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Abstract—Successful spectrum management requires reliable
methods for determining whether communication signals are
present in a spectrum portion of interest. The widely-used
energy detection (ED), or radiometry method is only useful in
determining whether a portion of radio-frequency (RF) spectrum
contains energy, but not whether this energy carries structured
signals such as communications. In this paper we introduce
the Lempel-Ziv Markov-chain Sum Algorithm (LZMSA), a
spectrum sensing algorithm (SSA) that can detect the presence
of a structured signal by leveraging the Liv-Zempel-Markov
chain algorithm (LZMA). LZMA is a lossless, general-purpose
data compression algorithm that is widely available on many
computing platforms. The new algorithm is shown to have
good performance at distinguishing between samples containing
communication signals, and samples of noise, collected with a
software-defined radio (SDR). This algorithm does not require
any information about the signal beforehand. The algorithm is
tested with computer-generated as well as SDR-captured samples
of LTE signals.

Index Terms—spectrum sensing algorithm, compression, SDR,
ROC, AUC

I. INTRODUCTION

COMPRESSION algorithms remove redundancies in data
sets to encode data using fewer bits. Communication

signals, unlike noise, contain regularly reoccurring features;
a reflection of the fact that they are protocols designed
to convey information. While Shannon [1] has shown that
the optimal channel coding theorem is a randomly-encoded
signal, actual attempts at communication are pseudo-random
at best because the random sequence needs to be able to be
regenerated by the receiver to demodulate the signal. Since the
compressibility of a sequence serves as a test of its randomness
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[2], we can expect that communication signal samples will
be more compressible than Gaussian noise samples, as the
latter are random values. The Lempel-Ziv-Markov chain Algo-
rithm (LZMA) is a lossless, general-purpose data compression
algorithm designed to achieve high compression ratios with
low compute time. [3] We have found that, all else held
constant, SDR-collected, LZMA-compressed files containing
in-phase and quadrature (IQ) samples signals with higher
signal-to-noise ratios (SNRs) show better compression ratios
than files containing IQ samples of lower-SNR channels, or of
channels known to contain only noise. Because a significant
difference exists in the size of compressed sample sets of noise
and compressed sample sets of communication signals, the
compressibility of a spectrum sample set presents itself as a
possible test statistic for spectrum sensing. Throughout this
paper, we consider noise specifically as white Gaussian noise.

In this paper we explore the utility of this phenomenon
in detecting the presence of communications signals from
a sampled waveform at various SNRs. Section II sets the
mathematical notation for our analysis and explains our eval-
uation metric. Section III summarizes LZMA’s operation.
Section IV introduces the new Lempel-Ziv Markov-chain Sum
Algorithm (LZMSA). Section V explains how the sample sets
for testing the algorithm were generated, and describes the
testing procedure and results. Section VI presents discussion
of the results.

II. SPECTRUM SENSING

In a general sense, spectrum sensing is the task of quantify-
ing how the spectrum is occupied. This can be considered from
the general occupancy, structure, or protocol point of view. The
choice depends on the objectives of the spectrum sensing task.
Often, spectrum sensing is used to refer to on/off detection -
whether there is any kind of occupant in a channel beyond
some threshold, usually set at some estimate of the noise floor.
However, it may prove necessary to probe whether a present
waveform has structure, which would indicate the presence
of a spectrum occupier other than noise, or to take it further,
identify which protocol the structured waveform follows.



Figure 1. Spectrum Sensing Tasks.

Fig. 1 shows the flow of the spectrum sensing task, which
revolves around three stages, on/off detection, structure detec-
tion, and classification. On/off detection is simply estimating
whether energy is present on a threshold. Classification is
identifying what kind of signal protocol is present, e.g. LTE,
Wi-Fi, FM, etc. In this manuscript we focus on structure de-
tection. Structure detection is the task of determining whether
a channel x(t) contains a structured signal s(t) in addition
to noise n(t). The null hypothesis H0 is that only noise is
present in the channel, and the detection hypothesis H1 is that
a structured signal, such as a communications signal, is present
in the channel in addition to noise. We use the definition:

Ĥ0, if x(t) = n(t) t ∈ [0, T ] (1)

Ĥ1, if x(t) = n(t) + s(t) t ∈ [0, T ] (2)

where t is a time in a continuous period of time of duration
T .

