
3328 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 7, JULY 2019

Predicting Detection Performance on Security
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Abstract— Developing methods to predict how image quality
affects the task performance is a topic of great interest in many
applications. While such studies have been performed in the
medical imaging community, little work has been reported in
the security X-ray imaging literature. In this paper, we develop
models that predict the effect of image quality on the detection
of the improvised explosive device components by bomb tech-
nicians in images taken using portable X-ray systems. Using a
newly developed NIST-LIVE X-Ray Task Performance Database,
we created a set of objective algorithms that predict bomb
technician detection performance based on the measures of
image quality. Our basic measures are traditional image quality
indicators (IQIs) and perceptually relevant natural scene statis-
tics (NSS)-based measures that have been extensively used in
visible light image quality prediction algorithms. We show that
these measures are able to quantify the perceptual severity of
degradations and can predict the performance of expert bomb
technicians in identifying threats. Combining NSS- and IQI-based
measures yields even better task performance prediction than
either of these methods independently. We also developed a new
suite of statistical task prediction models that we refer to as
quality inspectors of X-ray images (QUIX); we believe this is
the first NSS-based model for security X-ray images. We also
show that QUIX can be used to reliably predict conventional
IQI metric values on the distorted X-ray images.

Index Terms— NSS, X-ray images, task performance study,
IQI prediction, IEEE/ANSI N42.55, image quality, improvised
explosive devices (IEDs).

I. INTRODUCTION

PORTABLE transmission X-ray imaging systems are used
by military and civilian bomb technicians to screen sus-

picious packages and objects for explosives, bombs and other
threat items contraband [1]. Their easy deployment and high
detection efficiency makes them ideal for screening of hard-
to-access places. The quality of the X-ray images captured
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by these systems serves as an important indicator of the
manufacturing quality and overall performance of the imaging
system. Several intrinsic and extrinsic factors affect the quality
of X-ray images. The geometry of a portable X-ray imaging
device, such as the size of detector photosensors and the
generator’s focal spot, has a strong influence on the quality of
captured X-ray image. Photon-limited noise due to the inherent
variation of photon influx at each photosensor is a major
source of noise in X-ray images. Photon noise increases as a
function of the square-root of the number of absorbed photons.
The effects of this noise are reduced when the signal is greater
than the noise (higher signal-to-noise-ratio or SNR) [2], which
may be difficult to achieve in the field. This photon noise
significantly affects the object detection and identification
accuracy by either a human or an algorithm. There exist other
factors that impact X-ray image quality, including but not
limited to the voltage-current settings of the imager and the
arrangement of the imaging device with respect to the object
being imaged [3].

Rapid technological developments have enabled continuous
improvements in the speed of acquisition and the quality of
images produced by portable X-ray systems. Image quality
greatly affects the abilities of trained professionals to make
rapid and accurate decisions under challenging field condi-
tions. The performance of these X-ray imagers is generally
measured in terms of physical image quality parameters such
as resolution, noise and SNR [4], [5]. While physical perfor-
mance metrics are suitable measures to assess imaging system
performance, the task performance of skilled bomb techs on
images produced by these systems serve as an ultimate ‘gold
standard’ indicator of system performance [6], [7]. Thus, it is
essential to analyze how physical image quality measurements
on a system correlate with the task performance of trained
bomb technicians. The goals of our work, therefore, are to be
able to better understand and model how image quality affects
human task performance, to determine how this relationship
can be used to create automatic perceptual X-ray image task
prediction models that correlate well against human perfor-
mance, and ultimately to create baseline performance metrics
for image quality.

The task-based assessment of image quality has been
studied in the medical imaging literature [8]–[10]. The fun-
damental motivation behind this idea is the dependence of the
image quality of a system on the task performance of observers
on some specific task. The observer can either be a human,
such as a radiologist, or a model observer, such as a Bayesian

1057-7149 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on February 28,2020 at 17:22:22 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-7520-3572
https://orcid.org/0000-0003-4895-7744


GUPTA et al.: PREDICTING DETECTION PERFORMANCE ON SECURITY X-RAY IMAGES 3329

ideal observer [7], [11], that makes best possible use of the
knowledge of signal and noise properties. The task can be
detection, identification or localization, depending on the pur-
pose against which the imaging system is to be optimized [7].
More complex task-based model observers that take into
account the properties of human visual system to assess
image quality have been studied, such as the model observers
that consider the contrast sensitivity function, the multi-scale
and orientation selectivity of cortical neurons, and neural
noise models to account for the intrinsic variability of human
observers [12]–[14]. While the above models typically assume
knowledge of a signal’s precise location and may not represent
realistic situations, such as clinical trials, models that detect a
signal at an unknown location have also been proposed [15].
Model observers that can closely mimic human performance
are beneficial to equipment designers for optimizing system
design parameters for specific diagnostic tasks.

While a considerable vein of research in this direction has
been developed in the medical imaging field, only a little
work has focused on the visual task performance in security
X-ray imaging. In [16] several factors, including sensitivity
and response time, were studied on visual scanning and
target detection tasks, where human observers were tasked
with searching for a knife inserted at randomly different
angles in chromatic X-ray images of cluttered baggages.
In another work [17], participants were asked to identify
improvised explosive devices (IEDs) in a brief presentation
of suspicious baggages, and a model observer developed for
a different medical imaging task was adapted to explain the
observers’ performance. To the best of our knowledge, there
is no reported work that deals with task-based image quality
assessment (IQA) of security relevant X-ray images. In this
work, we contribute to solve this problem by analyzing the
detection performance of expert observers on distorted X-ray
images, and we build perceptual X-ray image quality models
that reliably predict observers’ task performance.

There exist internationally standardized methods for objec-
tively measuring the quality of images produced by portable
transmission X-ray systems [4], [5]. These objective quality
metrics, which we will refer to as image quality indicators
(IQIs), operate by making specific quantitative measurements
on images of standard test objects obtained under highly spe-
cific test conditions. IEEE/ANSI N42.551 includes a detailed
description of the measurement and performance requirements
of these conventional IQIs, which include ‘Useful penetration’,
‘Organic material detection’, ‘Spatial resolution’, ‘Dynamic
range’, ‘Noise’, ‘Flatness of field’, ‘Image extent’, ‘Image
area’, and ‘Aspect ratio’. While these IQIs do provide reli-
able measurements of image quality, their computation also
involves the use of precisely defined test objects that are
imaged under strictly defined laboratory conditions, which
consumes significant amounts of time, cost and effort.

