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Abstract

Service-oriented architecture (SOA) has been identified as a key to enabling the emerging manufacturing 
paradigms such as smart manufacturing, Industrie 4.0, and cloud manufacturing where things (i.e., 
various kinds of devices and software systems) from heterogeneous sources have to be dynamically 
connected. Data exchange standards are playing an increasingly important role to reduce risks 
associated with investments in these Industrial Internet of Things (IIoT) and adoptions of those emerging 
manufacturing paradigms.  This paper looks back into the history of the standards for carrying the 
semantics of data across systems (or things), how they are developed, maintained, and represented, and 
then presents an insight into the current trends. In particular, the paper discusses the emerging move in 
data exchange standards practices toward model-based development and usage. We present functional 
requirements for a system supporting the model-based approach and conclude with implications and 
future directions. 

Keywords:  semantics, integration, standards, history, model-based, requirements, smart 
manufacturing, service-oriented architecture

1 Introduction
Service-oriented architecture (SOA) has been identified as a key to enabling the emerging manufacturing 
paradigms such as smart manufacturing, Industrie 4.0, and cloud manufacturing where things (various 
kinds of devices and software systems) from heterogeneous sources have to be dynamically connected 
[1-2]. Communication standards, data exchange standards in particular, are playing an increasingly 
important role to reduce risks associated with investments in these Industrial Internet of Things (IIoT) 
and adoptions of those emerging manufacturing paradigms [3-4]. While information technologies are 
evolving rapidly to support different platforms used with various kinds of devices including IoT and 
services in the manufacturing enterprise, standards, however, remain time-consuming and costly to 
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develop and deploy. In other words, methodologies and technologies supporting the life-cycle of 
standards developments and uses are lagging behind the levels of efficiencies required by increasingly 
varied devices and more demanding integration requirements in manufacturing enterprises. 

This paper aims to identify a promising path forward to achieve the required increase of efficiencies in 
developing and using information standards.  The paper starts by looking back into the history of how 
data exchange standards are developed, maintained, and represented and then presents an insight into 
the current trends, based on recent developments in model-based approaches to information 
standards. Against the historical backdrop, the paper presents functional requirements and a conceptual 
design for a software system currently in development that supports a model-based approach to life-
cycle management of standards development and use.

In the history part of the paper, the evolution of standards is divided into three periods driven largely by 
the technologies used in the developments and representations of these standards. Popular 
technologies used in the deployments of these standards during those periods are also addressed. The 
three evolutionary periods overlap and include pre-to-early 90s, early 90s to late 2010s, and late 2010s 
and forward. For convenience (no scientific reason), we name these periods Stone Age, Bronze Age, and 
Iron Age.  In each of these periods, we identify the characteristics of standards and provide industrial 
standards as examples. It is important to note that despite the evolution, standards from the earlier eras 
continue to be used because of their continuous improvements, commercial preferences, legacy 
investment, and the backward-compatible capability of new information technologies.

The historical analysis of the data exchange standards tells the story of increasing need for and support 
of the model-based approach for standard development and use.  This model-based trend is key to 
managing ever-growing variety of emerging data exchange syntaxes and integration patterns alongside 
the increasing scale and complexity of manufacturing systems.  We offer insights in the need for and 
support of model-based approaches by describing advanced requirements and a conceptual design for a 
software system currently in development.  We also comment on early industrial feedback regarding the 
promise of this approach to increase integration productivity. 

In the following three sections, the evolution across the three periods is presented. Then, we argue that 
the model-based standards development and usage trend identified in the last period requires a 
radically greater software system support than is available today. The paper outlines the functional 
requirements of such a system. The core design of a system currently in development is given and early 
industrial feedback is shared, while the detailed design is left for a future paper. Finally, a conclusion and 
outlook for this work are provided.

2 Stone Age (Pre-to-Early 90s)
During this period, equipment and software systems were relatively closed and rarely provided 
accessible interfaces. Integrations between them were very expensive and characterized by rigidity (i.e., 
hard to change) because data and transmission protocols were not decoupled, and commercial 
integration platforms that are prevalent today did not exist at the time.  Most systems were customized 



to export and import files for integration using the same programming languages the business 
application was written in.  The application programming interfaces (metadata describing the data 
format) were not represented in a computer-processable form, requiring developers to complete their 
works by using spreadsheet-based mapping specifications and text documents.  

If systems were on the same computing platform, point-to-point integration code could be written to 
call available native programming interfaces. If that was not the case, data were extracted from one 
system onto a magnetic tape and a custom program was written to “crack” the data2 on the tape into 
another system, and programmers evolved by sharing COBOL Copybook specifications describing the 
formats. In worst case scenarios, a technique called screen-scraping would typically be used when it was 
not possible to extract data directly from the source program. Screen-scraping recognizes data from 
computer terminals and passes it to another system. However, screen-scraping has limitations. For 
example, it recognizes only text content and not geometric information, and it is sensitive to user 
interface layouts. 

In the mid-to-late 70s, relational databases were emerging. Applications started to be developed using 
relational databases as backend data storage. A class of technologies known as Extract, Transform, Load 
(ETL) was also emerging to move and integrate data between databases. 

Open Network Computing Remote Procedure Call (ONC-RPC) developed by Sun Microsystems in the 
mid-80s was an early incarnation of the lightweight specification for cross-platform data object 
interoperability. It was introduced in RFC 1831 that got published in 1995 [5]. On the other hand, the 
Common Object Request Broker Architecture (CORBA) standard released in 1991 [6] provided an 
improved protocol over the standard internet. However, CORBA was regarded as difficult to use and 
computationally expensive (relative to the generally available computing power at the time). It also 
faced the competition from many emerging internet-based technologies during the next evolutionary 
period (Bronze Age, discussed in the next section).  Both RPC and CORBA provided the Interface 
Definition Language which aimed to describe data in programming interfaces, and generate the targeted 
programming codes that could be augmented to finalize their functional logic.

In terms of data semantics, one of the first standards for manufacturing data exchange was the standard 
for exchanging product design data. First, it was the American National Standards Institute’s (ANSI) 
Initial Graphics Exchange Specification (IGES) during the 1980s [7], which was then morphed into the 
Standard for Exchange of Product data (STEP), an ISO 10303 standard started in the early 1990s [8].

Another important manufacturing data exchange standard developed in this era was the ANSI X12 
Electronic Data Interchange (EDI). It was also known as ASC X12 EDI [9]. The international standard 
version of it was United Nations/Electronic Data Interchange for Administration, Commerce and 
Transport (UN/EDIFACT). While EDI primarily focused on business-to-business, supply chain and finance 
data exchange, the X12E Product Data Subcommittee developed numerous standards to include Report 
of Test Results (863), Product Specification (841) that could embed an IGES payload, Nonconformance 

2 To this day, some industries, such as the mortgage industry, still use the “tape cracking” term, reflecting the data 
mapping needs in the earliest days of mortgage loan portfolio acquisitions.



Report (842) for report of defects and corrective action, and other B2B transactions applicable to 
manufacturing engineering. Despite a computer accessible EDI data dictionary, in order to be 
interoperable, trading partners and systems must agree on an implementation guideline, and 
subset/profile of the standard, typically documented in a textual format. In early days, EDI messages 
were typically transferred over slow telephone modems to and from dedicated networks called Value-
added Networks (VANs). VAN services were expensive, charging per transaction and per byte 
transferred. Therefore, EDI was designed as a compressed message format, to save bits and bytes3. 
Because of this and other reasons such as its mainframe era’s batch processing inclination, EDI 
standards are rather cryptic and hard to use. 

