
 1

Proceedings of the ASME 2019 International Manufacturing Science and Engineering Conference
MSEC2019

June 10 – June 14, 2019, Erie, Pennsylvania, USA

MSEC2019-2748

TESTING OF THE MTCONNECT – OPC-UA COMPANION SPECIFICATION

Ryan Fisher
Department of Aerospace Engineering,

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061 U.S.A.

Guodong Shao
Systems Integration Division

National Institute of Standards and Technology
Gaithersburg, Maryland 20899 U.S.A.

KEYWORDS
Companion Specification; Interoperability; MTConnect; OPC-

UA; Testing.

ABSTRACT
Smart Manufacturing (SM) is the future of the

manufacturing industry. Seamless, accurate, and fast connection

and communications among devices are critical for SM. By

leveraging information technologies, devices can dynamically

communicate with each other to increase factory production,

while decreasing engineering costs. MTConnect and Open

Platform Communications - Unified Architecture (OPC-UA)

standards facilitate such communication. MTConnect is a

manufacturing interoperability standard that provides a semantic

vocabulary for manufacturing equipment to provide structured

contextualized data with no proprietary format. The OPC-UA is

a platform-independent standard through which various systems

and devices can communicate by sending messages between

clients and servers over various networks. OPC-UA enables

syntactic interoperability between clients and servers. The

MTConnect - OPC-UA Companion Specification integrates the

two standards to provide manufacturers more efficient and

powerful interoperability capabilities. In this paper, we report the

test of version 1.02 of this companion specification. This

specification sets a standard means of communication between

MTConnect devices and OPC-UA Clients/Servers based on

Extensible Markup Language (XML) structures. To test the

standard, the following components have been developed: an

OPC-UA Server, an OPC-UA Client, a probe that translates data

structures in MTConnect XML format to MTConnect OPC-UA

Companion XML format that can be recognized by the server, a

MTConnect XML data parser, and a MTConnect device

simulator. The activities of the standard testing include passing

varying data structures and objects through the server and

confirming the information is received accurately by the client.

The findings of the standard testing will be provided to the

standard developing organizations for improving the future

versions of the standard.

INTRODUCTION

By increasing the availability of information, the processes

of product design, manufacturing, and quality control can all be

improved. Now, more than ever, there is a demand for larger

amounts of real-time information on manufacturing floors of

every scale. The dynamic information enables manufacturers to

have better awareness and control over their machines and

processes. The information is generated and communicated

through the connection and integration of machines with other

devices, systems, and applications (e.g., controllers, simulators,

or Graphical User Interface (GUI)).

 MTConnect [1] and the Open Platform Communications

(OPC) are two standards that help achieve these goals in the

manufacturing industry. MTConnect provides semantic

vocabularies for manufacturing capabilities including, but not

limited to, device monitoring, automation, and process analytics.

The OPC Foundation has created the OPC-Unified Architecture

(UA) [2] standard that supports object-oriented implementations

that can handle information such as alarms and events,

commands, real-time data, and complex data in Extensible

Markup Language (XML). MTConnect and the OPC

Foundation have partnered to develop the MTConnect - OPC-

UA Companion Specification [3] to set a standard means of

communication (a gateway) between MTConnect devices,

servers, or agents, and OPC-UA servers and clients. Testing the

MTConnect - OPC-UA Companion Specification could

demonstrate the usability and feasibility of the standard for the

manufacturing industry while identifying issues in the current

version of the specification can provide feedback to the two

standard developing organizations (SDOs), i.e., MTConnect and

OPC Foundation, for improvements in future versions. Previous

research conducted on manufacturing data integration claims

 2

that the integration of many devices with the companion standard

in a factory-wide network is easier compared to small scale

implementations; small scales were more efficient with the sole

use of MTConnect [4]. The testing in this study may confirm

such claims, however this is not a formal requirements-driven

verification and validation (V&V) activity. It is a preliminary

specification conformance testing by comparing the outputs of

MTConect machine and the OPC-UA client. Conducting such a

test requires a cross-platform testing environment that allows a

variety of test cases to be performed. The cross-platform

capability is essential to the OPC-UA components. The test cases

defined will represent a variety of data types and data items to

highlight key aspects of the specification including Data Access,

Historical Access, and Event and Alarm Notifiers.

