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The Influence of X-Ray Computed
Tomography Acquisition
Parameters on Image Quality and
Probability of Detection of
Additive Manufacturing Defects
X-ray computed tomography (XCT) is a promising nondestructive evaluation technique for
additive manufacturing (AM) parts with complex shapes. Industrial XCT scanning is a rel-
atively new development, and XCT has several acquisition parameters that a user can
change for a scan whose effects are not fully understood. An artifact incorporating simu-
lated defects of different sizes was produced using laser powder bed fusion (LPBF) AM.
The influence of six XCT acquisition parameters was investigated experimentally based
on a fractional factorial designed experiment. Twenty experimental runs were performed.
The noise level of the XCT images was affected by the acquisition parameters, and the
importance of the acquisition parameters was ranked. The measurement results were
further analyzed to understand the probability of detection (POD) of the simulated
defects. The POD determination process is detailed, including estimation of the POD con-
fidence limit curve using a bootstrap method. The results are interpreted in the context of the
AM process and XCT acquisition parameters. [DOI: 10.1115/1.4044515]

Keywords: X-ray computed tomography, defect, noise, acquisition parameters, additive
manufacturing, powder bed, laser melting, probability of detection, inspection and
quality control

1 Introduction
Metal additive manufacturing (AM) has great potential to trans-

form manufacturing industries. However, many AM processes,
including laser powder bed fusion (LPBF) processes, can produce
undesired gas pores and lack-of-fusion (LOF) defects, which can
be detrimental to mechanical performance of the produced part
[1]. Gas pores result from entrapping environmental gas or gas
that already exists in metal powders [2,3], and these pores tend to
be spherical in shape. LOF defects are attributable to unoptimized
processing parameters (e.g., laser power, scan speed, and hatch
spacing) [4,5]. These pores tend to be irregular in shape, and mul-
tiple pores can be interconnected. If the pore is large enough, it can
trap unmelted metal powder [6]. These defects are important con-
siderations for adoption of the technology in applications such as
fracture-critical components in the medical and aerospace industries
[7]. But a reliable method to detect defects in AM-produced parts
with complex internal structures must be developed prior to wide-
spread adoption of metal AM.
X-ray computed tomography (XCT) was identified as the most

promising technique to nondestructively inspect AM-produced com-
ponents with complex geometries [8]. While the technique is prom-
ising for inspection, the quality of XCT images is a critical factor for
a reliable detection of defects as described in a recent work [6]. Noise
in the image can mask defects that we hope to identify, and the noise
can be described quantitatively by the standard deviation of image
intensity within a homogenous material. The standard deviation, σ,
of the pixel gray scale values Pi for N pixels in a homogeneous
region is defined in Eq. (1), where μ denotes the mean pixel value

and a homogenous region is a region with a uniform material com-
position. The signal-to-noise ratio (SNR) is the quotient between
the mean signal level (µ) and the fluctuation range (noise, σ) and is
often used as a measure to describe the image quality (Eq. (2)).
Since single-phase materials have a single fixed mean level in
XCT images, the noise alone may be used to compare the quality
of two images from the same uniform material.

σ2 =
1

N − 1
·
∑N

i=1

(Pi − μ)2 (1)

SNR =
Signal level
Noise level

=
μ

σ
(2)

Noise level and thus image quality of XCT images are affected by
various acquisition parameters such as source voltage, current, mag-
nification, frame rate (inverse of exposure time per projection),
number of images per projection, number of projections, and the
CT reconstruction algorithm. In addition to the acquisition parame-
ters, image processing and thresholding/surface detection algorithms
strongly affect automatic detection and measurement capability.
There are many different thresholding algorithms available, but the
influence of different thresholding algorithms is not considered in
this study.
Hermanek and Cargmignato [9] recently developed a reference