Data exchange standards in this era were typically specified in non-computer-processable syntaxes. The 
exchange file formats used fixed-width and comma-delimited representations. A human had to read the 
textual specification and develop custom code to parse (i.e., post-process) the received data per 
message type. Software developed based on this type of specification was prone to misinterpretations 
and costly to maintain when the standard changed. STEP was one of the first standards providing the 
specification in the form of computer processable schemas using EXPRESS language [10]. However, 
EXPRESS has not gained adoption beyond the STEP community. Perhaps one of the reasons is because 
the syntaxes of the specification and its instance differ and require different processing software. STEP 
content can be transferred as a file via the export and import functions in a computer-aided design 
software, email, or a standard application programming interface called Standard Data Access Interface 
(SDAI).  In X12, the Standard Exchange Format, eventually emerged to exchange and configure EDI 
Translation software, but as X12 began to fade away, its usage also did – however its concepts remained 
valid.

In summary, the Stone Age is characterized by inflexible integrations that are difficult and costly to 
implement and change. Semantic data exchange standards were emerging, but the specifications were 
largely not computer interpretable. It should be noted that phone and fax were also used a lot, and are 
still in use today, to communicate both supply chain and design data. Optical Character Recognition 
(OCR) technologies were also developed to digitize data from a fax machine. These technologies are 
ubiquitous and inexpensive in term of a transfer medium, but the burden of data processing and risks of 
errors are very high. The notions of versioning, traceability, and usage model, which are key to achieving 
efficiencies of standards life-cycle management, were rudimentary.  Table 1 below summarizes the 
essence of the Stone Age standards.

3 For example, EDI has an implied decimal type often used to carry monetary amount information where 1250 shall be 
interpreted as 12.50. The intention is to save one byte representing the dot character.



Table 1: Summary of the Stone Age standard developments

Data 
Exchange 
Standards

Forms of 
Specifications

Exchange 
Formats

Transfer 
Technologies

Standards life-cycle 
management

EDI Textual 
documents

Text file with 
varying 
delimiters

File 
Import/Export, 
EDI VAN, Email, 
ETL, ONC-RPC, 
CORBA, Phone, 
Fax

Ad hoc version 
management and little-to-
no traceability to 
requirements. Standards 
level of versioning is at the 
whole suite or 
implementation guide 
level. Implementation 
guide provides an informal 
usage model with informal 
connection to the target 
integration scenario and its 
business process. 

STEP EXPRESS 
language

STEP file 
exchange 
format, 
Standard Data 
Access Interface 
(SDAI)

3 Bronze Age (Early 90s to late 2010s)
Bronze Age is best characterized by the ubiquitous availability of internet and the emergence of the 
Extensible Markup Language (XML) [11] that provide a basis for describing application interfaces in a 
computer processable representation. Several data transfer technologies were developed in this era, 
exploiting the inexpensive and widely available internet as a transfer medium. XML also gained a 
significant momentum as a favorable syntax for data exchanges, particularly gaining momentum when 
the XML Schema specification [12] were released, replacing the Document Type Definition (DTD) [13] 
predecessor. Like DTD, XML Schema allows for data exchange standards to be specified in a computer-
interpretable representation; however, different from DTD, XML Schema uses the XML syntax itself and 
allows for the notion of namespace, enabling data exchange standards to be distributed, modularized 
and avoiding name-clashing across different domains or vocabulary sets. Coupled with the open source 
boom occurring in this period, XML-related technologies enjoyed support of many open source projects.

With XML and XML Schema, there was an explosion of data exchange standards in various domains such 
as Financial, Human Resources, Manufacturing and Supply Chain, Legal, Math, to name a few. Examples 
of standards in the manufacturing and supply chain developed during this period are the Open 
Application Groups Integration Specification (OAGIS) [14], Universal Business Language (UBL) [15], 
FIATECH Automating Equipment Information Exchange [16], and ISO 15926 – life cycle data integration 
of process plants [17]. These aforementioned standards focus primarily on enterprise business and 
engineering information while MTConnect [18] and OPC Unified Architecture [19] along with its 
companion specifications are standards focusing on exchanging statuses of manufacturing equipment.

XML and internet also fueled the booming of integration and transfer technologies. Several message-
oriented middleware technologies for application-to-application (A2A) integration within an enterprise 
were developed such as publish-and-subscribe and message queuing that allows for loosely coupled 



integrations. For business-to-business (B2B) integration across enterprises, there were, for example, 
Electronic Data Interchange over Internet (EDIINT also known as AS1 and AS2 – both aimed to replace 
the expensive the Value-Added-Networks (VANs) protocol) [20] and the United Nations Center for Trade 
Facilitation and Electronic Business XML Messaging Specification (UN/CEFACT ebXML Messaging 
Specification or ebMS for short, which later became an OASIS standard) [21]. Software applications 
started to expose their functions through native, platform-specific application programming interfaces 
(APIs) or platform-independent ones. CORBA version 2 made available its Internet InterORB protocol 
allowing for the platform-independent interoperability over the internet [22], only to be overshadowed 
by the XML-based Web Services technology stack including Simple Object Access Protocol (SOAP), Web 
Services Description Language (WSDL), and Business Process Execution Language (BPEL) [23-25]. 

At the same time when XML and surrounding technologies emerged, and seemingly ‘blamed the syntax 
and the data transfer technology’, parallel efforts in X12 and UN/ECE (United Nations Economic 
Commission for Europe) focused on improving the ‘requirements’, specifically using IDEF modeling 
techniques to model the business processes (IDEF-0) and the information (IDEF-1X) in the Business and 
Information Modeling work groups in joint committees.  Over time, this morphed into the UN/CEFACT 
Modelling Methodology (UMM) [26] using the Unified Modeling Language (UML) [27] to model the 
business and data exchanges.  The RosettaNet Business Collaboration Framework [28] and UMM 
merged at the time of the Electronic Business XML (ebXML) initiative in 1999 and produced several 
model-driven specifications.  But the WSDL and BPEL technology hype quickly over-shadowed this effort, 
and vendor tools shifted away from a top-down model-driven/ contract-first approach to a bottom-up, 
code-first approach.

Web services technology stack made the service-oriented style integration popular, particularly with the 
Enterprise Service Bus (ESB) technology. ESB allows abstract services to be defined and it routed service 
invocations to appropriate transformations, protocols, and target application instances in a stateless 
manner.  OASIS’ Business Process Execution Language (BPEL) emerged as a standards-based approach to 
define orchestrations across multiple business services, where choreography is required, sometimes in a 
compensatory manner when a given service endpoint could not be reached and the entire ‘transaction’ 
required rollback.  Everything became XML-centric; the business service interfaces, the execution of 
data transformation (via the Extensible Stylesheet Language (XSL) family4), integration process (BPEL), 
and even the configuration files in application servers such as Weblogic, Websphere, Mulesoft and 
JBoss.  XML usage increased, the horsepower to execute these platforms also demanded more 
computing resources as well as energy to run the data center.  Software vendors charged a lot of money 
for these platforms, making them out of reach of the small and medium-sized enterprises.

While XML was becoming ubiquitous for the data exchange syntax in the late 1990s, the late 2000s 
brought the proliferations of smartphones and tablets, and 2010s also witnessed the explosion of IoT 
devices. Consequently, the XML and XML-based web services technologies and integration patterns that 
require large screen and bandwidth became too heavy for those small, mobile devices.  The 
miniaturization of devices required a smaller footprint for each data exchange interaction (See Figure 1).  

4 See https://www.w3.org/Style/XSL/



Javascript Simple Object Notation (JSON) [29] and the lightweight Representational State Transfer (REST) 
web services stack such as Open API [30] and ODATA [31] surfaced as another popular choice for 
semantic data standards and transfer technologies, respectively. While some argued that a schema 
language is not needed for JSON, JSON Schema [32] is currently being developed for declaring the REST 
web services.

Figure 1: Traditional, desktop Vs. mobile, tablet interaction pattern 

JSON was not the only other major syntax of choice. W3C, the same consortium that created XML and 
XML Schema, published the Resource Description Framework (RDF) specification [33], which were 
followed by the Ontology Web Language (OWL) [34]. RDF gave birth to the notions of semantic web and 
linked data. While RDF allows for a graph of data to be linked via URLs, OWL was regarded as a 
mechanism for providing formal semantics to data that can enhance computer intelligence. The advent 
of RDF and OWL resulted in a number of other standard syntaxes to exchange data, such as RDF/XML, 
OWL/XML, Manchester Syntax, and the latest one being JSON-LD (or JSON for Linked Data) [35].