Recently, a no-reference method of objective X-ray image
quality prediction was designed, using a generalized linear

1Nicholas G. Paulter, Jr. and Jack L. Glover served as the Chair and
Vice-chair of the ANSI 42.55 working group at the time this standard was
approved.

model to combine various pixel-level sample statistics such
as the SNR mean, SNR standard deviation, contrast energy,
estimated noise mean and so on [18]. Another no-reference
image quality evaluation method was developed that uses the
weighted entropy of the grayscale distribution of a region of
interest (ROI) to predict objective X-ray image quality [19].
In a related application, five factors affecting human detection
performance in X-ray airport security screening systems were
analyzed including: fictional threat image (FTI) view difficulty,
superposition, clutter, opacity and bag size [20].

Natural Scene Statistics (NSS) models describe the sta-
tistical consistencies inherent to images taken of the world,
be they of naturalistic or man-made objects or environments,
i.e., the image generation process is natural as opposed to
computer-generated. NSS have been well studied for vari-
ous natural imaging modalities including visible light (VL),
long-wavelength infrared (LWIR) and X-ray images. The NSS
of photographic VL images and videos has been intensively
studied and applied to the development of successful percep-
tual quality models [21]–[23]. A number of these models, such
as VIF [24] and NIQE [25] are used in commercial streaming
video systems.

Bandpass NSS models of LWIR (thermal) images are
also robust and are quite useful in a variety of visual
applications [26]. A high performance image classification
engine which distinguishes between VL and LWIR images
was designed using NSS models [26]. Features extracted from
these models on LWIR images have also been demonstrated
to be effective for quantifying thermal ‘non-uniformity’ distor-
tions in LWIR images. Other applications where NSS models
deliver excellent performance include the measurement of
targeting task performance (TTP) and blind IQA of LWIR,
fused VL + LWIR IQA [27], and to analyze TeraHertz (THz)
images [28].

In our previous work, we have found that the NSS of
X-ray image data is similar to, but different from that of
VL images [29]. Here we extend that early work by devel-
oping univariate and bivariate X-ray NSS models in both the
spatial and wavelet domains, apply them to analyze X-ray
image quality and how it affects the task performance of
professional bomb technicians. We deploy both traditional
lab-measured IQIs and perceptually-relevant NSS models of
X-ray images to create algorithms that make reliable pre-
dictions of task performance. We also develop a compact,
highly efficient set of perceptual quality predictors that we
collectively call Quality Inspector of X-Ray Images (QUIX),
which are of low computational complexity and suitable for
real-time applications.

The remainder of the paper is organized as follows.
Section II outlines a task performance study of bomb tech-
nicians’ ability to detect and identify objects as a function of
image quality. Section III presents univariate and bivariate NSS
models of X-ray images. Sections IV describes IEEE/ANSI
N42.55 standard IQIs and their behavior against image degra-
dations. Section V studies the performance of NSS-based IQA
models and IQIs on predicting task performance on distorted
X-ray images. Finally, Section VI summarizes this work with
suggestions for possible future work.
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Fig. 1. A few examples of the pristine X-ray images from the NIST-LIVE
X-ray image database.

II. TASK PERFORMANCE STUDY

To analyze the effects of X-ray image quality on bomb-
technicians’ task performance, and to evaluate the predictive
performance of the objective X-ray image quality features,
we require baseline (or reference) bomb-technician task-
performance data. The task considered here is identifying
IED components in X-ray images. Since such a database of
task performance against picture quality was not available,
we conducted our own X-ray task performance study. We mea-
sured the performance of bomb-technicians who were asked
to detect IED components in distorted X-ray images presented
in an interactive viewing environment to which they were
accustomed to using. Readers may refer to [30] for a detailed
report on the experimental setup and study protocol.

Our primary objective was to find relationships between
measures of image quality and human task performance
on degraded X-ray images. We collected X-ray images of
commercially-available simulated IED threats as well as of
benign everyday objects. The simulated threats include a small
suitcase IED, a backpack containing pipe bombs, a backpack
containing a pipe bomb hidden in a detergent bottle, a box
with an IED and an anti-probe IED device, among others. We
used clutter objects, including a laptop, cell phones, and a
metal sheet to act as shielding. We then captured 35 pristine
X-ray images of various combinations of threat objects, clutter,
shielding, X-ray source and other imaging parameters. These
16-bit high-resolution grayscale images are shown in Fig. 1.

We next describe the generative model of noise that we
used to degrade the X-ray images. This noise is photon
limited and spatially -correlated and arises from the absorption
of a random number of independent photons, N(x, y), that
are incident on a photosensor during the formation of the
image. This spatially-correlated noise (SCN) follows a Poisson
distribution. Since image noise can be directly related to
the number of absorbed photons, it is possible to vary the
image noise level by effectively modifying the number of
absorbed photons. For the purpose of generating our SCN
model, it is sufficient to approximate the X-ray beam as
being monochromatic with an effective X-ray energy Eef f .
The relation between N(x, y) and the image grayscale units,
I (x, y), follows a simple linear relation for imaging plate
detectors at the dose levels considered in this work [31]:

I (x, y) = g · N(x, y), (1)

where g is the gain of the imaging device. An important out-
come of Eq. (1) is the constant variance to mean ratio (VMR)

Fig. 2. (a) Scatter plot between the local means and local variances of X-ray
images using only 25% of the number of pixels having the least variance-
to-mean (VMR) ratio. (b) Scatter plot of different combinations of noise and
blur levels used to distort the X-ray images.

of the pixel intensities [32]:

Var[I (x, y)]
E[I (x, y)] = g2 · Var[N(x, y)]

g · E[N(x, y)] = g. (2)

Figure 2(a) illustrates the linear relationship observed between
the pixel variances and pixel intensities. The gain g, which is
the slope of the linear fit to the curve, is computed using
that 25% of the pixels that produce the least VMR and which
correspond to nominally constant-valued image regions whose
variance contribution is largely due to the image noise and
not due to the textured regions of the object being imaged. To
compute the number of detected photons from each location
in the scene, the assumed linear relationship (1) between the
photon count and the pixel intensity is used. Once the number
of detected photons is known, then to vary the degree of image
noise, a multiplicative factor k is used to simulate the effect
of a reduced number of detected photons, Ne f f (x, y), as

