of
the tube model on the chain relaxation with uniaxially strained
entangled polymers. In addition, some other models, such as
the network model12,13 and modified Debye model,14 have also
been employed to find the chain conformation in deformed
polymer networks and entangled polymers.
Recently, we have proposed a model-independent frame-

work, the spherical harmonic expansion (SHE) method, for the
investigation of molecular deformation with uniaxial symme-
try.15 In this method, the anisotropic two-dimensional (2D)
spectrum of deformed polymers is decomposed into several
one-dimensional (1D) Q-dependent coefficients (Q is the
scattering vector in the SANS experiment). Each coefficient

has a specific symmetry and thus contains unique physical
significance. In this work, to further extract detailed structural
information about deformed entangled polymers at the
molecular level, we extend the SHE method to the real space
and combine it with a modified network model to analyze the
SANS spectra. The result shows that by analyzing the leading
anisotropic coefficient and the isotropic coefficient, it can find
the strain and the radius of gyration of a single chain.
Moreover, it provides a practical way to estimate the stress
from the SANS spectra through the viewpoint of rubber
elasticity.
The rest of this paper is organized as follows. In section II,

we first give a brief review on the SHE method and point out
the expressions connecting the expansion coefficients of the
SANS spectrum and those of the distribution function. The
physical significances of the first two coefficients are
emphasized. Then we introduce the modified network model
for analyzing the SANS data from deformed entangled
polymers. Section III provides the properties of the sample
and some details of the SANS experiment. Section IV describes
the analysis results. Concluding remarks are included in section
V.
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II. THEORETICAL BACKGROUND
Spherical Harmonic Expansion Method. Here we

briefly review the SHE method and introduce the relations
connecting the expansion coefficients in real space and those in
reciprocal space for the study of uniaxially deformed polymers.
The polymer chain can be modeled as a series of N segments.
The position of the ith segment is denoted as ri. The single-
chain structure factor, which characterizes the conformation of
a polymer chain, is defined as

∑= ⟨ ⟩− · −S
N

Q( )
1

e
i j

N
iQ r r

2
,

( )i j

(1)

where Q is the scattering wave vector and ⟨...⟩ denotes the
ensemble average. For polymer melts, S(Q) can be obtained
from SANS experiments by measuring a mixture of deuterated
chains and protonated chains at the same molecular weight.
The coherent SANS spectrum of this mixture, I(Q), is
expressed as1

= − −I n b b N x x SQ Q( ) ( ) (1 ) ( )D H
2 2

(2)

where n is the number density of polymer chains, (bD − bH) is
the contrast of scattering length between the deuterated and
protonated segments, and x is the fraction of the deuterated
chains. S(Q) is determined by the segment distribution
function ψ(i,j;r). ψ(i,j;r)dr gives the probability of finding
the jth segment at distance r from the ith segment in the
volume element dr. With ψ(i,j;r), it can define the intrachain
pair distribution function g(r):

∑ ψ=g
N

i jr r( )
1

( , ; )
i j

N

2
, (3)

g(r) and S(Q) are related by the Fourier transform:

∫= − ·S gQ r r( ) ( )e diQ r
(4)

The S(Q) of a deformed polymer is anisotropic. It can be
expanded with spherical harmonics:

∑ Ω=S S Q YQ( ) ( ) ( )
l m

l
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l
m
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where Sl
m(Q) is the expansion coefficient and Yl

m(Ω) is the
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where Pl
m(x) are the associated Legendre polynomials, θ is the

polar angle from the positive z-axis, and ϕ is the azimuthal
angle in the xy-plane from the positive x-axis.
For the uniaxial extension with the stretching direction along

z-axis, the S(Q) has an axial symmetry. It can be found that all
terms with odd l and m ≠ 0 are forbidden, which leads to the
following expansion:15

∑ Ω=S S Q YQ( ) ( ) ( )
l

l l
:even

0 0

(7)

According to eq 6, Yl
0(Ω) (l is even) only depends on cos2 θ.