 This paper describes the development of the testing

environment and the testing components including an OPC-UA

server, an OPC-UA client, an MTConnect probe, an MTConnect

data parser, a MTConnect device simulator, and test cases. These

components can also be reused for testing future version of

companion specification. The test cases are typically applicable

to all versions, as the MTConnect data model will not change.

The organization of this paper is as follows. The relevant

standards, i.e., MTConnect, OPC-UA, and the MTConnect -

OPC-UA companion specification, are introduced first. The next

Section explains the methodology of testing the companion

specification and discusses how the testing environment and its

components were established and challenges that were

encountered during the testing. The three key features of OPC-

UA are also discussed. Then, the following Section identifies

test cases and provides a justification for such test cases. After

that, the next Section presents and discusses the testing results of

the companion specification. The final Section provides a

conclusion and discusses the future work.

RELEVEANT STANDARDS

MTConnect and OPC-UA standards are two interoperability

standards that facilitate communication among smart devices in

manufacturing domain. Integrating the two standards provides

manufacturing companies powerful interoperability capabilities.

Each of the standards is briefly discussed as follows.

 The MTConnect standard provides a semantic vocabulary for

manufacturing equipment to generate structured, contextualized

data with no proprietary format. With uniform data, users can

focus on manufacturing applications rather than translation.

MTConnect data sources include production equipment, sensor

packages, and other factory floor hardware. MTConnect’s

Extensible Markup Language (XML) data format provides both

human and machine-readable features. MTConnect is extensible

and can be integrated with other standards by design, which

facilitate the integration with OPC-UA [1].

 OPC-UA is a platform-independent service-oriented

architecture that integrates all the functionality of the individual

OPC Classic specifications into one extensible framework. It

provides the equivalent functions of the original OPC Classic,

while extending the object-oriented capabilities to complex and

multi-level structures, but with more functionality: on-demand

data access, data subscriptions, event notifiers, method

executions, and server discovery. Through OPC-UA, various

systems and devices can communicate by sending messages

between clients and servers over various networks. OPC-UA

enables syntactic interoperability between clients and servers.

The communication is provided on a safe and secure network by

128-bit or 256-bit encryption levels, message signing,

user/system auditing, and authentication [2]. OPC-UA uses a

predefined semantic vocabulary represented in XML to provide

a descriptive schema of how items are in general mapped to the

object-oriented model.

 The combination of MTConnect and OPC-UA into a

companion specification provides a powerful means of

connecting MTConnect-enabled machining tools to OPC-UA

servers and clients. As well, the inverse can be stated; the

companion specification gateway allows for integration between

OPC-UA servers and MTConnect applications. We will connect

MTConnect machine tools to OPC-UA servers and clients, as

shown in Figure 1 from Companion Specification Version 1.02

[3]. A device such as a milling machine is linked directly to an

MTConnect server. Using the MTConnect to OPC-UA Gateway,

a connection can be established between the OPC-UA client and

the MTConnect server, allowing for information transfer over the

network.

Figure 1. MTConnect to OPC-UA Gateway Implementation [3]

TESTING ENVIRONMENT IMPLEMENTATION

 3

To begin testing the MTConnect - OPC-UA Companion

Specification, a testing environment including a server/client

setup must be established. Figure 2 shows an information flow

among the key components in the testing environment.

MTConnect data is sent to the OPC-UA server via an XML

parser and probe. The OPC-UA client retrieves the data from the

server and sends the data to a GUI for visualization. The XML

parser and probe also provides the data to the GUI for

visualization and data comparison with the client output.