Ne f f (x, y) = N(x, y)/k. (3)

The noisy photon count field, Nnoise(x, y), is then calculated
using

Nnoise(x, y) = SC N(x, y)
√

Ne f f (x, y) + η, (4)

where η = 1 is the variance contribution from other
sensor-related sources of noise, and SC N(x, y) has power
spectra SC N( f ) ∝ f −2 normalized to have unit variance.
The square root term is the expected standard deviation
for Ne f f (x, y) using Poisson statistics in the limit of a
high number of counts. Finally, a noisy grayscale image is
obtained from the noisy photon count field Nnoise at each
pixel location using Eq. (1). Hereafter, we use the multi-
plicative factor k to denote the image noise level, where
higher values of k imply more severe levels of noise degra-
dation. To form the first set of noise-only degraded images,
we added eight different levels of SCN, corresponding to
k = {8, 16, 32, 64, 128, 256, 512, 1024} to each of the 35 pris-
tine X-ray images. The highest levels of degradation caused
objects like pipe bombs and batteries to no longer be easily
detectable.

The effective spatial resolution can be limited in X-ray
images because of many factors, such as detector type and
pixel size, source size and geometry, X-ray scattering, and
more. These factors may be realized in different ways, from
reduced image size to broadening of the point spread function,
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Fig. 3. Example X-ray images distorted by varying degrees of spatially correlated noise (SCN) and blur distortions. The value reported for SCN corresponds
to the factor k used in Eq. (3), and the value reported for Blur corresponds to the scale of the Gaussian blur kernel (in pixels). (a) Noise: 128, Blur: 0.
(b) Noise: 512, Blur: 0. (c) Noise: 1, Blur: 16. (d) Noise: 1, Blur: 64. (e) Noise: 512, Blur: 64.

all of which limit the high-frequency information available to
detect and identify particular objects. We approximate these
effects by convolving the images with a Gaussian spatial filter,
and use the term blur to refer to degradation of the spatial
resolution. Different blur levels were implemented by varying
the Gaussian distribution to five different widths, given by
σb = {8, 16, 32, 64, 128} pixels, followed by additive SCN
with k = 1. This value of k corresponds to the original
image’s NEQ factor and simulates photon-limited noise that
occurs during the image formation process. The application
of low level SCN after Gaussian blur prevents an unrealistic
smoothness caused by the blur.

We also created a third group of images by degrading the
pristine images with blur followed by higher levels of additive
SCN. This third, smaller group was randomly selected from
the original degradation levels, since using all combinations
of blur and noise would have produced too many images for
the human subjects (expert bomb technicians) to view based
on the limited time for the test protocol. Figure 2(b) shows a
scatter plot of the combination of noise and blur levels across
all images shown to the subjects. Noise and blur levels were
uniformly sampled on a logarithmic scale to obtain acceptable
perceptual separation between distortions. Figure 3 shows a
few of the X-ray images degraded by a variety of SCN and
blur degradation levels.

The quality of the X-ray images was also varied by employ-
ing different X-ray sources operating at different energies.
Care was taken to ensure that images were also randomly
flipped, rotated (or both) to inhibit the subjects from learning
about the image content.

The judgments of 37 subjects were used in the analysis, all
of which were either current or former bomb technicians. Each
subject viewed an average of 20 X-ray images ranging from a
minimum of 5 to a maximum of 39 images. Considering the
high proficiency and expertise of the subjects, we presented
each image to an average of only 2.27 subjects. The size of
the database was limited by geography and the availability of
this small and specialized population. Nevertheless, we show
the number of collected responses were enough to draw
statistically meaningful conclusions. The subjects were each
presented with a set of benign and threat-containing distorted
and undistorted X-ray images using the X-ray Toolkit (XTK)

software [33]. They were asked to locate and identify any
potential IED components and annotate the image by drawing
a box around it using a mouse. Figure 4 shows examples of
human subject responses on a sample of X-ray images, along
with baseline annotations of all relevant IED components.

III. NSS ANALYSIS OF X-RAY IMAGE DATA

A. Univariate Statistical Modeling of X-Ray Images

The Gaussian Scale Mixture (GSM) model provides a
robust description of the statistics of bandpass wavelet
coefficients of natural VL images [34] and, as it turns
out, of X-ray images as well. It has been success-
fully applied to numerous perception-driven image process-
ing applications [21]–[24], [35]–[39]. Recently, a generalized
Gaussian scale mixture (GGSM) model was proposed to model
the bandpass statistics of distorted VL images [40], and shown
to better represent the statistics of both pristine as well as
distorted VL images than the GSM model. To demonstrate
this, assume that an X-ray image (distorted or not) has been
subjected to a bandpass process such as a wavelet filter.
The GGSM model of the marginal distributions of bandpass
VL (and X-ray) image coefficients are heavy tailed, reflecting
the property that natural images are predominantly smooth
with sparsely distributed singular structures.

A local neighborhood of adjacent bandpass space, scales
and orientations, around a reference subband coefficient can
be characterized by a GGSM vector:

x
d= √

z · u, (5)

where
d= denotes equality in probability distribution, z is a

scalar random variance field (called a mixing multiplier), and
u is a zero-mean Multivariate Generalized Gaussian (MVGG)
random vector with covariance matrix �u and shape para-
meter s. The GGSM vector x represents a family of infinite
Gaussian mixtures with probability density:

p(x) =
∫

p(x|z)p(z)dz

=
∫ �

(
Nd
2

)
· s · z−Nd /2 · exp

{
−z−s

2 (xT �−1
u x)s

}

π Nd /2�
(

Nd
2s

)
2Nd /2s |�u|1/2

p(z)dz,
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Fig. 4. Left column: Baseline annotations on all relevant IED components on
original images. Right column: Human subject responses on distorted images.

where Nd is the dimensionality of x and �(·) is the gamma
function:

�(a) =
∫ ∞

0
ta−1e−t dt a > 0.

The GGSM model becomes a GSM when s = 1 and the
MVGG distribution reduces to multivariate Gaussian.