In conclusion, the Bronze Age saw less expensive internet-based data transfer technologies and an 
explosion of computer interpretable interface descriptions and data exchange standards that are mostly 
delivered in computing platform independent specifications. Free, open source software tools are 
available to interpret these standards and process the corresponding data in a scalable way that is not 
specific to a particular message type. These are significant improvements over the previous period. 
However, there has been a proliferation of data representation syntaxes; therefore, several data 
exchange standards explored model-based, syntax independent delivery of the specifications at the end 
of this period and the dawn of the next. The notions of versioning, traceability, and usage models for 
standards are becoming more recognized as key capabilities to meet emerging requirements laid on 
standards and their life-cycle management.  Table 2 summarizes examples of data exchange standards 
and their (new) characteristics before we move on to the discussion of the next period.



Table 2: Summary of the Bronze Age standard developments

Data 
Exchange 
Standards

Forms of 
Specifications

Exchange 
Formats

Transfer 
Technologies

Standards life-cycle 
management

STEP EXPRESS EXPRESS-XML Message-
oriented 
Middleware, 
EDIINT with AS1 
and AS2, RMI-
IIOP, Web 
Services (SOAP, 
WSDL, BPEL, 
ebXML), 
Enterprise 
Service Bus 
(ESB), REST 

Standards continue to lack 
traceability as most 
requirements are thrown 
away after the standard has 
been published. Level of 
versioning is at the release 
and file/module level.  This 
is a significant threshold 
because syntax specific 
delivery of the standards 
does not lend itself well to 
more detailed versioning so 
that changes can be easily 
recognized and managed. 
There is still lack of formal 
usage model due to 
missing formal connection 
to the integration scenarios 
and their business 
processes.

OAGIS DTD, XML 
Schema

XML, JSON

ISO 15926 XML Schema, 
OWL

XML, OWL/RDF, 
JSON-LD

MTConnect XML Schema XML

OPC UA 
Companion 
Specificatio
ns

XML Schema Binary, XML OPC UA5

4 Iron Age (Late 2010s and Forward)
In the Iron Age, we discuss recent developments and trends in the data exchange standards. As 
indicated in the previous section, toward the end of the Bronze Age there has been a proliferation of 
data exchange syntaxes for various reasons such as size advantage, computational speed, inference 
support, specific hypermedia support (in JSON Schema), related technology supports (e.g., XPATH [36], 
XQuery  [37], and XSLT [38] supports in XML), or even human readability. As a result of the proliferation, 
standards development organizations (SDOs) are seen gravitating toward the model-based syntax-
independent delivery of their data exchange standards so that the standards can be made future-proof 
against new syntaxes. 

For example, there is an initiative within the STEP community to use the system modeling language, 
SysML [39], to model certain parts of the standard, from which the computer processable OWL and XML 
Schema expressions can be generated. Another example is an ongoing effort to use the model-driven 
architecture (MDA) [40] to develop and deliver the OAGIS standard in a syntax independent form along 

5 Typically, data exchange standards are agnostic to transfer technologies. However, it is not always the case. OPC 
Foundation defines its own transmission protocol.



with the platform/syntax specific production engines.  The effort is occurring under the Semantic 
Refinement Methods and Tools working group (SRT WG) [41]. 

The motivation of the WG is not only to make OAGIS future-proof, but also to improve the way data 
exchange standards are developed and used. In terms of the development, the SRT WG aims at better 
supporting the traditionally bottom-up development of the OAGIS standard by providing ways to collect, 
analyze, and utilize the usage (or contextual) data, and to document and enhance the existing standard 
in a traceable fashion.  In terms of the usage, the WG is aiming at simplifying the OAGIS implementation 
by deploying a context-based methodology to document and manage the life-cycle of OAGIS 
implementation profiles. The implementation profile provides the usage data that are fed into the 
standards development. Further detail about this is provided in Section 5.2.2.

Providing a data exchange standard in a syntax-independent representation does not mean simply 
converting the legacy syntax-specific form of the standard into another (more) syntax neutral form and 
vice versa. Additional methods and tools are necessary to enable the grounding from the syntax 
independent form to a particular syntax-specific form. One of the reasons is that there is a requirement 
to support various integration patterns, e.g., large, aggregated services vs. small, chattier services. In the 
next section, we outline functional requirements and underlying approaches of a software system to 
support the model-based standards life-cycle management.

Another emerging trend worth mentioning is the ontology-based data standards. There are increasing 
number of manufacturing system researches in this era pointed to the needs for such standards such as 
in [42-44], to name a few. In fact, within Journal of Manufacturing Systems there are 35 papers 
published with the keyword “ontology” in the 10 year of this Iron Age compared to only 7 in the 30 
years of the prior Bronze Age. 

An ontology is a kind of data model concerned with capturing facts about the entities using computer 
interpretable logical expressions.  An ontology model is typically different from other kinds of models 
that are intended for modeling the same kind of data. Consequently, they have different computational 
characteristics and can outperform each other for different purposes.

To illustrate the differences of different types of models and their use to satisfy varied requirements, 
consider Figure 2, which illustrates an example of three different kinds of models that can represent the 
same data. The physical model is typically flat and contains little and imprecise formal semantics, where 
one entity is overloaded with several similar concepts and supporting different kinds of transactions. 
Specifically, the Order Type property is left open. The valid values are defined informally or embedded in 
a software application; and the cardinality between the Order and OrderLine is set with 0..n as in certain 
cases it is necessary for an order to be temporarily created without an order line. Physical models are 
typically laden with extraneous entities (tables) and properties (columns). That is, a physical model 
typically does not obey the reality in order to allow for favorable data access performance. For these 
reasons a physical model is typically used for data storage and retrieval.

On the other hand, the logical model spells out different concepts that exist in the model and obey the 
reality more than the physical model. For example, the Order in the physical model may indeed store 



two different order types and hence becomes two separate entities - Purchase Order and Blanket 
Purchase Order; and the reality is that they both must have at least one order line. The reality in the 
logical model is typically represented in a schema language. Schema languages focus on enabling data 
structures and data types to be defined and validated in a computationally efficient way. For these 
reasons, a logical model is suited for use by programming interfaces or services to declare the type of 
data or transactions processable by them. It should be noted that some data models may fall 
somewhere in between the physical model and logical model to satisfy different sets of requirements. 
Data exchange standards are an example. They typically spell out concepts but include only weak formal 
semantics (e.g., always 0-n cardinality) to allow for specializations for various transactions and 
integration patterns.

Finally, the ontology model, as shown in the example, not only spells out the entities but also defines a 
logical statement for each concept that can determine whether a piece of data, declared as an Order, is 
indeed a regular purchase order or a blanket purchase order by precisely defining the fact that the latter 
includes a time period. An ontology model may have additional statements that have little to do with 
the information exchange transaction but that gives a precise meaning to an entity. For example, 
because not all cars have a transportation function (as in a broken car), the entity car cannot be 
modeled with an expression that it must have at least one transportation function. While ontologically 
modeling it with zero or more transportation function is possible, that does not provide a strong 
semantics that may be needed for application integration. Therefore, an additional expression may be 
added that all cars must have an ‘intended function’ that is a transportation function. 

Figure 2: Examples of different kinds of data models

In the past few years, there has been an increasing number of success stories regarding the use of 
ontological models to gain more value from data in the biomedical domain [45-48], financial domain 
[49], and also the engineering domain [50-59]. To do so, data from various sources need to be fused into 
an ontology model where an automated reasoner can be applied to gain more insight from the data. In 
the industrial manufacturing and engineering domain, however, ontology models have been developed 
by various academic research projects. They are fragmented, not interoperable; and most of them never 
reach the consensus standard status (perhaps with one exception – the ISO 15926) [60]. A new 
community initiative, called Industrial Ontologies Foundry (IOF), has been recently formed aiming to 
create an ontology development best practice and a suite of reference ontologies for the manufacturing 
engineering domain with the aim to reap the benefit of ontology-based approaches enjoyed by the 
biomedical and financial industries [61].