Figure 1a gives a typical configuration of a SANS experiment
on a uniaxially stretched polymer. The direction of incident

radiation is parallel to the y-axis. In this case, the scattering
intensity given by the 2D detector displays the cross section of
S(Q) in the xz-plane, namely, S(Qx, Qy = 0, Qz), or
equivalently, S(Q, θ, ϕ = 0). It can be proven that in the xz-
plane the orthogonality of Yl

0(Ω) is expressed as15

∫ θ θ θ θ δ= ′
π

′ ′Y Y l l( ) ( ) sin d 2 ( and are even)l l ll
0

0 0
(8)

Combining the above two equations, it can obtain Sl
0(Q) from

the measured S(Q, θ, ϕ = 0) by the following equation:15

∫ θ ϕ θ θ θ= =
π

S Q S Q Y( )
1
2

( , , 0) ( ) sin dl l
0

0

0
(9)

Figures 1b and 1c give the 2D cross section of S(Q) at the
xz-plane and the 1D expansion coefficients Sl

0(Q) for a
Gaussian chain undergoing an affine uniaxial elongation with a
stretch ratio of 2, respectively.
Under a uniaxial deformation, g(r) and ψ(i,j;r) have similar

expansions:

∑ θ=g g r Yr( ) ( ) ( )
l

l l
:even

0 0

(10)

∑ψ ψ θ=i j i j r Yr( , ; ) ( , ; ) ( )
l

l l
:even

0 0

(11)

Sl
0(Q) and gl

0(r) are related by the Bessel transform:

Figure 1. Panel a gives the illustration of the SANS experiment on the
uniaxially stretched polymers. Panels b and c display the simulated 2D
spectrum S(Q) and the corresponding 1D coefficients Sl

0(Q) for a
Gaussian chain under an affine elongation with the stretch ratio of 2,
respectively.
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where Jl(x) is the l-order spherical Bessel function. gl
0(r) and

ψl
0(i,j;r) are related as follows:
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N
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Generally, ψ(i,j;r) only depends on |i − j|. Thus, the preceding
equation can be rewritten as

∫ ∫ ∫ψ

ψ

= | − | =
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where ψl
0(|i − j|, r) = ψl

0(i,j;r).
With eqs 15 and 12, it can transform the components of the

distribution function to those of S(Q).
S0
0(Q) and S2

0(Q). As we shall see, the isotropic term, S0
0(Q),

and the leading anisotropic term, S2
0(Q), have significant

physical meanings.
The mean-square radius of gyration of a polymer chain Rg

2 is
defined as3

∑= ⟨ − ⟩
=

R
N

r r
1

2
( )
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i jg
2

2
, 1

2

(16)

where ⟨(ri − rj)
2⟩ can be expressed as

∫ ψ⟨ − ⟩ = i jr r r r r( ) ( , ; ) di j
2 2

(17)

With eqs 8 and 11, it is straightforward to show that
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Then Rg
2 is expressed as

∫ ∫∑π ψ π= =
=

∞ ∞
R

N
r i j r r r g r r

2
( , ; ) d 2 ( ) d

i j

N

g
2

2
, 1 0

4
0
0

0

4
0
0

(19)

It is seen that Rg can be solely determined from S0
0(Q).

Y2
0(θ) has the same symmetry as the geometry of uniaxial

extension. Therefore, S2
0(Q) is the most relevant quantity that

relates to the deformation of polymers.15 It was pointed out
that the tensile stress solely depends on S2

0(Q) (or ψ2
0).16 The

stress tensor is expressed as follows:3,17

∫σ β ψ⃡ = k Tn RR R2 dB
2

(20)

where n is the number density of chains, R is the end-to-end
vector of a chain, ψ is the distribution function of R, β is
expressed as β = (3/2Nb2)1/2, and b is the average bond length
between two adjacent segments. Under the condition of
uniaxial extension along the z-axis, the tensile stress is written
as

∫ ∑σ σ β ψ

θ θ θ ϕ

− = −

×

k Tn R R R

Y R R

2 ( ) ( )

( ) d sin d d

zz xx z x
l

l

l

B
2 2 2
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0

0 2
(21)

Replacing Rz and Rx by Rcosθ and Rsinθcosϕ, and then
applying eq 8, one can find the following relation, which has
been given in a recent publication:16