One type of bandpass X-ray image decomposition we use is
a steerable pyramid along 2 scales and 2 orientations (vertical
and horizontal). To characterize wavelet coefficients as a
GGSM vector, we utilize the neighborhood structure in [40]
of 27 coefficients: 25 from the same subband (the nearest

5 × 5 neighbors), 1 from the parent band, and 1 spatially
co-located adjacent orientation subband at the same scale.

Like the GSM model, the GGSM statistically motivates the
use of a perceptually relevant divisive normalization of the
non-linear responses of cortical neurons [41]. Divisive normal-
ization is used in a number of no-reference (NR) [21], [22],
reduced reference (RR) [39] and full-reference (FR) [24], [38]
IQA algorithms. The density function of a GGSM vector
x becomes generalized Gaussian when conditioned on z.
Modeling the conditioning process requires estimation of the
variance field z. The maximum likelihood (ML) estimate of z
is given by [40]:

ẑ =
(

s

Nd

)1/s

(xT �−1
u x). (6)

After computing the normalization coefficient ẑ, the nor-
malized subband coefficients x/

√
ẑ are computed from each

subband. Figure 5 plots the histograms of coefficients afflicted
by different degrees of Gaussian blur and Gaussian SCN.
Clearly, such structural degradations affect the histograms in
characteristic ways. Blur increases correlation, while reducing
the coefficient variances, and noise increases the coefficient
uncertainty, causing wider histograms.

The second type of bandpass transformation that we
use is a simple center-surround, isotropic process. Given
an input luminance image I , subtract the local mean
field from the image, followed by a divisive normalization
step that decorrelates and Gaussianizes the coefficients [42].
This property has been used in many image quality
related applications [21], [23], [25]. The normalized coeffi-
cients, often referred to as Mean-Subtracted Contrast Normal-
ized (MSCN) coefficients, are defined as

Î (i, j) = I (i, j) − μ(i, j)

σ (i, j) + c
,

where i ∈ {1, 2, . . . M}, j ∈ {1, 2, . . . N} are spatial indices,
M and N are image height and width, and the constant c = 1
prevents numerical saturation. The weighted sample estimates
of the local mean μ and standard deviation σ are:

μ(i, j) =
K∑

k=−K

L∑

l=−L

wk,l Ik,l (i, j)

and

σ(i, j) =
√√√√

K∑

k=−K

L∑

l=−L

wk,l(Ik,l (i, j) − μ(i, j))2,

where w = {wk,l | k = −K , . . . , K and l = −L, . . . , L} is a
2D circularly-symmetric Gaussian weighting function rescaled
to unit volume and K = L = 15.

As depicted in Fig. 6, histograms of the MSCN coefficients
of X-ray images exhibit Gaussian-like behavior. The effect of
degradations as illustrated in Fig. 6(a) and Fig. 6(b), follow a
similar trend as the normalized subband coefficients in Fig. 5.
Blur results in narrower histograms, while noise produces
wider histograms.
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Fig. 5. Histograms of GGSM-based normalized bandpass X-ray image coefficients at different scales and orientations. The effect of noise and blur on the
normalized subband coefficients is quite consistent across all scales and orientations. (a) Scale 1, orientation 45◦. (b) Scale 2, orientation 45◦. (c) Scale 1,
orientation 90◦. (d) Scale 2, orientation 90◦.

Fig. 6. Histograms of the MSCN coefficients and products of spatially adjacent MSCN coefficients along the horizontal and vertical directions. Notice that
the effect of noise and blur on MSCN coefficients is consistent across both scales. (a) Scale 1. (b) Scale 2. (c) Scale 1, V pairwise products. (d) Scale 1,
H pairwise products.

We also model the products, or simple empirical correla-
tions, of adjacent bandpass X-ray image samples along the
horizontal and vertical orientations:

H (i, j) = Î (i, j) Î (i, j + 1)

V (i, j) = Î (i, j) Î (i + 1, j)

where i ∈ {1, 2, 3, ..M − 1} and j ∈ {1, 2, 3, ..N − 1}
are spatial indices. These also exhibit statistically consistent
behavior in the absence of distortions, which is perturbed when
distortions are introduced, as shown in Fig. 6(c) and 6(d).

B. Extracting Univariate Statistics of Bandpass
X-Ray Images

The GGSM model of bandpass image coefficients prior
to normalization [40] implies that the normalized bandpass
coefficients should be modeled as following a zero-mean
Generalized Gaussian Distribution (GGD). The GGD density
function is:

f (x; α, σ 2) = α

2β�(1/α)
exp

(
−

( |x |
β

)α)

where

β = σ

√
�(1/α)

�(3/α)
,

α is the shape parameter, σ 2 is the variance of the distribution.
The parameters of the GGD are efficiently estimated using the
moment-matching approach [43]. From each image, estimate

two features (α,σ 2) from the best GGD fit to the MSCN
coefficients (denoted as type f ), and four features (of type sp)
obtained from the GGD fit to normalized subband coefficients
at two orientations.

A zero-mean asymmetric generalized Gaussian distribu-
tion (AGGD) models the adjacent products of bandpass MSCN
coefficients, defined as:

f (x; γ, βl, βr )

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ

(βl + βr )�( 1
γ )

exp

(
−

(−x

βl

)γ )
; x < 0

γ

(βl + βr )�( 1
γ )

exp

(
−

(
x

βr

)γ )
; x ≥ 0

where

βl = σl

√
�(1/γ )

�(3/γ )
, βr = σr

√
�(1/γ )

�(3/γ )
,

γ is a shape parameter, and σl and σr are left and right
half scale parameters. These are estimated using the moment
matching scheme in [44]. The mean η is also computed:

η = (βl − βr )
�

(
2/γ

)

�
(
1/γ

) .

Thus, three features (γ, βr , η) (paired-product or pp features)
are extracted along each orientation, yielding 6 pp features
across two orientations. All of these features, which capture
both structural degradations and statistical perturbations of an
image, are extracted at two scales, hence a total of 24 quality-
relevant univariate NSS features are obtained.
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Fig. 7. Sample plots of the bivariate NSS statistics and their fits; the model correlation function ρ, the peak P and the amplitude A. a) ρ(d = 1, φ = 2, θ2 = 0),
b) P(d, φ = 2, θ2 = 0), and c) A(d, φ = 2, θ2 = 0). Notice the good functional fit between the empirical data and the estimated functional fits.