In terms of the transfer technology, the wild-wild-west REST-based services that were emerging toward 
the end of the previous era have been formalized into standards. However, two major, competing 
standards are in the race, Swagger (a.k.a. Open API 3.0) [30] and ODATA [31]. In addition, this era sees 
integration tools moving to the cloud, i.e., integration-as-a-service. Finally, as the ontology, whose data 
structure is a graph, sees increasing interests, there are also increasing graph database offerings with 
significant performance improvements [62-64]. Research has also demonstrated success in the real-time 
relational-to-graph data access [65].

Table 3 summarizes the Iron Age developments. One of the most important developments in the Iron 
Age is that the semantic data standards are moving toward model-based development and usage to 
better support emerging data exchange syntaxes and integration patterns. Consequently, the notions of 
versioning, traceability, and usage model of standards are becoming enabled to support challenging 
standards development and usage requirements.  In the rest of the paper, we provide the functional 
requirements and the core design of a software system, dubbed MSSRT, developed within the OAGi SRT 
WG. The resulting system will enable such model-based life cycle management and demonstrate the 
promise for increase in integration productivity. 

Table 3: Summary of the Iron Age standard developments

Data 
Exchange 
Standards

Forms of 
Specifications

Exchange 
Formats

Transfer 
Technologies

Standards life-cycle 
management

STEP SysML => 
EXPRESS, OWL, 
XML Schema, 
etc.

OWL/RDF, 
JSON-LD, 
Protobuf [66], 
etc.

Cloud-based 
integration tools, 
Swagger (Open 
API 3.0) and 
ODATA for REST

The model-based 
standards idea is started to 
include levels of versioning 
at the component level.  
Also, it includes the formal 
representation of the 
usage model along with a 
semi-formal linkage to a 
business process model 
[68]. Standard catalog of 
business processes was 
also attempted with the 
purpose to enable a 
formal, sharable semantics 
usage context, which 
allows  traceability as 
business process-specific 
standards requirements 
are identified and 
maintained [72-73].  These 
ideas are only starting to 
go into implementation 
[41].

OAGIS CCS [68], RDB 
=> XML Schema, 
JSON Schema, 
OWL, etc.

IOF OWL OWL/RDF, 
JSON-LD, etc.



5 The MSSRT Functional Requirements
Message Standard Semantic Refinement Tool (MSSRT) is a software system aiming at realizing the 
model-based standards life-cycle management envisioned in the Iron Age (Table 3). It is currently the 
main work item within the OAGi Semantic Refinement Methods and Tools WG [41]. The purpose of this 
section is to describe the functional requirements of the MSSRT. But a user story is first provided to help 
the reader put in context the needs of those functions. 

5.1 User story6

Good Food Enterprise (GFE) is a diversified foods and animal feed manufacturer. For quality, safety, and 
regulatory compliance purposes, GFE is required to conduct lab tests on samples of finished goods and 
track the test results to batch manufacturing process instances. GFE operates its own test labs at each 
manufacturing plant, as well as outsources to third party test labs when manufacturing plant does not 
have the capabilities. As part of its digitalization, GFE wants to convert the current phone-, fax-, and 
email-based communication to automated electronic data exchange. Productivity and efficiency gains 
are expected due to 1) elimination of manual reentry of data and early availability of critical time 
sensitive tests data allowing for faster release of product into inventory, 2) improving on-time delivery 
to its customers, 3) increased product safety, and 4) better management of space in finished goods 
staging area. 

Additional Enterprise Architecture analysis showed that their finance department needed help 
improving the cash application processes for customer payments. GFE had multiple channels leveraging 
point-to-point integrations for the same type of information, including an aging COBOL copybook 
banking formats, ANSI X12, and emails with CSV and PDF attachments.  To provide a more resilient way 
to insulate their business partner’s experience of GFE various ERP upgrades, GFE felt providing a 
common, canonical service-oriented interface front-ending their ERPs would enable expansion of more 
channels and reduce the total costs of ownership of these integrations. GFE made the strategic decision 
to rewrite existing point-to-point integrations using the classic Gang of Four façade design pattern [74] 
and find an open standard to represent the vocabulary.   

GFE previously attempted to use a vendor’s library of messages and built several integrations leveraging 
the canonical pattern for logistics and formulation, but the vendor eventually dropped the library as a 
product.  GFE was left with unsupported integrations and needed to rewrite.  GFE felt that leveraging a 
standards-based library was critical for the long haul.  After review of other standard vocabularies, 
OAGIS was selected based on its broad coverage of standard messages supporting business process 
areas in manufacturing, order management, and finance. In addition, the Enterprise Architecture team 
had awareness that OAGIS was built upon a set of core components compliant with UN/CEFACT 
international standards, that enabled creation of new messages to support these unsupported 
integrations for logistics and expand into product safety and quality needs. GFE was willing to make the 
investment of time to help build out those new capabilities and other initiatives that address the 
changing IT landscape leveraging mobile computing devices, JSON, and Internet of Things.

6 The user story is based on a real business requirement, however, simplified and masked for brevity and confidentiality 
purposes.



OAGIS comes with a set of benefits and challenges at the same time.  In one view, since OAGIS is a 
horizontal standard covering multiple industry and business processes requirements, it has collected 
over the last 20+ years an extremely large set of data elements assembled into components to draw 
upon and reuse.  The negative is that the GFE developers felt that OAGIS is ‘bloated’ for the same 
reasons and the middleware tools buckled as a result of the extremely large schemas.  Therefore, it 
became an imperative to be able to ‘profile’; i.e., select a subset of fields for the specific usage to, 
pairing it down to a smaller subset needed for the enterprise and /or the business process context it is 
used.  For example, GFE noticed data elements that seemed to come from other industries, and not 
applicable to their industry, such as specifying the specific certifications and skills/qualifications of an 
inspector of finished goods.  Often the representation of a Party only required a handful of fields; such 
as the name, identifiers such as account identifiers, basic location address information, and key contact 
information such as phone and email identifiers. Figure 3 shows the first level children of the customer 
party data structure (fully expanded it has about 8000 descendants). 

Figure 3: Illustration of partial OAGIS customer party canonical data structure (whole tree) and a usage specification (checked 
tree nodes and details on the right side)

Despite the broad coverage of cross-industry business processes, no standard covers every company’s 
business context for usage of a specific message.  Fortunately, the OAGIS standard provided an eloquent 
extension mechanism to add existing components to areas of a message.  In some cases, GFE need to 
extend with new data elements and components and submit them into the standard.  For example, 
while the Remittance Advice message can cover basic customer payments to specific GFE invoices, they 
needed additional data elements related to customer allowances such as retail coupons and 
promotions, and occasional shipment disputes such as quantity mismatches, e.g., due to damaged 
finished goods packaging during shipping, discovered during the customer’s PO receipt process. 

For product safety test related information, OAGIS only had Inspect Delivery and Item Nonconformance 
messages that covered incoming inspection of vendor deliveries.  Other messages needed to be 



developed to cover in-process manufacturing and finished goods testing, including Test Method, Test 
Specification, Inspection Order, and Test Results. Process variations when interacting with internal vs. 
external test labs needed to be addressed such as contract references when sending Inspection Orders 
for submitted samples to an external test lab.  

GFE has also been evangelizing using Business Processing Modeling Notation to help identify the 
business context usage for these messages and help accelerate the profiling of OAGIS messages.  
Ensuring these models also define key decision tasks that identify the variety of data elements needed 
and key test cases for these integrations.  It is part of their Enterprise Architecture principle where top-
down strategy and process meets bottom-up data and technology.