∫σ σ π β ψ− = nk T R R R
8

5
( ) dzz xx B

2 4
2
0

(22)

Nonaffine Network Model for Entangled Polymers. It
is well-accepted that polymer melts will be in an entangled
state when the molecular weight is higher than a critical
value.3,17,18 In this case, each chain entangles with other chains
physically. The portion of polymer between two neighboring
points of entanglement is called a strand. Because the segment
distribution within a strand depends on the end-to-end vector
of this strand, it is useful to introduce the conditional segment
distribution function W(i,j;r,Rs), which gives the probability
that segments i and j are separated by r under the condition
that the strand ends are separated by Rs. Ullman found a
bivariate Gaussian form for W(i,j;r,Rs) for a Gaussian chain:12
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(23)

where Ns is the segment number of a strand, and wij = |i − j|/
Ns. With eq 23, the segment distribution function ψ(i,j;r),
which describes the distribution of two segments i and j within
a strand, can be written as

∫ψ ψ=i j W i jr r R R R( , ; ) ( , ; , ) ( ) ds s s (24)

where ψ(Rs) is the distribution function of Rs. ψ(Rs) has a
Gaussian form for a Gaussian chain:
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where λi (i = x, y, z) denotes the strain of the end-to-end
vector of the strand at each direction. Combining the
preceding three equations, one can obtain that
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where βs
2 = 3/2Nsb

2. The preceding equation gives the
segment distribution function for the case that i and j are
within one strand.
For the case of |i − j|≫ Ns, the constraint of the strand is no

longer important; ψ(i,j;r) reduces to a simple Gaussian form
for a Gaussian chain:
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As |i − j| increases, the expression of ψ(i,j;r) should undergo a
crossover from eq 26 to eq 27. For simplicity, we assume that
ψ(i,j;r) is expressed by eq 26 at |i − j| ≤ Ns and by eq 27 at |i −
j| > Ns.
Under the uniaxial extension along the z-axis, we have

λ λ λ= = 1/x y and λz = λ, where λ is the stretch ratio along
the z-axis. Thus, ψ(i,j;r) has the following form:

ψ
β
π

λ λ λ

β
λ λ

λ

=

×
+ − + − + −

× −
+ −

+
+ −

+
+ −

| − | ≤

i

k
jjjjjj

y

{
zzzzzz

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i

k

jjjjjj

y

{

zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

i j
w

w w w w w w

w
r

w w

r

w w

r
w w

i j N

r( , ; )

1
( / 1 )( / 1 )( 1 )

exp
/ 1 / 1

1
,

ij

ij ij ij ij ij ij

ij

x

ij ij

y

ij ij

z

ij ij

s
2 3/2

2

s
2 2 2

2

2 s
(28)

ψ
π

λ λ
λ

=
| − |

× −
| − |

+ + | − | >

i
k
jjjjj

y
{
zzzzz

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

i

k
jjjjj

y

{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

i j
i j b

i j b
r r

r
i j N

r( , ; )
3

2

exp
3

2
,x y

z

2

3/2

2
2 2

2

2 s

(29)

The relaxation times at various length scales can be quite
different. Intuitively, the structures with small length scales
relax faster than those at large length scales. Therefore, a
constant λ is not sufficient to give a complete description on
the deformation of a chain at all length scales. In fact, SANS
experiments have confirmed the length-scale dependence of
deformation in polymeric systems.7,8,19 To account for this
inhomogeneity, here we introduce a microscopic strain λij. It is
a statistical quantity that characterizes the stretch ratio of rij,
where rij is the distance vector between segments i and j at |i −
j| > Ns. Generally, the dependence of λij on |i − j| should be
smooth and monotonically increasing. We tentatively assume
the expression of λij as follows:

λ λ λ λ μ= + − − −
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where λ0 is the average stretch ratio of the end-to-end vector of
a strand, λ1 is the average stretch ratio of the end-to-end vector
of a whole chain, uij = |i − j|/N, Z = N/Ns denotes the average
number of strands per chain, and μ is a numerical factor giving
the rate of change of λij as a function of uij. As seen from the
above equation, λij smoothly and monotonically increases from
λ0 to λ1 as |i − j| increases from Ns to N. A previous SANS
study8 suggests that the microscopic strain exhibits nonaffinity
when |i − j| is close to or a little larger than the separation of

the “tube diameter” d. It depends on |i − j| and recovers the
affinity when |i − j| is much larger than d. It is seen that eq 30
is qualitatively consistent with previous experimental observa-
tions. Equation 30 seems to be arbitrary. However, it can be
found that the analysis result is not sensitive to the functional
form of λij. Other functions in which λij monotonically
approaches λ1 from λ0 as |i − j| increases from Ns to N lead
to similar analysis results.
The above model reflects the entanglement and spatial

inhomogeneity of deformed polymers. Conceptually, it is
similar to the classical theory for rubbers.20−22 In the rubber
elasticity theory, the stress tensor is determined by the average
configuration of strands.17 We assume that this conclusion also
holds in our case. For the uniaxial extension problem, the
tensile stress is of particular importance. With eq 28, one can
find ψ2

0(i,j;r) and then calculate the tensile stress with eq 22
numerically. For the above model, due to its Gaussian form,
the calculation of the tensile stress is analytical. It is
straightforward to find that
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With the preceding two equations, one can find the tensile
stress to be17

σ σ β

λ
λ

− = ⟨ ⟩ − ⟨ ⟩

= −
i
k
jjjjj

y
{
zzzzz

n k T R R R R

n k T

2 ( )

1

zz xx z z x xs B s
2

s, s, s, s,

s B 0
2
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where ns is the number density of strands. In the rubber
elasticity theory, nskBT is just the elastic modulus Ge of the
sample.17 Then we can rewrite the preceding equation as

σ σ λ
λ

− = −
i
k
jjjjj

y
{
zzzzzG

1
zz xx e 0

2

0 (34)

III. SAMPLE AND EXPERIMENT
To investigate the chain conformation of deformed polymers, we
carry out a series of SANS experiments on a polymeric system. The
sample is a mixture of protonated (h-PS) and deuterated (d-PS)
polystyrene homopolymers with a d/h ratio of 10/90 (h-PS: Mw =
197 kg/mol, Mw/Mn = 1.01; d-PS:Mw = 213 kg/mol, Mw/Mn = 1.06).
The linear viscoelastic property of the sample is characterized by
small-amplitude oscillatory shear measurements in the frequency
range 0.1−100 rad/s and at temperatures between 124 and 184 °C on
an HR2 rheometer (TA Instruments). The result at 124 °C,
constructed by employing the time−temperature superposition
principle, is plotted in Figure 2. The storage modulus G′(ω) exhibits
a plateau, indicating the existence of entanglements in our sample.
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The plateau modulus, which is found to be 2 × 105 Pa from Figure 2,
can be considered as an approximation of the elastic modulus Ge of
the sample.
To describe the data of dynamic moduli and to estimate the longest

relaxation time τt of the sample at isotropic state, we model the
relaxation modulus by a discrete spectrum:23,24

∑= τ

=

−G t g( ) e
i

N

i
t

1

/ i
r

(35)

where gi and τi are the ith modulus and characteristic time,
respectively. Nr is the number of relaxation modes and is set to be
8.24 The fitted dynamic moduli are also shown in Figure 2. The

longest relaxation time is evaluated by τt = ∫ 0
∞G(s)s ds/∫ 0

∞G(s) ds,
and the result is found to be 6.8 × 103 s.

Two sets of deformed samples have been investigated. For sample
set I, isotropic polymer melts were uniaxially stretched at 124 °C with
a constant crosshead velocity v = 8l0/τR, where l0 is the initial length
of the sample and τR is the Rouse time calculated by the Osaki
formula25,26 [τR = (6Mwη/π

2ρRT)(1.5Me/Mw)
2.4, where η is the zero-

shear viscosity,Me is the entanglement molecular weight, ρ is the mass
density of the polymer, and R is the universal gas constant]. The
extension was stopped at three macroscopic strains corresponding to
stretch ratios of λ = 1.5, 1.8, and 2.4 and then immediately quenched
to the glassy state with liquid nitrogen. For sample set II, the isotropic
polymer melts were uniaxially stretched to λ = 1.8 at 124 °C with a
constant crosshead velocity v = 8l0/τR first. The samples were allowed
to relax for different amount of time at 124 °C at the constant strain
and then immediately quenched to the glassy state. In our
experiments, <10 s was needed to decrease the temperature from
124 to 110 °C. This amount of time is smaller than τR at 124 °C by
more than 1 order. Moreover, the molecular motion is considerably
slowed well before the glass transition. Thus, we are confident that the
quenching process well freeze the conformation of the polymer chain.