Figure 2. Companion Specification Implementation

MTConnect Device Simulator

There are several options for obtaining MTConnect data for

a testing environment. For example, it can be real-time data from

the MTConnect devices, data from online agent simulators, or

data from software driven simulation agents. We have used the

online agent simulator to retrieve device data. The online agent

simulator is provided by the National Institute of Standard and

Technology (NIST) and MemexOEE [5]. These sites provide the

standard MTConnect XML files that contain a schema, a probe,

real-time streams, and samples. The schema and probe have

different XML structures compared to the stream file: the schema

or probe file is required for the XML probe to generates nodes,

and the stream is required for the parser to obtain data.

MTConnect Data Parser

Establishing MTConnect devices within an OPC-UA server

requires the server to identify the structure of the device. For

example, the server must know the component names such as

Axes, and how many subcomponents each component contains,

e.g., the Axes may contain Linear X Axis, Linear Z Axis, and

Rotary C Axis. These objects have a parent-child relationship.

Each component or subcomponent will have a child called

“DataItem” at the end of its line of children components. Each

of these components translates to an object in OPC-UA, while

the DataItems translate to either variables or properties, all of

which must be accounted for when generating nodes since each

item becomes a node.

The data from the MTConnect device is in the form of an

XML file, but it is being taken from the internet via a Uniform

Resource Locator (URL). Using a URL to XML module [6], the

MTConnect stream file is imported and filtered through the

ElementTree XML API [7]. The ElementTree module allows for

an XML file to be imported and its children can be analyzed from

the root down, by exploring either the attributes, the tags, or the

values. The DataItem tags are filtered via their attributes to locate

the proper value. All values in XML are strings, which provides

an ease of exportation to text files with a naming convention that

uses a combination of component names and attributes to

properly label data. The timestamp associated with each value is

exported as a separate text file with identical component names

and attributes but with a time extension added. It provides any

other programs the ability to locate the data value along with its

corresponding timestamp. For the purpose of visualization,

timestamps are converted to a decimal version: 03:15 becomes

03.25.

MTConnect Data Probe

To search the XML MTConnect file for its components and

DataItems, an XML probe is developed using Python and the

ElementTree module. Using ElementTree, the probe generates

an XML “companion file” to define a node structure for all

devices in the MTConnect file, the XML companion file

conforms to the OPC-UA “MTConnectModel.xml,” found in the

model compiler stack. The MTConnectModel.xml file

represents basic MTConnect devices, components, and

DataItems in the OPC-UA format. The .NETStandard server

takes in only .uanodes files, which are binary file representations

of the XML predefined nodes. The XML companion file needs

to be converted to this binary format via a model compiler, which

is provided by the OPC Foundation [8]. Conveniently, the

.uanodes file, along with other files created by the model

compiler, are automatically stored to the directory of the OPC-

UA server. By simply setting a file path and executing the probe,

the server can be started, and the nodes will automatically appear

in the address space. A sample address space of the NIST Test

Bed, obtained using UaExpert, is shown in Figure 3. Each node

is automatically generated using either the MTConnect name or

id attribute.

OPC-UA Server

The OPC-UA server in the testing environment is developed

using the UA.NET Standard provided by the OPC Foundation

[9]. There are a couple of options for the server development. We

selected this option because of the code stacks are free and well-

documented. In the package, QuickStart applications are

provided for quickly generating a server using .NET in C#. For

 4

example, a boiler server conducts simulations of boilers, and the

boiler objects in the address space are created using the OPC-UA

model of object-typing and object instantiation. Once

instantiation is completed, the simulation locates the nodes and

establishes the values. Similarly, device nodes can be instantiated

if the server reads in a file type of “.uanodes”. Note that nodes

can either be predefined or generated within the server

configuration, however, the devices will have predefined nodes

that are generated using the model compiler. Once the predefined

nodes are established, objects with a specified type (e.g.,

MTDeviceType) are created within the server and variables with

a specified data type are also created. Untyped nodes are

converted to typed nodes that can be manipulated in the server,

allowing data to be uploaded to these nodes. Any predefined

nodes that remain untyped are replaced with their typed versions.

This method of instantiation is extrapolated to devices to

establish nodes for devices. For MTConnect devices, ideally the

data should be streamed directly from the device to reduce the

points of failure; however, in this study, due to time constraints,

the data was streamed from a text file, which is generated by the

MTConnect XML parser. Once the nodes are instantiated, a

client can communicate with the server to access the information.