At the IT infrastructure level, GFE has been migrating project by project its legacy XML-centric 
middleware software license to more REST JSON centric middleware on a Platform-as-a-Service, 
significantly aimed to reduce its hardware and licensing costs, as well as speed of delivery of integration 
solutions.  This changing IT landscape enables more light-weight services to its partners and suppliers 
using JSON syntax and the emerging trends of mobile computing devices, IoT and AI.   The business 
intelligences gained by tapping into real-time integrations for near real-time dashboards and intelligence 
leveraging JSON on Hadoop is part of GFE’s strategic IT direction.  A common vocabulary representation 
in JSON helps jumpstart that strategy.

From the above story, we can derive the following high-level requirements. The text in square brackets 
relates each requirement back to the user story.

A. GFE needs the ability to analyze standard business objects - what the purposes of their 
subcomponents and data elements are; why the same subcomponents and data elements were 
assigned in multiple places, why some of them were deprecated and replaced. [In Figure 3, one 
can notice that standard adopters have to figure out the differences between similar data 
elements such as Identifier, Party Identifier Set, Tax Identifier, Tax Identifier Set - all-in-all the 
Customer Party has at least 12 ways to identified. The Customer Party might have started out 
having Location child, which in turn has Contact as a child – this facilitate a representation of an 
organization with multiple locations each with different contact information. Later on, a new 
requirement might have necessitated that a Contact be added directly as a child of the 
Customer Party to represent the global/default contact for a customer party. A tool support to 
help record this type of lineage can help the standard user understand the purpose of specific 
data element rather than a general description (e.g., about Contact).]  

B. GFE needs the ability to import (its legacy proprietary) schemas for gap analysis against a 
(OAGIS) standard. [In the user story, GFE had the legacy COBOL copybook banking formats7 that 
need to be imported and reconcile with OAGIS Remittance Advice – a message used to order a 
bank to make a payment on GFE behalf.] 

C. GFE needs to collaborate with the standard consortium and its members to extend existing and 
develop new standard business objects. [In the user story, GFE needed to work with other OAGi 

7  https://www.ibm.com/support/knowledgecenter/en/SSMQ4D_3.0.0/documentation/cobol_rcg_examplecopybook.html - 
example COBOL copybook data structure definition.



members to add new business objects to OAGIS including Test Method, Test Specification, 
Inspection Order, and Test Result. In addition, it needed to enhance Item Nonconformance, 
which was originally developed by discrete manufacturing members, to address batch 
manufacturing requirements. Specifically, the enhancement is related to the ability to capture a 
3rd party test lab.] 

D. Integration developers need the ability to search and reuse existing shared components and 
data elements. [As in C, when GFE has a requirement to capture a 3rd party test lab, OAGIS 
already has many types of party elements that GFE may seek to reuse such as Supplier Party, 
Reviewer Party, Vendor Party, to name a few. It was determined that none is appropriate, 
therefore, a new data element, Analyzing Party, was created after rationalizing with business 
process and other OAGi members.] 

E. Enterprise architect needs the ability to review and approve/disapprove changes or extensions 
made to schemas and service descriptions. Enterprise architects are typically among 
volunteered standard developers who help develop and manage releases of the standard. [The 
gap analysis in B and the enhancement in D were done first by integration developers that were 
divided into groups handling different objects. For example, one team handled a new object 
development for Test Result and another handled Item Nonconformance. Both objects had a 
requirement to capture the 3rd party test lab information. Without coordination by an enterprise 
architect they might create different data elements to represent the same semantics. The tool 
needs to support review and approval workflow to avoid such issue both for standard and usage 
specification developments.]

F. GFE development cycle will be shorter than the standard development cycle; hence, it will need 
the ability to manage its extensions, submission of those extensions to the standard, and 
alignment with new standard releases. [As described in D, Item Nonconformance needed to be 
enhanced to address GFE requirements. Release cycle of OAGIS was typically 6-month. GFE used 
OAGIS extension (see the Extension node in Figure 3) to capture the 3rd party test lab 
information in OAGIS 10.0 to timely address its integration project need. GFE later submitted 
the extension, which was call Testing Party, and work with other OAGi members to incorporate 
that into a new OAGIS 10.1 release. Standard members incorporated such requirement into 
OAGIS release 10.1 but call it Analysing Party. A tool should enable such submission to the 
standard body in a common representation. It should also provide a traceability for GFE and 
other companies that the GFE’s submitted Testing Party became Analysing Party in the 
standard.] 

G. GFE needs to support integrations in both XML and JSON as well as any emerging syntax that 
will eventually come; therefore, they need the ability to use standard semantic specifications in 
a syntax independent form. [In the user story, GFE had to maintain IT infrastructures that 
supported both XML-centric integration as well as new one that support JSON-centric 
integration. Therefore, a new generation of standard tool should allow GFE to manipulate 
standards in a syntax independent form rather than repeating works for different syntaxes. GFE 
should be able to generate XML Schema or JSON Schema for deployment into an integration 
tool for the syntax independent form.]



H. Since the digitalization project will use a service-oriented architecture and support multiple 
integration platforms, GFE needs the ability to generate service descriptions, e.g., for SOAP and 
REST styles web services. [Similar to G, XML-centric IT infrastructures are based on the SOAP 
web services standard, while JSON-centric infrastructures are based on REST style web services. 
A standard tool should help GFE in dealing with such technology transition by abstracting the 
service information from technology specifics such that most parts of the service description can 
be automatically generated.]

I. GFE needs the ability to model variations of lab testing business processes. [In the user story, 
Inspection Order may be sent to internal or external test labs to request testing of sampled 
products or ingredients. Therefore, there is a variation both at the business process and 
message levels. At the business process level, there is a need for an additional step to set up the 
testing service contract (dealing with price and payment) for the external test lab. At the 
message level, the Inspection Order needs to be able to carry the reference to the service 
contract for the external test lab but to the business unit and cost center for the internal lab.]  

J. Enterprise architects need the ability to associate the OAGIS messages to specific business 
process models, and general business context, and help understand how data maps to the 
processes. [This requirement refers to the need to capture the relationship between the 
business and message level as described in I.] 

K. GFE needs the ability to create usage specifications for same business objects that are used in 
different situations (e.g., internal vs. external test lab). [An example of variation in the canonical 
Inspection Order business object as pointed out in I would result in two usage specifications for 
the Inspection Order. The external test lab usage specification would permit the contract 
reference data element and disallow the business unit and cost center reference data elements/ 
The usage specification for the internal test lab case would have the opposite constraints. Figure 
3 also partially illustrates the canonical model of Customer Party. GFE created a usage 
specification that includes only the data elements checked.]  

L. As GFE digitalization effort grows, it will have growing number of usage specifications, service 
descriptions, and business processes, whose business activities overlap and can reuse existing 
services. GFE needs a framework and tool to apply context meta-data, search, and discover 
existing usage and service specifications for reuses (in short GFE needs an integration asset life-
cycle management tool). [The last paragraph of the user story described that GFE planned to 
expand integrations to IoT device and enabling AI. The same messages used for business process 
improvements would also be used for enabling AI. For example, a Production Order message 
can be used in a workflow not only to send order from ERP to MES but also for scheduling. A 
scheduling team would want to know that such information service already exists so that there 
is no duplicate effort to create another Production Order service. An example of context meta-
data includes the business units that had deployed and business processes that used such 
information service.] 

This section has outlined a user story, from which functional requirements are derived. In the next 
section, detailed MSSRT functions that address these requirements are described. 



5.2 MSSRT functions
The MSSRT functions can be grouped into two categories, standard development functionality and 
standard usage functionality, illustrated as the mechanisms supporting the two activities in Figure 4 
using the IDEF0 ICOM Activity Diagram8 [67]. The standard development functionality allows for 
managing the life cycle of the baseline standard (i.e., a canonical model, which is a common data 
structure and associated semantics such as OAGIS independent of any usage context). This functionality 
provides the canonical model to the standard usage functionality. The standard usage functionality 
provides for the life cycle management of the standard usage models (i.e., a profile, which is a subset of 
and restrictions on the canonical model for a particular usage context), which are based on the 
canonical model. Conversely, usage models are fed into the standard development functionality to be 
used for developing a new release of the canonical model. All functions operate on a syntax-
independent representation, except those that operate on the canonical model and the usage model for 
a platform- and syntax-specific deployment of the models. 