C. Bivariate Statistical Modeling of X-Ray Images

The power spectra of natural photographic VL images
tend to follow a reciprocal power law [45]: S( f ) ∝ k/ f α,
where α > 0 determines the spectral fall-off. Keshner [46]
derived models of the stationary autocorrelation functions of
one-dimensional 1/f processes, arriving at a power law of
reciprocal separation. In [47], the peak correlation between
bandpass samples of VL images was shown to follow a
stabilized reciprocal power law, neatly modeled in a closed
form. The parameters of the model provide powerful NSS
features useful for distortion classification [47] and NR qual-
ity prediction [48],Sinno18SSIAI. We use bivariate features
extracted under the closed form NSS model, which requires
several processing stages.

1) Steerable Filtering: A steerable filter with frequency
tuning orientation θ1 is defined by:

Fθ1(x) = cos(θ1)Fx (x) + sin(θ1)Fy(x), (7)

where xxx = (x, y), and Fx and Fy are the gradient components
of a 2D unit-energy bivariate isotropic Gaussian function:

G(x) = 1

2πφ2 e
−(x2+y2)

2φ2 , (8)

having scale parameter φ. We varied the scale parameters φ
of the bivariate gaussian derivative functions (Fx and Fy)
between 1 and 3 to construct a multi-scale bandpass image
decomposition broadly resembling the responses of popula-
tions of cortical simple cells. We used 13 frequency tun-
ing orientations θ1 ∈ [0, π/13, 2π/13, . . . , 12π/13], yielding
39 bandpass responses per image.

2) Divisive Normalization: Next, we divisively normalize
each subband response [41] as:

u j (x) = w j (x)√
t + ∑

y g( j (y),w j (y))2
, (9)

where w j are responses of filters indexed by j , and t = 10−4

is a stabilizing saturation constant. The weighted sum in
the denominator is computed over a spatial neighborhood of
pixels from the same sub-band, where g(xi , yi ) is a circularly
symmetric, unit volume Gaussian function.

3) Correlation Model: Given a steerable filtered and divi-
sive normalized image, define a window at a fixed position
(Window 1) and another sliding window of the same dimen-
sions (Window 2). Denote the Euclidean distance between

the center of the two windows by d . Let the windows be
separated by horizontal and vertical separations δx and δy

varied over the integer range [1,15], yielding 15 distances
d =

√
δ2

x + δ2
y . Denote the spatial orientation between the

windows by θ2 = arctan(
δy
δx

) (relative to the horizontal). Limit
θ2 ∈ [0, π) since the quantities being measured are symmetric
and π-periodic. Then the relative angle θ2 −θ1 takes 13 values
for each fixed spatial angle, θ2. The correlation function model
expresses a periodic behavior in the relative angle θ2 − θ1, as
depicted in Fig. 7(a):

ρ(d, φ, θ2)= A(d, φ, θ2)cos(2(θ2−θ1))+c(d, φ, θ2) (10)

where A(d, φ, θ2) is amplitude, c(d, φ, θ2) is an offset, d is
the spatial separation, and φ is the scale parameter. As in the
case of VL images [47], the shapes of ρ, A, and c vary in a
consistent way with d , φ and θ2 on X-ray images. Next, define
the peak correlation function:

P = max(ρ) = A + c. (11)

wherein we may rewrite (10) as:

ρ(d, φ, θ2) = A(d, φ, θ2)cos(2(θ2−θ1))

+ [P(d, φ, θ2)− A(d, φ, θ2)], (12)

where A, P are obtained by fitting (12) to the data.
4) Modeling the Amplitude and the Peak Functions:

We also found closed form expressions for A and P [47].
Lee et al. [50] observed that the covariances of bandpass
pixels follow an approximate reciprocal power law 1

|d |b .
We modify the model by expressing the peak correlation func-
tion in the more stable form 1

|d |β+1
, as depicted in Fig. 7(b).

Thus, given a fixed spatial orientation θ2 and a scale φ, define

P̂(d, φ, θ2) = 1

( d
α0(θ2)∗φ )β0 + 1

(13)

where {α0, β0} are parameters that control the shape and
fall-off of the peak correlation function, and which depend on
the spatial orientation θ2. Given the similarity of the graph of
A to the difference of two functions of the same form as (13)
but of different scales (Fig. 7 (c)), model A as

Â(d, φ, θ2) = 1

( d
α1(θ2)∗φ )β1(θ2) + 1

− 1

( d
α2(θ2)∗φ )β2(θ2) + 1

(14)
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Fig. 8. The impact of distortions on the bivariate NSS parameters. a) ρ(d = 3, φ = 3, θ2 = 0), b) P(d, φ = 3, θ2 = 0), and c) A(d, φ = 3, θ2 = 0). Notice
how distortions lead to consistent and systematic changes in the shapes of ρ, A and P .

where {α1, β1,α2, β2} are parameters that are functions of θ2
that control the shape of A. As may be observed in Fig. 8,
distortions lead to changes in the shape of ρ, A and P . Intro-
ducing blur leads to an increase in the correlation, as expected.
Noise, on the other hand, results in less similarity between
neighboring pixels and consequent reduced correlation.

The shape parameters {α0, β0, α1, β1, α2, β2} respond in
unique ways to each distortion type. To find the values of
the parameters {α0, β0} that produce the best fit to (13),
and the parameters {α1, β1,α2, β2}, that yield the best fit
to (14), we formed least-squares optimization systems for P
and A. We applied unconstrained nonlinear regression using
the quasi newton method [51]. The four functions P(d, σ, θ2),
A(d, σ, θ2), P̂(d, σ, θ2), and Â(d, σ, θ2) form vectors of size
m × 1, where m is the number of occurrences of θ2. Denote
by D the set of distances for a given spatial orientation θ2.
For the case θ2 = 0 or π/2, D = {0, 1, 2, 3, · · · , 15}. For the
case θ2 = π/4 or 3π/4, D = {0,

√
2,

√
8,

√
18, . . . ,

√
450}.