A spectrum sensing algorithm (SSA) is usually implemented
on digital systems which sample and quantize the signal into
values that are discrete in both time and magnitude. The
resulting Ns samples are denoted:

x[n] = [x0[n], x1[n], . . . , xNs−1[n]]
T (3)

where each n is an integer, a discrete point in time on which
each sample of the channel was taken, relative to the start of
the sampling. An SSA takes x[n] as an input and returns a test
statistic γ, which is a score meant to estimate the probability
that x(t) contains some s(t). However, γ is not a measure
of probability, and has different meanings depending on the
SSA. For example, in ED, γ is the total energy contained in the
sample set, while in covariance-based methods γ is a function
of the relationship between covariance measurements across
the sample set. Let us define x[n] as the set of channel samples,
pfa the desired probability of false alarm (false positive rate),
and L as the window size for covariance-based SSAs. In all
cases, the decision on whether a channel contains a signal is
made by comparing the test statistic with a chosen threshold

γ0. The choice of γ0 is made to reach some desired pfa based
on the constant false alarm rate criterion [4].

decision =

{
H0, if γ ≤ γ0
H1, if γ > γ0

(4)

Since we wish to compare various types of detection methods,
we are interested in the performance of the SSAs independent
of the choice of threshold.

One such threshold-independent evaluation method is the
area under the Receiver Operating Characteristic (ROC) curve,
or Area Under the Curve (AUC) [5]. The ROC curve is a plot
of the true positive rate (TPR) versus the false positive rate
(FPR) of an SSA.

Figure 2. Receiver Operating Characteristic Example.

Fig. 2 shows a ROC curve (solid blue line) and an ignorance
line (dashed orange line). Any portion of an SSA’s ROC curve
under the ignorance line means that the SSA is worse than
random guessing at that point in the curve. AUC is the area
between the ROC curve and the x-axis.

The area under the ROC curve (AUC) is a value between
0 and 1 that summarizes the statistical strength of a classifier.
AUC at or below 0.5 means that the statistical strength of the
classifier is no better than guessing and is therefore not useful.
AUC at 1 means that the classifier always makes the correct
decision and never makes an incorrect decision. AUC at 0
means that the classifier always makes an incorrect decision
[4]. The benefit of AUC is that it enables a performance
evaluation of spectrum-sensing algorithms by summarizing
the ROC curve with a single number, which permits one to
visualize performance as a function of a number of parameters,
such as the number of samples or SNR, both important
constraints in spectrum sensing implementations.

ED [6] is a popular SSA, with applications from the Federal
Communication Commission’s (FCC) spectrum regulation,
where interference thresholds are measured in microvolts per
meter [7], to Wi-Fi coexistence [8]. It works by calculating



how much energy is contained in the received samples x[n],
working on the assumption that any electromagnetic emission
contains energy. This can be a disadvantage when specifically
looking for communications signals, since ED will detect
non-communications emissions as well. However, ED may be
particularly useful in detecting natural interferers or to get a
quick overview of which channels may warrant further scrutiny
with more structure-aware SSAs. ED is not a communications
detector, as it will detect natural noise, based on its energy
content, just as much as a communications signal at the same
power.

One example of an SSA meant to look for structure in
a signal, included here for comparison, is the Covariance
Absolute Value (CAV) algorithm described in [9] in Eqs. 26-
30. This SSA seeks to measure the self-covariance of a set of
samples within a window of l samples, with the assumption
that samples of a structured signal tend to be more co-variant
than samples of noise. Like LZMSA, this algorithm does not
require any information about the signal beforehand.

III. LEMPEL-ZIV-MARKOV CHAIN ALGORITHM

In order to understand how the LZMA algorithm might
be useful detecting signals within noise, it is instructive to
understand the basics of how this compression algorithm
operates. LZMA is a chain of three compression algorithms:
1) a delta encoder, 2) the compression algorithm known as
“LZ77”, and 3) a range encoder [10].

Initially, the input data is processed by the delta encoder as
follows [11]:

δ(v1, v2) = (v1 \ v2) ∪ (v2 \ v1) (5)

where v1 represents the first sequence in the sliding window,
and v2 represents the second sequence in the sliding window,
\ is the set minus operator, and ∪ is the set union operator. For
example, the data set [3, 4, 6, 9, 3] would be stored as [3, 1,
2, 3, -6]; each data point in the set is stored as the difference
from the previous data point in the set, with the exception of
the first value, which is kept as-is; it is the difference from
zero.

The resulting sequence is input to the LZ77 compression
algorithm [12]. This resulting sequence is then input to a range
encoder [13].

The purpose of this chain operation is that the delta en-
coder prepares the data in such a way that it may be more
compressible by the sliding window algorithm in LZ77. The
output is then passed on to a range encoder, which is able
to further remove some redundancies not caught by the LZ77
algorithm.