The SANS spectra of the quenched glassy samples were taken at
the NGB30 SANS spectrometer at the NIST Center for Neutron
Research. The wavelength of incident neutron was 6 Å. Two different
sample-to-detector distances, 4 and 13 m, were chosen to cover a Q
range from 0.006 to 0.1 Å−1.

IV. RESULTS AND DISCUSSION
Model Fitting. The distribution function of the above-

mentioned network model is summarized as follows:
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where wij = |i − j|/Ns, uij = |i − j|/N, and
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In the preceding equations, N and Ns could be ambiguous
since the description of the polymer by discretized segments is
an artifact. Nb2 can be replaced with Nb2 = 6Rg,0

2, where Rg,0
2 is

the mean-square radius of gyration of a polymer chain
measured at isotropic state. In this study, Rg,0

2 is found to be
1202 Å2 by fitting the SANS spectrum of an isotropic sample
with the Debye function. In addition, we use Z = N/Ns instead
of Ns to be a parameter. The value of Z is found to be 15 for
the measured sample by Z = GeMw/ρRT (this relation is
slightly different in different theories3,27).18 Summarizing these
ideas, it is found that only three parameters, λ0, λ1, and μ, need
to be determined from the SANS experiment. λ0 and λ1 are
crucial in characterizing the conformation of the chain and will
be discussed in detail in the following parts. We would like to
point out that the above considerations ignore the fluctuations
of the entanglement points and the number of monomers in a
strand. The validity should be checked by examining if the

fitted values of λ0 and λ1 are quantitatively consistent with the
data of macroscopic stress and strain.
With eqs 12 and 15, one can transform the distribution

function ψ(i,j;r) given by eq 36 into S(Q) and then compare
with the measured spectra. As pointed out in previous
literature and above paragraphs, S2

0(Q) is the most relevant
coefficient that reflects the deformation of polymers at
molecular level and connects to the macroscopic rheological
behaviors. Therefore, we fit the measured S2

0(Q) to determine
the values of λ0 and λ1 for all samples. The fitting results are
shown in Figure 3. As can be seen, the fitting quality is
convincing. The fitting result of λ1 is sensitive to the data of
S2
0(Q) around the peak position, while the fitting result of λ0 is
sensitive to the data of S2

0(Q) at high Q.
λ1 and Chain Conformation. In this nonaffine network

model, λ1 denotes the average stretch ratio of the end-to-end
vector of the chain. The fitting results of λ1 are shown in Figure
4. For sample set I, the results of λ1 are seen to quantitatively
agree with the values of the macroscopic strain λ, as given in
Figure 4a. This is expected for following reasons: First of all,
the stretch rate is high enough to induce the chain stretching.14

Second, the quenching procedure was applied right after the
sample was stretched to the desired λ, so that there is no time
for λ1 to relax (the influence of the relaxation taking place at

Figure 2. Frequency dependence of the storage and loss moduli G′
and G″ of the sample at 124 °C (symbols). The solid lines denote the
curves fitted with eq 35.
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the ends of the chain within seconds could be small for a well-
entangled polymer). The excellent agreement between λ1 and λ
suggests that λ1 is a proper microscopic quantity that
characterizes the end-to-end vector of a single chain. This
result could be of particular importance, since the evolution of
the end-to-end vector of a single chain of deformed polymers is
the centerpiece of many theories of polymer dynamics.3,28,29 λ0
is seen to be smaller than λ1 from Figure 4a, which should be
due to the relaxation of the chain at small length scales during
the stretching process.