Our optimization systems are then expressed as:

min
α0,b0

∑

d∈D

3∑

φ=3

(P(d, φ, θ2) − P̂(d, φ, θ2))
2 (15)

and

min
α1,b1,α2,β2,b2

∑

d∈D

3∑

φ=3

(A(d, φ, θ2) − Â(d, φ, θ2))
2 (16)

We observed that the third scale, φ = 3, captures distortions
extremely well, which is not surprising given the heightened
sensitivity of the visual system to middle frequencies. While
the model also applies to other scales, we found that excluding
them when solving the optimization systems (15) and (16)
yielded {α0, β0, α1, β1, α2, β2} that are more sensitive to
distortions. It also produces a smaller, more convenient and
discriminative set of features. Among these features, we have
found that α0 and β0 (denoted as type bi), corresponding to
θ2 = π

4 , are the most sensitive to distortions, and lead to
the best prediction performance. Hence these two features are
included in our model. Overall, a total of 26 features are
extracted from the univariate and bivariate NSS models of
X-ray images, as summarized in Table I.

TABLE I

FEATURE SUMMARY FOR MSCN( f ), PAIRWISE PRODUCTS( pp),
STEERABLE PYRAMID(sp) AND BIVARIATE FEATURES. UNIVARIATE

FEATURES ( f, pp, sp) ARE EXTRACTED AT TWO SCALES

IV. X-RAY IMAGE QUALITY INDICATORS FROM THE

IEEE/ANSI N42.55 STANDARD

The IEEE/ANSI N42.55 standard is the international stan-
dard governing the use of portable X-ray imaging systems
used in IED and hazardous device identification [5]. The
standard underwent a major revision in 2013 to incorporate
a set of objective image quality indicators (referred to here as
IQIs). Previous versions of the standard relied on subjective
human judgments to score tests. The standard also defines
baseline performance requirements on portable X-ray imaging
systems. These IQIs must be evaluated on images of a standard
test object, captured under controlled test conditions. Here,
we review the IQIs defined in IEEE/ANSI N42.55, and analyze
the effects of distortions on them.

• Steel Penetration characterizes the ability of a portable
X-ray system to produce usable images of objects hid-
den behind shielding. Larger values mean that images
with greater contrast can be obtained of objects hidden
behind shielding. However, large values require high
energy X-rays, which may limit imaging of thinner mate-
rials or organics. Noise increases random fluctuations,
further reducing the visibility of objects behind steel.
The decreasing trend of steel penetration against noise
amplitude is depicted in Fig. 9(a).

• Spatial resolution describes the ability of an imag-
ing system to resolve the fine details. It is the spatial
frequency at which the modulation transfer function falls
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Fig. 9. Log-Log scatter plots of IQI features. Plotted are the values of the IQI feature vs the noise level (k, used in Eq. (3)). Notice that each varies in
a characteristic way with increasing severity of noise degradation. The color of each point represents the amount of blur degradation.(a) Steel penetration.
(b) Spatial resolution. (c) Organic material detection. (d) Dynamic range. (e) Noise (NEQ). (f) MTF feature. (g) NEQ feature. (h) NPS feature.

to 20% of peak value. While noise does not affect spatial
resolution much, it decreases sharply with increasing blur
(Fig. 10(b)).

• Organic material detection describes the ability of
an X-ray imaging system to image thin pieces of low
atomic number materials, such as organic compounds that
comprise most explosive and energetic materials. A large
value typically requires low energy X-rays, which may
not permit imaging through thick metals. The organic
material detection indicator decreases with increasing
noise levels (Fig. 9(c)).

• Dynamic range is the useful range of pixel values that an
imaging system can capture. It is the ratio of the largest
image value in an image to the smallest usable value,
which is typically the minimum noise value. Thus, it is
inversely proportional to the noise magnitude as shown
in the scatter plot in Fig. 9(d).

• Noise is measured in terms of noise equivalent quanta
(NEQ), which is a form of signal-to-noise ratio (SNR).
The noise IQI is defined as the value of NEQ at 1 cy/mm.
A robust estimate of the NEQ feature should strongly
depend on both noise and blur. The inverse relationship
of NEQ against the magnitude of noise is evident from
Fig. 9(e).

In addition to the objective IQIs defined by IEEE/ANSI
N42.55, other descriptive features were also extracted: one
from the spectral distribution of the MTF, another from the
noise power spectra (NPS), and another from the NEQ. The
‘MTF feature’ was derived by integrating the MTF over 0 to
0.25 cy/mm. The NEQ and NPS features were extracted by
integrating the NEQ and NPS spectral distributions over the
range 0 to 1 cy/mm. The effect of degradations on these
features is depicted in Figs. 9(f)-(h) and 10(f)-(h). Overall,
a total of 8 IQI features are computed on each image.

V. PREDICTING TASK PERFORMANCE

A. QUIX: Quality Inspector of X-Ray Images

Our key goal is to identify a compact set of efficient
and meaningful image task vs. quality predictors that can be
readily adapted to assess X-ray imaging systems. We selected
a combination of effective f and pp NSS features (16 fea-
tures; 8 features per scale) based on their simplicity, minimal
computation, and relatively easy interpretability. We refer to a
collective set of task-prediction algorithms that use these NSS
features as QUIX (QUality Inspectors of X-ray images).

We evaluated the task prediction performance of QUIX
models on images of N42.55 test objects. This allows for a
fair comparison of QUIX models against N42.55 IQIs, while
also providing a way to gauge the intrinsic image-formation
quality of an X-ray imaging system. Hereafter we refer to
QUIX features computed on images of N42.55 test objects as
QUIXN42.55 features, to distinguish them from QUIX features
computed on X-ray images of other, non-N42.55 test objects.
We next study and compare the performance of QUIX and
QUIXN42.55 against other quality feature groups, and in com-
bination with N42.55 IQIs.

B. Component-Wise Prediction Performance

We hypothesized that degrading the quality of X-ray images
would hinder the abilities of experts to successfully detect
and identify objects in them, and that properly designed,
distortion-sensitive objective quality prediction engines would
correlate well with expert performance on these tasks. Based
on this premise, we designed a binary classification frame-
work, whereby a classifier was trained to learn a mapping from
a set of quality features to a binary target variable indicating
successful identification of an object by an expert.
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Fig. 10. Log-Log scatter plots of IQI features. Plotted are the values of the IQI feature vs the blur level. Notice that each is characteristically affected
(or unaffected) by increasing severity of blur distortion. The color of each point represents the amount of noise distortion.(a) Steel penetration. (b) Spatial
resolution. (c) Organic material detection. (d) Dynamic range. (e) Noise (NEQ). (f) MTF feature. (g) NEQ feature. (h) NPS feature.