Figure 4: Activity model showing the model-based standard life cycle management activities and supporting functionalities

Underneath the two functionalities are the repositories of the canonical model and usage models in a 
syntax independent form. It is important to note that logically (i.e., in a particular release) there is a 
single canonical model, from which a number of usage models are derived. A usage model, also called a 
profiled model, is a subset of the canonical model, with context information and, optionally, with 
semantic restrictions (such as additional documentation, code lists and data type restrictions, and data 
element dependency rules), and extensions. These concepts, except the extensions, make up the core 
design of the MSSRT and they are based on the UN/CEFACT Core Component Specification (CCS) [68]. 
Details about the MSSRT core design will be discussed in section 6. 

8 IDEF0 models an activity as a box with ICOM, where ‘I’ refer to an Input (an arrow from the left), ‘C’ refers to a 
Control (arrow from the top, providing specifications or constraints), ‘O’ refers to an Output (arrow coming out on 
the right), and ‘M’ refers to a mechanism representing a tool or method (arrow from the bottom).



Extension has been an essential, practical concept in OAGIS since its inception. Although the (syntax 
specific) design around extension has evolved over major releases of the standard, its main purpose 
remains unchanged; that is, it allows for an enterprise deploying OAGIS to add data elements to the 
canonical model either because they are proprietary or represent additional requirements not satisfied 
by the current version of the standard. The MSSRT adds an additional purpose to the extension as a 
mechanism for standard users to submit an enhancement request to the standard. The MSSRT records 
the submissions, which provide traceable information about changes made to the standard. In the 
following subsections, details of the two core sets of MSSRT functions are described. Mapping to 
supported functional requirements outlined in the previous subsection is also provided.

5.2.1 Standard development functionality
The standard development functionality can be further classified into a syntax independent and a syntax 
specific standard management functionality as shown in Figure 5. 

5.2.1.1 Syntax independent standards management functionality.

The following highlights core functions in the syntax independent functionality.

5.2.1.1.1 Create, Update, Revise, Delete, Discard (or Purge) and Deprecate parts of the canonical 
model9 (Req. C)

In addition to Create and Update that have intuitive meanings, Revise is the ability of the system to 
retain history of changes to parts of the model. Traditionally, data exchange standards are only 
versioned at the release or file level. The MSSRT tracks revisions down to the individual data structure 
level. Delete is different from Discard. In the former case, the system still keeps the record of the 
deleted entity as part of the revision; while the latter case means a permanent removal. Both Delete and 
Discard are allowed only in certain situations. Several conditions must be considered when discarding a 
component, particularly to ensure the integrity of existing relationships. Deprecate is an important 
feature that allows for correction to the canonical model while still maintaining the backward 
compatibility. An advanced function should be available to formally track the relationship between the 
deprecated entity and the replacement entity.

5.2.1.1.2 Review  (Req. C)
To allow for proper governance, parts of the canonical model that are being created or revised shall go 
through a review process. In the MSSRT, states such as Editing, Candidate, and Published are available 
for governance purposes. In the Editing state the system locks the entity to permit changes to the entity 
only by the owner. The owner subjects the entity for review and comments in the Candidate state. An 
advance function has been planned to keep, during this state, records of comments – an important 
semantic information usually lost in a standard development that has no proper tool support10. The 
Published state signifies a stable revision where comments have been resolved and that it is proper to 
reference or use the entity. A published revision generally cannot be purged from the system. 

9 Generally, a canonical model can be viewed as encompassing data structure, data type, and code list definitions.
10 In practice, some data elements are similar in semantics because formal documentations are oftentimes not 
sufficiently rich. Records of conversations and comments can shed more light.



5.2.1.1.3 Release management (Req. C)
A release is a snapshot of a library of published components in the canonical model, i.e., it is a revision 
of the standard. A release is typically scheduled around a portion of standard enhancement and bug fix 
requests. The release management provides the life cycle management function to the release process. 
The release process includes a draft state and a final state. Several drafts may be necessary before a 
release is finalized, at which point, prior drafts can be discarded. The release management also provides 
the only opportunity for unused, published revisions of components in the (current working) release to 
be purged from the system when the release is finalized.

5.2.1.1.4 Search (Req. A, D)
Search is an essential function to enhance reuse of parts of a standard and reduce duplicates. Both 
standard developers and users need the search function. It should take into account several fields in the 
model such as name and description and allow for filtering of different entity types, states, owners, 
releases, etc. The MSSRT has implemented an initial semantic search using the Levenshtein semantic 
distance metrics. In addition, other semantic search capabilities have been planned such as lexical 
search based on a lexical library (e.g., WordNet) or a domain specific thesaurus.

5.2.1.1.5 Import (Req. B)
Import is a function to assist in harmonization between an existing proprietary or external standard and 
the canonical model. This occurs in OAGi when an enterprise application vendor or a manufacturing 
enterprise donates its proprietary canonical library. A search capability shall be applied to the imported 
content to help standard developers with the harmonization.

5.2.1.1.6 Analysis (Req. A, B, E)
Analysis is the ability to display differences between revisions of various parts of the model at various 
levels of granularity.  Finding out differences between two revisions of the data structure based on the 
traditional syntax-specific representation of the standard is cumbersome. For example, if there is an 
inheritance hierarchy in a particular semantic element in the model, standard developers or users have 
to manually open each element in the hierarchy to find out the actual differences of the element at the 
bottom of the hierarchy. An even more difficult situation occurs when a particular semantic element has 
a deep tree structure produced by several referenced definitions. The analysis function in the model-
based tool should eliminate all these difficulties and is able to present differences between revisions of 
semantic elements virtually with a single click.

5.2.1.1.7 Extension rationalization (Req. E, F)
As shown in Figure 5, the syntax independent usage model is fed back to the Develop Canonical Model 
activity. This function allows standard developers to take those usage models submitted by various 
users, analyze the extensions made in those models based on their contexts and semantics, and 
harmonize them into changes or enhancements to the canonical model. The process can result in a new 
release of the standard. This function should as much as possible retain the traceability between the 
submitted extensions and changes to the canonical model. This traceability information, part of the 
canonical model change information, is used later in the syntax independent usage model upgrade 
described in the Standard usage functions section.



Figure 5: Activity diagram showing functionalities and information relevant to the standard development functionality

5.2.1.2 Syntax specific standards management functionality

5.2.1.2.1 Namespace management (Req. C, G)
For example, in case of XML schema syntax, this function allows for creation and maintenance of 
namespaces.

5.2.1.2.2 Schema module management (Req. C, G)
When the canonical model is expressed in a certain syntax and style (see expression generation below), 
schema modules indicate the physical file and directory where parts of the model should be serialized 
to. The schema module management allows creation and maintenance of file paths and their 
dependencies. It also includes the function to assign component parts of the canonical model to a 
module.

5.2.1.2.3 Expression generation (Req. C, G)
The canonical model expression generation is a function to generate the canonical model in a particular 
syntax and style. Examples of syntaxes are XML schema or JSON schema. In a particular syntax, there 
may be different styles. In XML schema, for example, Russian Doll and Garden of Eden [69] are the 
popular styles that are fit for different purposes. The Russian Doll style provides more precise definitions 
and, hence, is better for representing a service or interface definition. It is, however, limited to a single 
namespace, resulting in a bigger schema than the Garden of Eden schema that provides the same 
structural definition. The Garden of Eden schema are less precise because it is catered for a maximum 
reuse. It is however more suitable for code generation to process the instance data. The expression 
generation function enables generation of these variations for various purposes. Two other XML schema 
styles are Venetian Blind and Salami Slice [69]. While variations of these two styles are also used by 
industry, the canonical model is typically generated in the Garden of Eden style. The Russian Doll style is 
typically used for the usage model discussed in Standard usage functions section.