sample containing 72 hemispherical calottes with diameters from
100 µm to 500 µm. A design of experiment (DoE) was used to
study the effects of voltage and current on the calotte diameter mea-
surements. Müller et al. [10] studied the effect of various parameters
(voltage, current, magnification, frame rate, and number of images
per projection) on dimensional measurement as well. They devel-
oped a full factorial (32) DoE, where each factor had three levels,
to determine the influence of spatial resolution and pixel noise on
dimensional measurements. Our literature review has shown that
only a limited amount of research has been focused on the effect
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of acquisition parameters on dimensional measurements. The large
number of acquisition parameters and the wide range of possible
variation of those parameters make an experimental investigation
difficult. For the first goal of this work, we designed a fractional fac-
torial experiment to rank the influence of six acquisition parameters
on image quality while limiting the data acquisition to a reasonable
number of experiments.
The detectability of defects of a nondestructive evaluation (NDE)

system or procedure can be quantitatively described by the probabil-
ity of detection (POD). The POD evaluation can be used to compare
different NDE systems and also to determine if the NDE system or
procedure is suitable for a given inspection task. In an XCT
system, the system resolution is often quoted as the limiting capabil-
ity of the system. For qualification and certification of a fracture-
critical component, more rigorous investigation is needed. The
concept of POD embraces the statistical nature of detection either
by an operator or a system. A defect is said to be detected if a
machine signal crosses a pre-specified threhsold. However, the
signals are noisy. A different defect of the same size, even the
same defect, could produce a different signal at a different time. A
good NDE system will detect flaws in structures a high percentage
of the time even in the presence of such noise. We analyzed acquired
measurements in this paper to estimate POD. As the artifact was not
originally designed for a POD study, the study does not strictly
follow all the recommended requirements in terms of the number
of defects and other aspects mentioned in the MIL-1823A guide
[11]. While POD studies have been performed for various NDE
systems, only a limited number of studies have been performed for
XCT. Therefore, the second objective of this work is to provide an
introduction and general procedure for determining POD in XCT
measurements using the â versus a model to the AM community.
In an â versus a model, a refers to the true size of the defect and â
refers to the NDE signal response of the defect. Section 2 describes
the artifacts built for the study as well as the fractional factorial
design, Sec. 3 describes the experiment and XCT measurement pro-
tocols, Sec. 4 describes both the factor ranking analysis and the POD
analysis, and Sec. 5 ends with discussion and conclusions.

2 Materials and Methods
2.1 Artifact Development. A sample incorporating synthetic

defects that represent LOF defects with some trapped powder parti-
cles was produced with the LPBF process as shown in Fig. 1. The
overall dimension of the sample is nominally 5 mm (diameter) ×
15 mm (height). Pre-alloyed 17-4 stainless steel powders (GP1)
[12] were used to produce the sample with the chemical composition

of typical 17-4 stainless steel. The powders were atomized in nitro-
gen gas, and the powder size, as measured by laser diffraction, was
between 5 µm and 80 µm with a peak around 40 µm [13]. Hollow
cubes of different nominal edge length (200 µm, 400 µm, 600 µm,
800 µm, 1 mm, and 2 mm) were produced using default processing
parameters. Due to the PBF process, these hollow cubes trapped
metal powder particles. Individual powder particles are not fully
resolved in the image due to their small sizes compared with the tar-
geted voxel size. They appear as a single material with lower contrast
in XCT images. The cubes were designed such that one of the body
diagonals of the cube is aligned with the vertical axis. This orienta-
tion was found to produce an actual geometry closer to the nominal
design based on the previouswork [14]. Figure 1 shows the picture of
the artifact, computer-aided design (CAD), and a vertical cut view
through a reconstructed XCT image stack.

2.2 Experiment Design. A fractional factorial experiment
[15] in voltage, current, magnification, frame rate, number of
images average per projection, and reconstruction algorithm was
designed. Three continuous levels were considered for all factors
except algorithm, which had only two categorical levels: filtered
back projection and iterative reconstruction. The levels of the con-
tinuous factors were selected considering the following constraints.