OPC-UA Client

Similar to the requirements for the server, the tool for the

OPC-UA client development was selected based on its price and

available documentation. Additional consideration included the

programming language used, as clients come in many forms;

some use GUIs while others are based in the programming

environments of languages such as MATLab [10] or Python [11].

We used UaExpert by Unified Automation [12] because it

facilitates the GUI usage, is free, and well documented.

UaExpert enables the connection with the server and supports

the testing plan because it has features, such as Data Access view,

Data Logger view, and Event view. The comma-separated values

(CSV) export feature in the Data Logger view enables data

visualization through the GUI.

Graphical User Interface

To confirm proper transfer of data from the MTConnect

device to the OPC-UA server/client, a GUI is developed to take

in real-time data from the parser and client, to compare the two

data sets, and display the plots. The GUI is developed using Dash

by Plotly [13], which helps display data in real time and allows

for expandable data sets and graphs that are particularly useful

when dealing with multiple components or DataItems. The

implementation uses a Dash module in Python, which requires

data to be imported. The simplest method of doing so is through

the text files. This method gives the user the option to select

which graphs are visible based on the text files imported with a

graph description given by the component and attribute names.

The selected data set and its corresponding timestamp are

imported and plotted in real-time as the text file continually

grows with streaming data. Simplifications have been made to

the GUI to reduce the memory usage on the system while

promoting faster graph response time for recording since Dash

GUIs are web-based interfaces displayed using porting on the

local machine that can be accessed via a browser.

The GUI is developed for the visualization of highly

dynamic data since UaExpert only displays a node’s value,

which can be changing constantly, sometimes faster than human

eyes can detect, depending on the sampling rate. Attempting to

compare rapidly changing position values of two data sets by eye

does not uffice for validating a standard. The GUI is only needed

for highly dynamic values since less dynamic values, such as

events or conditions, are easy to assess visually; an Emergency

Stop is either armed, triggered, or unavailable, and an oil

temperature is either normal, unavailable, or in the warning or

fault zone. These types of DataItems tend not to change

repeatedly and therefore can be validated via observation,

leveraging UaExpert’s Data Access view since the value of a

node is shown directly on its interface.

Figure 3. A Sample Partial NIST Test Bed Address Space

Depicted in UaExpert

 5

TEST CASES

A variety of test cases must be defined to test the information

mapping between the MTConnect agent and OPC server/client

properly. Before defining test cases, we fist discuss the key

features of OPC-UA and then briefly discuss the types of

MTConnect data.

Key Features of UA

While OPC-UA has many features, Data Access (DA),

Historical Access (HA), and Event and Alarm Notifiers (EA), are

three typical ones that can be used to begin testing the

MTConnect to OPC-UA gateway [3].

• The Data Access feature provides instant machine/process

monitoring and control capabilities by allowing clients or

applications to directly stream real-time data from the

server.

• The Historical Access feature is essentially an extension of

the Data Access feature, but it keeps record of previous

values for specified nodes. Cases for using this feature

include data analysis, machine failure prevention, modeling,

and simulation.

• The Event and Alarm Notifiers component provides OPC-

UA clients with the ability to detect a change in an event or

condition. It triggers an alarm if such a change occurs for a

pre-existing node. An example for effective use of this

feature would be the initiation of an alarm for the

MTConnect predefined EmergencyStop event that has three

possible values, one of which is “Triggered,” meaning an

emergency stop has occurred. Setting an alarm for this type

of event would notify applications and interfaces by relaying

this important information. Alarms can be selected for

specific events since machine operators may not desire to

have alarms continually activating for each node defined as

an event or condition.

These three core features on a specified test case are

sufficient for determining if a proper mapping of information

occurs.

Defining DataItem Types

There are three types of DataItems that can exist in an

MTConnect model [14]:

(1) Samples: samples must be numeric values from a stream.

Examples include Rotary Speed, Angle, and Position.

(2) Events: events can be a variety of data types and generally

have a predefined controlled vocabulary for specific

components; however, there are cases where only a

character string representing data is returned by the device.