5.2.1.2.4 Primitive type management (Req. C, G)
Different syntaxes support different type systems. This function allows the user to create the mapping 
between types in different syntaxes, supporting the expression generation.



The syntax-specific standard management functionality may grow as more syntaxes and different 
integration styles are supported due to their differing purposes and features. 

5.2.2 Standard usage functions
Figure 6 below is a decomposition of the Develop Usage Model activity in Figure 4. Specifically, it shows 
that the standard usage functionality has been decomposed into Business Process Management 
Functionality, Context Management Functionality, Syntax Independent Usage Model Management 
Functionality, and Syntax Specific Expression Generation Functionality. Subsequently, core functions in 
these functionalities are described.

Figure 6: Activity diagram showing functionalities and information relevant to the standard usage functionality

5.2.2.1 Business process management and context management functionalities (Req. I, J, K, L)

Indeed, business processes are part of the integration requirements (an input to several activities). In 
early development of the standard canonical model, business processes provide crucial inputs to 
identify common data exchange transactions and objects. When the standard becomes mature and 
reuse becomes common for the standard, business processes involved in an integration project drive 
the usage model development that can lead to reuses and enhancements of the standard canonical 
model. Consequently, business processes provide well-defined contexts for standard usages. In other 
words, keeping track of the relationship between business processes and standard usages will help in 
reusing the standard and associated services. This leads to increase in productivity. Using business 
processes to drive the standard development and documentation is not a new idea. The idea started in 
the Open EDI initiative [70], continued in the ebXML activities [26], and other prior research [71-73].

The business processes themselves can also be reused or adapted that lead to data exchange standard 
and service reuses. Hence, the requirement for business process management functionality includes not 
only business processes authoring functionality available in typical business process management or 
enterprise architect tools, but also additional functionalities to 1) manage business process meta-data, 
(e.g., using the 5WH questions with respect to the Zachman Enterprise Architecture Framework [75]), 
and 2) assign standard usage models to integration interactions.  Both of the functionalities assist in the 



search and reuse of business processes that in turn lead to greater reuse of services and standard usage 
models. Further detail about these business process management functionalities can be found in other 
papers focusing on the business process cataloging and classification system (BPCCS) [72-73].

As described earlier, with support from the BPCCS, a business process, or more specifically an 
interaction within a business process, can be used to specify a well-defined context for a standard usage. 
In absence of the BPCCS, usage context may be specified with a combination of classification scheme 
values. Such business context model is specified in the CCS standard [68]. Each classification used within 
a context represents a context dimension (i.e., context category) such as industry, role, integration type 
(e.g., application-to-application, business-to-business), application type, or even production type [68]. 
The context management functionality provides a function to associate entities from the business or 
other classification scheme values to a standard usage model and a function to manage context 
dimensions, classification schemes, and classification values themselves.

5.2.2.2 Syntax-independent usage model management functionality

Core functions of the syntax independent usage model management are described in the following sub-
sections.

5.2.2.2.1 Create, Update, Copy, Discard (or Purge), Extend, and Upgrade a usage model (Req. K)
A usage model is based on a part of the canonical model. In the Create process, a data structure from 
the canonical model is chosen as a base (i.e., base data structure) of the usage model and also a usage 
context is assigned. As a result, the usage model maintains a reference to the canonical model.

In the Update process, the user should be able to specify semantic restrictions on the base data 
structure. Semantic restrictions can include enable/disable data elements, restrict primitive data types, 
assign a fixed value or code list, enable/disable nullability, specify cross-data-element rules, and provide 
context specific documentations. The other advanced semantic restriction feature is the data element 
specialization. This can be viewed as company specific inline specialization where a data element is 
further qualified with an open-ended type field. For example, the canonical model may provide a 
Supplier Party element whose one of the data field is type code. A company or industry may have its 
own specific kinds of suppliers such as supplier with different level of preferences. In many cases, 
standard users would like to explicate these differences into different data elements making it easier to 
further restrict the semantics, document mappings, and more. 

The Copy function allows the user to efficiently create another usage model for another context or 
create a revision of it when there is an integration requirement change in the same context.

The Discard function allows the user to purge the usage model that is in a particular state during its 
review process (described in the next functionality). 

The Extend function allows the user to add data elements that do not exist in the base canonical model 
into the usage model. An extension may reuse an existing semantic data structure already defined in the 
canonical model of the standard or in a user-defined canonical data structure. User-defined canonical 



data structures are shared components created by the standard users. They can be submitted to the 
standard body for rationalization into the standard.

Upgrade is the process to migrate existing usage models based on a prior release of the canonical model 
to a new release. It is another efficient function made possible by the model-based standard 
development and usage. Because the usage model maintains a reference to its base canonical model 
and the underlying system maintains the ‘delta’ between revisions of the canonical model, the system 
automatically upgrades most parts of the usage model except the extensions. However, with traceability 
information captured in the extension rationalization function, the system can assist the user in 
migrating the extension during the upgrade.

5.2.2.2.2 Review (Req. E)
Similar to the function in the syntax independent canonical model management, this function supports 
usage model governance. It allows the usage model to go through a review and approval process. In the 
MSSRT, states such as Editing, Candidate, and Published are available. In the Editing state the system 
locks the usage model so that it can be viewed and changed only by the owner. The usage model can 
also be discarded in that state. The author subjects the usage model for review and comments in the 
Candidate state. Comments made during the review process are recorded for subsequent use. When 
cycles of reviews and changes are needed, the author can traverse the Editing and Candidate states.  
The Published state signifies a production-ready version of the usage model and cannot be further 
changed or discarded from the system.

5.2.2.2.3 Search (Req. L)
In addition to the search criteria mentioned in the canonical model search, a usage model should be 
searchable within its context. Specifically, lexical and literal search should be provided across name, 
documentation, and semantic restriction fields. Such in-context search of the canonical model (to find a 
data element that is part of the base canonical model but not yet part of the usage model) is a feature 
that will enhance the speed of the usage model development. This feature is especially important 
because a particular canonical message may contain hundreds of thousands of data elements.

5.2.2.2.4 Analysis (Req. E, K)
Analysis is a function that allows visual comparison between usage models. It will help find 
commonalities between different versions of the usage models or between usage models in differing 
contexts.  This, in turn, may lead to more effective life-cycle management of the usage models through 
their merging, generalization, or introducing other useful relationships.

5.2.2.3 Syntax-specific expression generation functionality

Expressions of a usage model may be generated (or serialized) only as schemas or service descriptions 
(known as API specification) which in turn contain schemas. Further details about these two options are 
as follows.

5.2.2.3.1 Schema generation (Req. G)
As described in the canonical model expression generation, the usage model may be expressed in 
various schema syntaxes and styles. However, the Russian Doll style provides the most precise definition 



for implementation documentation and instance validation. In addition, the schema may be generated 
with different levels of meta-data and documentation. Finally, schema package is another notion that 
should be supported where multiple usage models are generated into a single schema. It is commonly 
used for putting together a set of related usage models for a business process or for a service 
description that typically contain multiple interface/operation definitions (e.g., create, update, query, 
validate) for a business object (e.g., bill of materials).

5.2.2.3.2 API specification or service description generation (Req. H)
These are generally specifications that describe how a software client should interact with an 
application. Each of them may be integration pattern- and protocol-specific, such as large aggregate 
transactions between enterprise applications vs. smaller, chattier transactions for mobile applications 
and protocols such as Web Services vs. REST, respectively. With some additional information provided 
by the user, the model-based standard development and usage system can generate such a specification 
(such as WSDL [24] or Open API [30]) that includes the usage model. The generated specification can be 
directly deployed to a middleware tool, saving significant development time.  