TABLE II

MEDIAN LOG-LOSS AND AUC SCORES OF DIFFERENT QUALITY-AWARE FEATURE GROUPS FOR EACH COMPONENT CATEGORY ACROSS
1000 TRAIN-TEST TRIALS. THE BEST SCORE IN EACH CATEGORY IS BOLDFACED. NUMBER OF IMAGES IN EACH COMPONENT

CATEGORY IS ALSO REPORTED. NUMBER OF UNIQUE CONTENTS INDICATES THE NUMBER OF UNDISTORTED

IMAGES IN WHICH THE GIVEN COMPONENT IS PRESENT

We observed that detection and identification accu-
racy strongly depended on the shapes and sizes of the
IED components. For instance, large, high-density compo-
nents, such as a metal pipe and batteries, were relatively
easy to identify, as compared to a detonator or a switch,
with the effect becoming more pronounced in highly clut-
tered or more distorted images. Thus, we studied individual
component identification performance, as well as collective
performance. We divided2 the database into five component
categories: power source, load, detonator, switch and metal
pipe. Table II indicates the number of images present in
each category. We evaluated the predictive performance of
the various combinations of quality-aware features for each
of these separate categories.

In all the experiments, we followed a typical machine
learning approach of training a classification engine, on a set
of NSS and/or IQI quality features and X-ray image object

2In all cases, multiple IED components were present in a single image. Since
features were globally extracted from each entire image, components (from
the same image) belonging to different categories shared the same features.

class labels, to predict the classes of the input. To evaluate
the performance of these features, we randomly divided the
dataset into non-overlapping sets of 80% training and 20%
test samples. This procedure of training and testing on random
disjoint splits was repeated 1000 times to avoid bias due to
any division of data. In each split, we ensured disjoint content
separation, hence images with similar content were not present
in both training and test sets at the same time.

Considering the fairly high-dimensionality of the feature
sets and the limited number of samples in each category,
we made the conservative choice of logistic regression over
more sophisticated classifiers. Because of the necessarily lim-
ited expert dataset, this reduced the likelihood of model over-
fitting; we observed that a more sophisticated support vector
machine (SVM) could not improve performance, and deeper
networks were out of the question. Conversely, logistic regres-
sion is a simple and effective probabilistic binary classification
approach which outputs easily interpretable class-conditional
probabilities.

The evaluation metrics we used to compare the classi-
fication performance of the various feature groups are the
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logarithm (log) loss, and the area under the receiver oper-
ating characteristic curve (AUC). While log loss quantifies
the ‘distance’ between the distribution of true labels and
that of the predicted labels by heavily penalizing confident
misclassifications, the AUC is a ranking-based metric which
indicates the probability that a classifier will rank positive
classes higher than negative classes [52]. Log loss values range
from zero to infinity, with perfect classification yielding zero
log-loss, while AUC scores lie between 0 and 1, with val-
ues close to 1 indicating superior classification performance.
An unintelligent classifier with no prior knowledge of class
frequencies achieves a log loss of 0.693 and an AUC score
of 0.5.

The median log-loss and AUC scores over 1000 train-test
trials are reported in Table II for each component category for
various combinations of NSS features, IQIs and combinations
of NSS and IQI features. The average log loss and AUC
scores, weighted by the number of images in each component
category, are also reported. Note that IQIs are computed on
images of standard test objects, hence using them as training
features implies use of the same set of degradations on the
test images. Consequently, images corrupted with a same
set of distortion parameters share the same IQI features.
By comparison, NSS-based quality features have the advantage
of being independently computed on each image, and do not
require laboratory imaging of any test objects.

It is clear from Table II that the combination of NSS-based
QUIX features, along with other NSS-IQI feature combina-
tions performed significantly better than the other feature
groups, in terms of both log loss and AUC, across most
categories. Since these descriptors capture different aspects of
X-ray image quality, they supply complementary information,
and task prediction using combinations of them correlates
better with expert opinions. However, it is also interesting
that QUIX, when used in isolation closely approached the
‘combination’ models on almost all component-clutter com-
binations. The original IQIs did as well, and the overall log
loss and AUC of QUIX and IQIs are nearly identical. However,
QUIX is faster (as reported in Table IV) and much easier to
implement and apply. Moreover, QUIX can provide immediate
image quality information to the operator, allowing real-time
adjustment of equipment.

1) Statistical Significance on Each Component Category:
It is important to evaluate whether the differences in Table II
are statistically significant. We utilized the log-loss metric to
evaluate statistical significance. We used the distribution of the
1000 log loss values to perform significance tests. We applied
the one-sided t-test between the log-loss scores computed
using the distributions of true and predicted labels. The null
hypothesis was no difference in the mean log-loss values of
the row and the column at the 95% confidence interval, against
the alternative hypothesis that the mean log loss value of the
row was greater than or less than the mean log-loss value
of the column. Table III reports the results of the statistical
significance tests for all component categories. Given that
the null hypothesis compares the means of two distributions,
Fig. 11 plots the mean log-loss of different feature groups
for each component category, along with standard error bars.

TABLE III

STATISTICAL SIGNIFICANCE MATRIX BASED ON LOG-LOSS SCORES.
EACH ENTRY IS A CODEWORD CONSISTING OF 6 SYMBOLS FOR

EACH COMPONENT CATEGORY. THE POSITION OF THE SYMBOL IN

THE CODEWORD REPRESENTS THE FOLLOWING CATEGORIES

(FROM LEFT TO RIGHT): POWER SOURCE, DETONATOR,
LOAD, SWITCH, METAL PIPE, ALL TOGETHER.
‘1’ SIGNIFIES THAT THE ROW ALGORITHM WAS

STATISTICALLY BETTER THAN THE COLUMN
ALGORITHM, ‘0’ MEANS STATISTICALLY

WORSE AND ‘−’ MEANS

STATISTICALLY EQUIVALENT

Fig. 11. Mean log-loss values with single standard deviation wide error bars
of different feature groups for each component category, across 1000 train-test
trials.