λ0 and Stress. λ0 represents the average strain of the strand
in a network model. It determines the tensile stress of a
uniaxially deformed network, as suggested by eq 34. Figure 5

gives the macroscopic stress measured by rheometry and the
microscopic stress calculated by eq 34 for all samples. The two
results exhibit similar behaviors as λ or the waiting time
changes. This agreement may be unexpected because our
network model does not contain any details about the
entanglement and interchain effect. Nevertheless, the result
shown in Figure 5 suggests that the fitting results of λ0 provide
a practical way to estimate the stress of entangled polymers
with the SANS spectra from the viewpoint of rubber elasticity.

Relaxation. The relaxation of a whole chain plays a crucial
role in determining the rheological behaviors of polymers.
Thus, examining the chain relaxation at molecular level is of
theoretical and practical importance. Figure 4b displays the
relaxations of λ1 and λ0 for the stretched sample. The fitting
result of μ is found to be around 1.6 for all cases in sample set
II and does not exhibit any significant time dependence.
Because λ1 describes the end-to-end vector of the whole chain,
its relaxation represents the longest relaxation process for a
chain in our model. From Figure 4b it is seen that the
relaxation of λ1 is indeed much slower than that of λ0. We also
plot the relaxation of Rg, calculated with eq 19, in Figure 4b.
The decay rate of Rg is found in between those of λ1 and λ0.
The relaxation of λ1 can be evaluated by phenomenological

models. We use the discrete-spectrum model given by eq 35 to
fit the decay of λ1 to isotropic state. With three relaxation
modes, we find the relaxation time τ of λ1 to be 8.9 × 103 s.
Another trial was made by considering the reptation theory for
entangled polymers.2 In this picture, the relaxation of λ1
reflects the disengagement of a chain. We tentatively fit λ1(t)
with the equation of motion for classic reptation theory:2

Figure 3. Panel a gives the measured S2
0(Q) (symbols) and the fitted

curves (solid lines) for samples that have been stretched to λ = 1.5,
1.8, and 2.4 (sample set I). Panel b gives the relaxation of the
measured S2

0(Q) (symbols) and the fitted curves (solid lines) after a
large uniaxial step-strain with λ = 1.8 (sample set II).

Figure 4. Panel a gives λ0 and λ1 as a function of the macroscopic
stretch ratio λ (sample set I). The dashed line denotes the relation of
λ1 = λ. Panel b gives the relaxation of λ0, λ1, and Rg after a large
uniaxial step strain with λ = 1.8 (sample set II). The solid line and
dashed line denote the fitted curves with the reptation theory (eq 38)
and the discrete-spectrum model, respectively.

Figure 5. Panel a gives the tensile stress as a function of the
macroscopic stretch ratio λ during the stretching process (sample set
I). Panel b gives the relaxation of the tensile stress after a large uniaxial
step strain with λ = 1.8 (sample set II). Green diamonds denote the
results calculated with eq 34 in both panels.
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The value of τ, extracted from the fit, is 8.0 × 103 s. The fitted
curves from both models are plotted in Figure 4b. The fitting
qualities are seen to be satisfactory. On the contrary, the decay
of λ0 cannot be well fitted by eq 38, as expected. For both
models, τ is found to be larger than the longest relaxation time
obtained from the linear rheology. Notice that recent SANS
studies suggest that the classic tube theory is not complete in
describing the dynamics of entangled polymers in nonlinear
region.15,16 The relaxation of the chain after a large step strain
needs further investigations.

V. CONCLUSIONS
In this work, we conducted a series of SANS experiments on
entangled polystyrene samples undergoing uniaxial deforma-
tion. The spherical harmonic expansion method with the
extension to the real space was applied to decompose the 2D
SANS spectrum into several 1D coefficients with specific
physical meanings. We improved a network model by
considering the nonaffinity of the deformation of entanglement
points to interpret the SANS data. By analyzing the leading
anisotropic coefficient S2

0(Q) and the isotropic coefficient
S0
0(Q), we were able to extract the stretch ratio of the end-to-
end vector and the radius of gyration of a single chain in
deformed polymers. In addition, our method is found to
provide a practical way to estimate the stress from the SANS
spectra through the viewpoint of rubber elasticity.
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