6 The MSSRT Core Design
Core design of the MSSRT is based on the UN/CEFACT Core Component Specification (CCS), which is an 
international standard for modeling data exchange specification in a syntax-independent representation 
[68]. CCS can be viewed as a meta-model for model-based standards development and usage. Its main 
concepts include Business Context (BC), Core Component (CC), and Business Information Entity (BIE).  
The MSSRT adopts these main concepts as follows: CCs are the standard canonical model, while BIEs are 
usage models created as restrictions on CCs in a particular BC. A BC indicates applicable usage situation 
of the BIE.  It is a combination of context values from various context schemes. A context scheme, also 
known as a classification scheme, can be a flat list of values, a taxonomy of values, or a reference to a 
message exchange flow in a business process model. A context scheme can be, for example, an industry 
or geopolitical classification. While CCS suggested eight context categories for the context scheme, 
others may be used as illustrated in the example below.

We explain the three main CCS concepts by way of a practical example next and point the interested 
reader to the formal CCS meta-model for details of the concepts [68].

Bill of Materials (or commonly known as BOM) is an information object for capturing relationships 
between items (component parts) that are assembled into another item. Properties of a BOM, such as 
the item quantity or even assembly instructions, can also be captured as part of BOM.  As enterprise 
applications evolve with more functions and innovations, the basic information of BOM applies to many 
product life-cycle stages and number of data elements in BOM continues to grow. The top of Figure 7 
illustrates the relationship between the three CCS main concepts:  BOM is an example of the canonical 
Core Components on the left-hand-side (LHS), while several context-specific notions of BOM are 
indicated on the right-hand-side (RHS) after specifying the Business Context along with the Core 
Component on the LHS. Essential data elements differentiating usages of the BOM core component are 
also illustrated under each BIE. 



In this example, business contexts are specified by a combination of context scheme values. Context 
schemes used in the example are business areas (whose values can be sales, fulfillment, and 
manufacturing, etc.), production types (whose values can be make-to-order, assemble-to-order, etc.), 
and industry (whose values can be electronic manufacturing, retail, food manufacturing, etc.).

Figure 7: Examples illustrating the adaptation of the UN/CEFACT Core Component Specification main concepts

Taking a desktop computer as an example, a Super BOM (sometimes referred to as Model BOM) 
represents all options that a desktop model (or a series) can have, for example, different monitors (e.g., 
with differing sizes), CPUs (e.g., with differing speeds), Memory (e.g., with different sizes and number of 
modules). A Super BOM would list each allowed monitor, CPU, and memory as items with their 
specifications (e.g., sizes, speeds). Option class, which is one of the essential data elements used only in 
the Super BOM, is a virtual item that groups similar items together. In this case, there would be three 
option classes representing the monitor, CPU, and memory. Item rules, another essential data element 
shown in the figure, can be, for example, 1) the CPU and memory are required but the monitor is 
optional; 2) different memory sizes have different maximum quantity associated, depending on the 
maximum memory the motherboard can handle; and 3) if a monitor is selected, a monitor cable is 
included.

An Instance BOM represents a BOM which contains only the specific options chosen by the user and 
other default items necessary to produce such a desktop (e.g., a case, a monitor cable that goes along 
with the selected monitor). Such BOM can be sent to a manufacturing department to schedule for 
production and shipment.

The actual items going into similar instance BOMs can differ even for the components with the same 
configurations. For instance, the manufacturer may use more than one suppliers for the 16 GB memory 
module at different times. The Manufacturing BOM (or As-Manufactured BOM) keeps track of the serial 



numbers of items going into the product shipped to the customer. It provides for the warranty, recall, 
and maintenance tracking.

The last example in the figure shows that BOM may be used in a different industry, like retail, to capture 
product-bundling. It is a simple product structure retailer uses for combining related items together and 
to possibly offer a discount, say, over a weekend sales event, which is why the effective time period is 
shown as an essential data element in the Bundle. Indeed, bundles are also commonly used to represent 
telecommunication services (phone, TV, and internet).

With this example, one question may arise:  Why the standard didn’t define the four BIE concepts as 
separate objects in the canonical model? The reasons are of pragmatic nature. First, even if the four 
concepts are defined separately in the canonical model, there will still be variations of them in various 
contexts. The other reason is related to the integration implementation. The availability of the aggregate 
BOM object provides for a common abstract service for invoking and routing all BOM related 
transactions. Integration developers also have some economies of scale benefits in terms of 
development and maintenance (e.g., code reuse) to motivate consolidation of multiple transaction types 
into a single service. In fact, a monolithic ERP application may handle Super BOM, Manufacturing BOM, 
and Instance BOM with a same aggregate object and interface. If these were three separate interfaces, 
developers would have to maintain three separate, yet overlapping code lines. This is indeed one area 
where the ontology-based semantic data standards can complement the traditional standards. That is, it 
can be used to recognize data on the wire or in the database to identify what it is about, e.g., either 
Super BOM, Instance BOM, or Manufacturing BOM.

An early prototype of the MSSRT that followed the above overall design, used OAGIS content in the 
canonical model, and that met a significant portion of the discussed requirements, has been developed 
and demonstrated.  The prototype was subsequently piloted by aerospace, food, agricultural 
manufacturing, and even human capital management services companies. On-premise adoptions of the 
tool have started by these individual companies weaving the tool into their training and daily operation. 
Results have shown a significant improvement as one early adopter stated “The tool have helped to 
rapidly create profiled APIs and JSON schema by efficiently searching and selecting only the elements 
needed from the cross-industry standard. What used to take days, or weeks in some cases, now is 
completed typically within an hour.” Nevertheless, the ultimate goal of the tool is to be a hosted service 
to facilitate easier standard feedback and significantly more efficient development and maintenance of 
the standards. To that end, additional functionalities were requested from industry along with the 
performance enhancement for the adoptions to be successful at that scale.  This work has been started 
and will be discussed in the future publications.

7 Summary and Outlook
This paper provides a history and a trend analysis of manufacturing software and systems integration 
from the semantic interoperability perspective. It also discusses the functional requirements of a 
software system that was necessary to support the emerging trend. 



The history was discussed in three evolutionary periods, namely Stone Age, Bronze Age, and Iron Age. 
The Stone Age was characterized by inflexible integrations that are difficult and costly to implement and 
change. The Bronze Age improved over the Stone Age by the availability of less expensive internet-based 
data transmission technologies and an explosion of computer-interpretable data exchange standards 
that were mostly delivered in syntax-specific specifications. Free, open source software tools were also 
available to interpret these standards and to process the corresponding data in a scalable way that was 
not specific to a particular message. However, there had been a proliferation of data representation 
syntaxes; therefore, several data exchange standards were trending toward model-based, syntax 
independent delivery of the specifications in the Iron Age.

A software tool is necessary to support this trend, e.g., to generate a syntax-specific, deployable version 
of the data exchange standard and to support increasingly mixed integration environments necessary 
for co-existence of old and new technologies.  In addition, better documentation at the level of business 
processes is needed in order to quickly find and reuse existing data exchange standards, their 
derivatives, and corresponding implementations [76]. To that end, functional requirements of such a 
system was provided. The system has been developed and adopted by individual enterprises and the 
results are promising. Its core design, which was based on an international standard, was briefly 
described. Further details about the design is a topic of a future paper. In particular, although the 
standard provides core concepts, it does not provide design related to standard revision management, 
release management, and syntax specific and integration pattern mapping. Several computational 
innovations will be required to develop a system supporting such a model-based standard development 
and usage. An application design that is user-friendly and has a scalable performance when dealing with 
a large standard message object that amount to three-hundred thousands data elements is an example 
of a feat. In addition, there is still further research and experiment needed to obtain a best practice 
regarding the use of business context as a meta-data to enhance reuse of integration artifact. 

Lastly, the outlook that is coming upon us is the ontology-based semantic data standards. Evidences of 
successes have been shown in biomedical and financial industries. The Industrial Ontologies Foundry 
(IOF) has been formed for the industrial manufacturing industry. Early industrial experiences have 
indicated specific niche for the ontological model such as for business intelligence, knowledge and 
information discovery rather than for exchanging traditional business transactions. However, computing 
resources are becoming more powerful and cost less. It remains to be seen whether the benefits will 
outweigh the cost and speed for ubiquitous use of ontology-based semantic data standards.
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