(3) Conditions: conditions are another type of DataItem that

exist in the MTConnect model. Each component may have

more than one condition active at a specific instance where

the conditions are defined by the string type, but each

condition can be in one of four states: Normal, Warning,

Fault, or Unavailable.

From these DataItems as shown in Figure 4, test cases can

be generated.

Figure 4. Types of DataItems

Defining Test Cases

The samples selected for test cases include the X, Y, Z, and

C positions under the Axes component. A multitude of these

DataItems were selected to ensure the server could handle

multiple highly dynamic streams of data. For each of these four

positions, the MTConnect schema or probe, given by the

simulator, may display multiple DataItems such as an actual

position, commanded position, and loaded position; the actual

position is used for the mapping to a variable. The original

MTConnect schema breaks down the Axes component into

Linear Axis and Rotary Axis for better accuracy of data

representation, however, a simplification is made by eliminating

this extra component and placing the variables directly under the

 6

Axes component. If the Linear Axis and Rotary Axis were to be

implemented in the testing, it would only be an additional object

in the hierarchy of the node tree, viewed in the address space.

This would make no difference in the testing of the mapping.

Custom types (e.g., MTComponentTypes) could be created to

map a device with a custom structure (e.g., Axes with only

Rotary components), which allows for expansibility to other

devices. The testing of custom types requires only a syntactic

change in node generation executed by the probe.

The condition test case selected is the Load, which gives the

load condition for the specified axis in the MTConnect schema

(in our case the X Axis). This condition is selected since it pre-

exists under the Axes component. This avoids the need to create

another component such as “Coolant” or “Electric” to the

address space. Note that only one condition was selected since

conditions can only be a string type, and their output is one of

four values.

The controller component is selected to host the event test

cases since it provides a variety of data types under one object.

The string and integer are standard data types, however, the

enumeration requires an integer be passed to the server to access

a string from the enumeration. To account for this, the parser

must translate the XML string (e.g., Unavailable) to the

corresponding integer in the enumeration definition. The

enumeration definition for this variable could be defined in the

specification or could be custom, depending on the device; prior

knowledge of the enumeration list must be obtained. For all test

cases, an assumption was made stating that each event DataItem

would return its declared data type to define the rigidity of the

data being returned by the machine. If an alternative data type is

returned, it will not be processed, and the previous node value is

kept.

Applying Test Cases

Each of the identified test cases and their corresponding

DataItem is to be explicitly declared in the MTConnect files

being passed into the XML probe and parser. The server accesses

them via the .uanodes and stream data files generated

respectively. A secure connection between the server and client

enables the data to be properly transmitted. If the test case

contains highly dynamic data, the GUI is used to access the

parser and client for displaying the test cases and their data for

I/O analysis. If the test case contains less dynamic data, then the

initial XML file, Data Access view, and Event view (if

applicable) are used to observe changes in data. Validation of the

standard is performed via the I/O analysis.

TESTING RESULTS

Data Access

Using the simulator provided by NIST and MemexOEE,

after probing the device structure for the test cases, the nodes

were properly generated in the address space of the server for all

components and DataItems specified on all the devices. This

confirms the MTConnect XML probe operated correctly. The

streaming of data from these devices into the server was

completed successfully, as the client reported changing values

with the Data Access feature. Using the Data Logger, the

machine data for the X-Position was recorded and plotted

directly from the machine simulator and the client via the GUI.

The results shown in Figure 5 display the X-Position data over

an approximate twenty-minute period. While there is no delay

implemented into the parser, a one-hundred millisecond delay

was established on the server.

Comparing the I/O of X-Position data, a conclusion can be

made that the MTConnect data was properly transferred from the

agent to the OPC-UA server and client. While the overall data

mapping is executed correctly, there were small errors in parts of

the stream that were foreseen. Due to the XML parser outputting

the streamed data to a text file and the server extracting the data

from the text file simultaneously, occasionally the server would

be incapable of opening the file. To allow the server to continue

operating, try-catch statements were implemented, which

returned the previous value of the node as the current

instantiation.