The goal of LZMA is to compress data as much as possible
with a reasonably low processing time [3]. Furthermore, a
fast field-programmable gate array (FPGA) implementation of
LZMA has been demonstrated [10].

IV. LZMSA DETECTION

We propose a new signal detection algorithm based on
LZMA. The algorithm begins by compressing the set of
samples x[n] with the LZMA compression algorithm.

x[n]
LZMA−−−→ y[m] (6)

Let y[m] be the LZMA output for x[n]. y[m] is a data
object containing M bytes.

y[m] = [y0[m], y1[m], . . . , yM−1[m]]T (7)

The LZMSA decision statistic is produced as follows:

γLZMA = 1Ty[m] =

M−1∑
k=0

yk[m] (8)

where 1 = [1, . . . , 1]T .
One possible explanation for why this method may work is

that information-carrying signals tend to be more compressible
by LZMA than samples representing only random noise. By
the nature of random numbers, it is a reasonable expectation
that a sequence of random numbers cannot be significantly
compressed [2]. This is due to the fact that truly random
numbers, such as those in Gaussian noise, already represent a
sequence composed almost entirely of Shannon information,
which would represent maximum entropy. The Kolmogorov
complexity [14] of such a random sequence, that is, the
shortest possible descriptor that could fully generate such a
sequence, cannot be shorter than the sequence itself.

V. TEST SAMPLE SETS GENERATION AND TESTING

Two data sets were generated: A) A digital chain set
generated with MATLAB™ R2017b running on the Rocky
Mountain Advanced Computer Consortium (RMACC) Sum-
mit supercomputer. B) A set generated with a vector signal
transceiver (VST), transmitted over a coaxial copper cable,
and captured with a SDR. In both cases, the target SNRs for
the sample sets were -12 dB through 12 dB in increments of
3 dB.

A. Computer-Generated Signal Set

Digital chain samples were generated in MATLAB™ ,
forming a fully computer-generated (CG) set, free of potential
hardware artifacts. These samples were of Long-Term Evolu-
tion (LTE) Test Model 3.3, with a bandwidth of 20 MHz. The
samples were summed with generated Gaussian noise to reach
the target SNRs.

B. SDR Set

LTE Test Model 3.3 signals were generated with a National
Instruments™ PXIe-5645R Vector Signal Transceiver. The
signals were captured using an Ettus Research™ B200mini
Software-Defined Radio (SDR) controlled by a PC running
GNU Radio on Ubuntu Linux. All signals were generated
and captured at a center frequency of 5.8 GHz, which is a
relevant spectrum portion due to the fact it is shared between
Band 255 LTE and U-NII-3-band Wi-Fi. The SDR captured 20
MHz of bandwidth at 20 million samples per second, which
is the Shannon rate considering that each IQ sample consists



of both an in-phase and a quadrature component. Signals were
generated at different power levels to reach the target SNRs
with respect to the hardware noise. Both the LTE and noise
samples collected in this manner were found to be non-zero
mean. Furthermore, the noise samples were found to show IQ
correlation even though noise samples should be expected to
be independent.

Figure 3. VST-SDR Generation and Capture.

Computations were carried out using a Python™ program to
compare the detection performance of LZMSA versus the CAV
algorithm on the Gaussian and LTE sample sets. Simulations
were run for each SNR set, with Ns from 10 to 5000 samples
per decision in steps of 100 samples. 1000 Monte Carlo trials
per SNR and number of samples were performed to calculate
the AUC. The covariance window was set at 10 samples for
the CAV algorithm. All tests were run on the RMACC Summit
supercomputer. The simulations consist of Monte Carlo trials
where, for each number of samples Ns and and each SNR, the
algorithm under test is fed a randomly selected consecutive
set of Ns samples from the available signal samples file,
repeating the process for the noise-only samples file. Test
statistics are produced for both detection hypotheses, H1 and
H0. These test statistics are processed through an algorithm
[15] which produces the AUC measure for the particular
scenario, indicating how much the test statistics tend to be
different between H1 and H0 cases.

Figure 4. Energy Detection on a Gaussian Emitter.

Figure 5. Covariance Absolute Value Detection on a Gaussian Emitter.

Figure 6. LZMSA Detection on a Gaussian Emitter.