TABLE IV

COMPARISON OF MEDIAN TIME TAKEN PER IMAGE TO EXTRACT
NSS-BASED FEATURES ON A 4 GHz QUAD-CORE PROCESSOR WITH

32 GBs OF RAM. THE MEDIAN IS COMPUTED OVER ALL IMAGES

FROM THE NIST-LIVE X-RAY TASK PERFORMANCE DATABASE

It is obvious from Table III that the combination of QUIX,
sp, bi and IQI features statistically dominates the other feature
groups across most component categories.

2) Feature Importance Analysis: It is important to also
understand the prediction capabilities of the individual NSS
features IQIs. We implemented an iterative forward feature
selection scheme, whereby different features are progressively
incorporated into a growing set of features based on a per-
formance criterion. Begin with an (empty) feature set S.
In the first iteration, the best performing feature is selected
and included in S. In each subsequent iteration, the feature
from the remaining set that best improves model performance
is incorporated into S. The process is terminated when no
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TABLE V

MEDIAN IDENTIFICATION ACCURACIES ACROSS 100 TRAIN-TEST TRIALS ON DIFFERENT COMPONENT-CLUTTER COMBINATIONS.
THE BEST TWO FEATURE GROUPS FOR EACH COMPONENT-CLUTTER CATEGORY ARE BOLDFACED

Fig. 12. (a) Horizontal bars showing the number of occurrences (normalized)
of best 15 features, cumulatively selected using a forward feature selection
scheme aggregated across all component categories. (b) Plot showing the
log-loss performance with increasing number of features chosen in a decreas-
ing order of importance.

additional feature improves model performance. To conduct
feature-importance analysis, we randomly divided the dataset
into disjoint 80%-20% train-test sets, then performed 5-fold
cross-validation on the training set to obtain ‘n’ best fea-
tures from each fold using forward feature selection. Next,
we aggregated the features across folds to evaluate their
performance on the test set. This process was repeated over
1000 iterations to prevent inconsistencies due to any data
division bias. In our experiments, we found that selecting
n = 5 features per fold was enough to ensure robustness,
and that further increasing this number did not affect the
results. The chosen features were deemed to provide better
predictive power. We used the log-loss as an evaluation metric
to compare feature performances. Figure 12(a) shows the
relative number of times each feature was selected across all
component categories.

We next evaluated the feature performance on the test-set
of each train-test trial by progressively adding features in
decreasing order of importance. Figure 12(b) plots the median

Fig. 13. Example images representative of four distinct clutter categories
(left to right): no clutter, clutter (laptop), shield, clutter with shield.

log-loss across 1000 train-test trials, weighted by the number
of images from each component category. Evidently, including
more features eventually provides diminishing returns, indicat-
ing the submodular property of the feature subset.

C. Performance on Component + Clutter Combinations

We also observed that the clutter dimensions and density
affected task performance. To better understand the influences
of clutter types on the identification task, we further divided
each component category into four sub-categories, which are
clutter (laptop), shield (metallic shield), clutter with shield, and
no clutter. Figure 13 shows example images containing each
clutter type. Although this clutter category division reduces the
number of samples in each component-clutter subcategory, it is
also important to remove variations in prediction performance
that occur when different clutter types are not distinguished in
the analysis. Hence, we next study identification performance
on component-clutter combinations.

We follow a similar binary classification framework as used
earlier. Since some sub-categories contain only a few samples,
we did not consider them (those with < 30 samples), given the
likelihood of overfitting on few samples in a high dimensional
feature space. Table V tabulates the prediction performance of
the compared objective quality features, for each combination
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Fig. 14. Log-Log scatter plots between true IQI values and QUIX-predicted
values for the given IQIs with median root-mean-log-square-error (RMLSE)
across 100 train-test trials. Red line with slope = 1 corresponds to perfect
prediction of IQIs.

of component and clutter. It is clear that the combination
of IQIs and QUIX features performed better than the other
compared feature groups.

D. Predicting IQIs Using QUIX

Given that IQIs can only be applied using a lab set-up,
while a QUIX quality predictor can be readily applied to any
image of interest, a natural question arises: is it possible to
predict IQIs using QUIX? It is also important to understand
the relationship between predictions produced by QUIX and
IQIs computed on images of test objects. Thus, we designed a
regression framework wherein a series of features are mapped
to IQI values. Since NSS-based QUIX features are naturally
invariant against changes of scenes and objects, we increased
the complexity of the prediction task by mapping the QUIX
features extracted on X-ray images not containing test objects
to IQIs computed on images of test objects.

To evaluate performance, we trained a Support Vector
Regressor (SVR) with radial basis function (RBF) kernel

to learn a mapping from QUIX features to IQI values.
The data was randomly divided into 100 train-test splits
of content-disjoint 80% training and 20% testing sets. The
target IQIs were log-transformed before training to reduce
skewness in their distribution. Figure 14 illustrates an impor-
tant result – although the QUIX features were extracted from
distorted X-ray images not containing test objects, they were
quite effective in predicting IQIs computed on a different
set of (test) images. This strengthens the notion that QUIX
features are invariant across scenes and objects, and can be
reliably used to predict IQIs with good accuracy (prediction
errors reported in Fig. 14).

VI. CONCLUSION AND FUTURE WORK

We studied NSS-based statistical models of natural and
distorted X-ray images. NSS models effectively capture statis-
tical consistencies of X-ray images, and provide perceptually
relevant tools for estimating the effects of image degrada-
tions. We demonstrated the outstanding performance of QUIX
human task prediction models, especially when used in con-
junction with traditional IQIs when predicting the visual task
performances of trained experts. While the computation of
IQIs involves significant time, cost and effort, QUIX features
rely only on simple statistical feature extraction with low
computational overhead. We also demonstrated the predictive
abilities of QUIX features by utilizing them to estimate IQIs.
NSS features are invariant across scales, scenes and objects,
and can be reliably used as powerful and generic quality
descriptors of X-ray images.

A potential future direction of research would be to inves-
tigate the effects of geometric image degradations on visual
task performance in multi-view X-ray images [53]. Studying
the statistics of other X-ray modalities, such as computed
tomography (CT) and dual energy imaging systems, also offers
significant possibilities.
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