Issues found: The samples for the positions of the Axes

component in the companion specification are currently defined

as a string data type when being mapped to the server, even

though MTConnect specifically defines their position data as

numerical values only. This indicates a design issue in the

specification. This definition discrepancy created an issue when

attempting to use the Data Logging tool to save data for the

GUI’s real-time plotting since the Data Logging tool needs to

receive a double data type, not a string. For practical purposes,

having numerical values stored as doubles or floats is justifiable

while a representation in strings is not.

Alternate solution: To temporarily correct this definition

error (assuming it will be permanently fixed in an updated

version), the string data type was simply altered to a double in

the predefined nodes, and the streamed value was also changed

to a double; this change allows the use of Data Logging to

transmit data for the visual representation in the GUI. All test

cases assessed passed as compliant with the Data Access feature

after data type definitions were corrected.

Historical Access

Issues found: Another issue occurred when executing the

Historical Access feature on the identified test cases. Using

UaExpert and its History view, the historical data was unable to

be retrieved from the nodes. Attempts have been made to the

nodes within the server to fix this error: the access levels were

altered to allow history reading, history writing, and a current

reading. The “Historizing” attribute was also enabled. The

UaExpert still reported the node history to be empty. With the

generation of this error, it is expected that nodes were not storing

 7

their historic values; the process of enabling the node storage

functionality could not be determined.

Alternate solution: Ideally this should be engaged

automatically in the generation of the node structure to eliminate

the need for altering individual node attributes within the server.

After using a C# .NET client to confirm this error, the Historical

Access feature worked to a small extent by recording and storing

values only after the client was started (similar to the Data

Logger). This limited functionality, however, is attributed to the

client’s capabilities and therefore is not sufficient for justifying

full usage of the Historical Access feature. Once the nodes are

capable of storing their historic values, the History Access

functionality is expected to be operable. To modify the nodes for

this capability, the standard developers must investigate it further

and address the issue accordingly.

Figure 5. X-Position Data from the Machine and the OPC-UA Client

Event and Alarm Notifiers

Issues found: Another key issue that occurred during the

testing was the use of the Event and Alarm Notifiers feature.

From the defined test cases, the condition and event nodes were

unable to respond properly to the feature. Although we tried

different data types and used an alternative client, the feature

continued to fail. We also modified the primary object’s

(device’s) “EventNotifier” attribute by establishing a

“SubscribeToEvents” setting. This revision did not allow the

Event and Alarm Notifiers feature to recognize any changes in

the event test cases. The same modification was also applied to

the sub-objects (sub-components) of the primary object, and no

changes occurred. The absence of the feature may be due to

improper configuration of the server, an improper mapping of the

companion specification, and/or a lack of description in the

specification; more investigation should be performed.

CONCLSUIONS
In this paper, we discussed an initial implementation and

testing of the MTConnect - OPC-UA Companion Specification

 8

Version 1.02. Our initial testing results show some issues in the

specification that need to be addressed in future versions of the

standard. These improvements will help the companion

specification to better integrate semantics of MTConnect with

the syntactic representation of OPC-UA. By conducting an

expanded investigation of this and future versions of the

standard, the specification could eventually be established as a

viable use in the smart manufacturing setting.

The following recommendations regarding data types,

Event and Alarm Notifiers, and enumerations, can be made to the

SDOs based on the conducted testing.

• Data type definitions should be improved to properly map

data for practical uses, i.e., the positions being mapped as

doubles or floats compared to strings.

• The enablement of Event and Alarm Notifiers should be

explicitly declared in newer versions of the specification, as

currently there is no method stating how objects are enabled

as events. Whether the enablement of nodes for this feature

occurs within the server or within the model generation, the

companion specification should state one or both options. A

simple solution to be proposed is enabling Event and Alarm

Notifiers upon generating nodes, allowing the OPC-UA

server to establish a clear distinction between imported

DataItems. If enablement of notifiers is to be completed

within the server, it will require a tedious task for users with

complex device structures.