In Figs. 4, 5, and 6, a Gaussian emitter was added to the
background noise and compared to when only background
noise was present. Fig. 4 shows that ED can yield high AUCs,
even when SNR is low or when the number of samples
is under 1000. AUC is strongly dependent on SNR and
number of samples. The generally high AUC means that ED
differentiates well between a Gaussian emitter, known to lack
communications, and the background Gaussian noise. This
shows that ED cannot differentiate communications from a
Gaussian emitter. A communications detector should have
AUC close to 0.5 in this case, as both the emitter and the
background channel are lacking in communications content,
and are thus indistinguishable to such a detector. Figs. 5
and 6 show that CAV and LZMSA both are incapable of
differentiating between a Gaussian emitter and background
Gaussian noise, regardless of the SNR or number of samples.
This is due to the fact that both the emitter and the background
noise lack features that would be found in communications
signals, such as sample covariance or redundancy.

Fig. 7 shows CAV consistently outperforms LZMSA when
CG samples are used, with CAV’s AUC increasing with
number of samples, when SNR is 12 dB or 0 dB. However,
when SNR is reduced to -12 dB, both algorithms have an AUC
around 0.5 regardless of the number of samples used.



SNR = 12 dB SNR = 0 dB SNR = -12 dB
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Figure 7. CAV vs. LZMSA on CG LTE Signal.

SNR = 12 dB SNR = 0 dB SNR = -12 dB

Number of Samples

Figure 8. CAV vs. LZMSA on VST-SDR LTE Signal.

Fig. 8 shows LZMSA consistently outperforming CAV on
all three SNRs when SDR-collected samples are used, with
AUC increasing as more samples are used. Even with an SNR
of 12 dB, CAV shows consistently low performance; at 5000
samples, its AUC is around 0.75, while LZMSA’s AUC is 1
even at 10 samples. At 0 dB and 2000 samples, CAV’s AUC
is under 0.6, while LZMSA’s is 1. Not only is the situation
reversed from where the CG LTE samples were used, but
LZMSA actually shows higher AUC across the board for VST-
SDR samples than CAV does for the CG LTE samples.

Figure 9. ED vs. LZMSA on VST-SDR LTE Signal. SNR = 0 dB.

Fig. 9 shows that there are some cases where LZMSA
even performs better than ED for classical on/off detection.
LZMSA shows a higher AUC than ED, with a greater gap
in AUC evident when using fewer samples. Both outperform
CAV significantly in this case, with CAV’s AUC barely rising
above 0.6 when Ns is above 3000. AUC shows little positive
relation to the number of samples used.

The SDR-collected samples of both LTE and noise were
found to be non-zero mean and IQ-correlated, which may
offer insight into the wide performance discrepancies found
between the CG and VST-SDR scenarios. It could be that the
IQ correlation present in the VST-SDR noise samples made it
difficult for the CAV algorithm to differentiate between LTE
and noise, since the mechanism through which this algorithm
differentiates a structured signal from noise is the difference
in sample correlation, with the assumption that noise samples
are independent and uncorrelated. If correlation is introduced
to the noise samples, they cannot be well differentiated from
a correlated waveform like LTE on this basis. However, it is
unclear why these effects enable LZMSA to work so well with
the VST-SDR samples as opposed to the CG samples.

VI. CONCLUSION

In this manuscript we tested three spectrum sensing algo-
rithms, ED, CAV, and LZMSA, in a scenario where both the
emitted signal and the background noise are Gaussian. We



showed ED to not be a communications detector because its
high AUC indicated differentiation between a Gaussian emitter
and the background Gaussian noise. We then showed CAV and
LZMSA to not be sensitive to this Gaussian emitter. The next
scenarios were comprised of CG and SDR-implemented LTE
Test Model 3.3 signals where we compared the performance
of CAV and LZMSA. While CAV is shown to differentiate
CG LTE samples from the background noise fairly well, this
result doesn’t apply to the VST-SDR LTE samples, where
performance is poor. Conversely, while LZMSA shows poor
performance on CG LTE samples, we show that it can perform
well on SDR-collected LTE samples. The causes for the dis-
crepancy in the performance of these two algorithms between
the CG and SDR-collected scenarios warrant further research
into the interactions between spectrum sensing algorithms
and effects introduced by SDRs on waveforms during their
digitization process. Further research must also be carried out
to find out how the SDR’s hardware effects enable LZMSA to
differentiate an LTE input from a noise input. It is of note, that
LZMSA shows promise as a viable SSA that could perform
well in some scenarios. Notably, it works well in conjunction
with SDR collected-samples, even outperforming ED at on/off
detection of an LTE signal. In our future work we will address
the differentiation in performance of the algorithms between
CG and SDR-collected samples. Furthermore, we will be
studying the efficiency of these algorithms in the context
of a spectrum monitoring application utilizing SDRs, with
additional scenarios such as detection of a variety of signals
in noisy conditions.
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