• Regarding enumerations, for data to properly be retrieved by

the server/client, an integer representing position of the data

type in the enumeration had to be imported into the server.

While this justifies the functionality of the companion

specification, it must be noted that the data taken from the

stream (string retrieved such as “ARMED”) had to be

converted to an integer representing the proper position in

the enumeration. An example of this is the streamed value

of “ARMED” being translated to the integer “1”, which

represents the second position in the enumeration list

declared in the MTConnectModel.xml. The integer is then

used by the server to locate the proper string value. This

requirement means that a converter must be made for all

enumerations to allow the server to properly access data

using the current method. While this may or may not be a

correction that needs to be accounted for in future versions,

it is an aspect of the companion specification that should be

brought to the SDOs’ attention.

Future work for better validating the standard includes

increasing the number of test cases, performing a larger variety

of test cases, if possible, in which further examination of data

types is needed, as other errors are bound to exist, similar to the

position data type error. To correct for the minor errors that were

occurring in the data streaming process, the parser should be

implemented using C# so that it can execute directly within the

server. By having the server access the agent directly, compared

to indirectly through text files, the chances of data-access errors

occurring will be reduced or eliminated since files will not be

opened and closed simultaneously. Finally, we should work

closely with the standard developers to figure out the issues with

the testing of the Event and Alarm Notifiers feature.

NOMENCLATURE

CSV Comma-Separated Values

DA Data Access

DX Data Exchange

EA Event and Alarm notifiers

GUI Graphical User Interface

HA Historical Access

NIST National Institute of Standard and Technology

OPC Object linking and embedding for Process Control

SDO Standard Developing Organizations

SM Smart Manufacturing

UA Unified Architecture

URL Uniform Resource Locator

V&V Verification and Validation

XML Extensible Markup Language

ACKNOWLEDGMENTS
The authors would like to thank the Summer Undergraduate

Research Fellowship (SURF) program for supporting the project

and thank Moneer Helu, Will Sobel, and Randy Armstrong for

their valuable discussion and support.

DISCLAIMERS
No approval or endorsement of any commercial product by

the National Institute of Standards and Technology (NIST) is

intended or implied. Certain commercial software systems are

identified in this paper to facilitate understanding. Such

identification does not imply that these software systems are

necessarily the best available for the purpose.

REFERENCES

[1] MTConnect (2018) A free, open standard for the factory.

http://www.mtconnect.org

[2] OPCUA (2018) Unified Architecture.

https://opcfoundation.org/about/opc-technologies/opc-ua/.

[3] MTConnect (2013) MTConnect - OPC UA Companion

Specification Release Candidate Version 1.02.

[4] Hirvonen, Markus. “Streamlining Manufacturing Data

Integration.” Tampere University of Technology, Tampere,

Finland. 2017.

https://core.ac.uk/download/pdf/144141231.pdf

[5] Memex (2018) Driving efficiency and productivity from the

shop floor to the top floor. http://www.memexoee.com/.

[6] Urllib (2018) Open arbitrary resources by URL.

https://docs.python.org/2/library/urllib.html.

 9

[7] ElementTree (2018) The ElementTree XML API.

https://docs.python.org/2/library/xml.etree.elementtree.htm

l.

[8] UA-ModelCompiler (2018) Model compiler converts XML

files into C# and ANSI C.

https://github.com/OPCFoundation/UA-ModelCompiler.

[9] OPCUA .NET (2016) Build OPC UA .NET applications

using .NET Standard Library.

http://opcfoundation.github.io/UA-.NETStandard/.

[10] MathWorks (2018) MATLAB.

https://www.mathworks.com/products/matlab.html.

[11] Python (2018) A programming language that lets you work

quickly and integrate systems more effectively.

https://www.python.org.

[12] UaExpert (2018) A full-featured OPC UA Client.

https://www.unified-

automation.com/products/development-

tools/uaexpert.html.

[13] Dash Plotly (2018) Build beautiful web-based interfaces in

Python. https://plot.ly/products/dash/.

[14] MTConnect (2014) MTConnect Specification and

Materials. http://www.mtconnect.org/docs/streams/.