2.2.1 Constraint 1: Geometric Unsharpness. When selecting
voltage and current, it is important to keep the source spot size
small enough so that the geometric unsharpness does not exceed
the pixel pitch for different magnifications. The relationship of mag-
nification (Mag) and source spot size (s) on geometric unsharpness
(λg) is shown in Eq. (3). The geometric unsharpness should be less
than or equal to the effective pixel pitch (dp) of the X-ray detector,
which accounts for any binning or optical magnification. In this
case, no binning was applied, and there is no optical magnification
in the flat panel detector system. Therefore, dp is just the detector
pixel pitch. As the geometric unsharpness exceeds the limit, the
actual resolution of the image is degraded, and the highest resolu-
tion is not achieved at the given magnification. The spot size of
the source is known to be related to the source power. A general
rule of thumb is 1 µm per 1 W, and similar information can be
found from another Ref. [16]. For a proper comparison between dif-
ferent experiments, we kept the geometric unsharpness of each
experiment below the limit.

(Mag − 1) · s = λg ≤ dp (3)

2.2.2 Constraint 2: X-Ray Signal Level. The selected voltage,
current, frame rate, and source-to-detector distance combination
should also allow enough the X-ray flux incident on the detector
by penetration through the sample. The detected signals by X-ray
incidence must be higher than the background level for a proper
XCT reconstruction. The background signal includes the radiation
intensity in the background and any electronic noise in the detector.
The X-ray signals also must be lower than the maximum detector
dynamic range, which is 16 bits (0–65535) in this case. The
detected intensities were kept at about 75–80% of the maximum
level. An increase in the voltage and current will increase the
X-ray flux and detected signals. A reduction in the frame rate
increases the detected signals up to the detector limitation. A
decrease in the source-to-detector distance increases the flux level
at the detector plane. The X-ray flux proportionally decreases by
the square of distance.

2.2.3 Constraint 3: Fixed Source-to-Detector Distance. The
same magnification can be achieved for different combinations of
source-to-object distance (SOD) and source-to-detector distance
(SDD). To simplify the experiment, a constant source-to-detector
distance was chosen while varying the source-to-object distance
to achieve different levels of magnification, which simplified the
choice of frame rates.

Fig. 1 Artifact incorporating hollow cubes filled with raw metal
powders. The XCT image is a section cut (A-A) through the
center of the sample, as shown in the CAD.
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2.2.4 Constraint 4: Physical Filter. Although it is not a part of
the study here, the incident X-ray spectrum typically includes low
energy characteristic peaks, which influence the noise level
(quality) of the images. A physical filter was applied at the source
window to cut off these peaks, thus hardening the beam spectrum.
This process also reduced the available flux at the detector. In this
case, a 3.05-mm-thick copper filter was used.
The X-ray spectra were simulated using the Tungsten anode

spectral model using interpolating cubic splines (TASMICS) software,
as shown in Fig. 2 [17]. Even though a 3.05-mm-thick copper filter
was used, the predicted spectrum showed some remaining charac-
teristic peaks. These characteristic peaks correspond to a combina-
tion of peaks at around 57.4 keV and 66.7 keV–69.5 keV. These
characteristic peaks could have contributed to the noise level in
the images. Further increase in the filter thickness can reduce the
effect of characteristic peaks, but it will also reduce the available
X-ray flux at the detector plane resulting in longer acquisition
times. The average energies of each spectrum are, from left to
right in Fig. 2, 105 keV, 113 keV, and 120 keV, respectively.

3 Experiment
An industrial XCT system was used for XCT measurements. The

system is equipped with a microfocus source, a rotary stage, and a
flat panel detector. The microfocus source has a tungsten target. The
number of projections was chosen to be more than the theoretically
required number of projections. Two different cone beam recon-
struction algorithms, Feldkamp–David–Kress (FDK) and simulta-
neous iterative reconstruction technique (SIRT), as supplied by
the open-source software ASTRA, were used [18,19]. For the FDK
algorithm, a typical ramp filter (Ram-Lak) was used as the recon-
struction filter. The reconstruction filter of the FDK algorithm is
known to affect the image quality and noise level for filtered back-
projection algorithms [20]. There are different types of iterative
reconstruction algorithms, and the results would vary for different
algorithms. Based on our study, the number of iterations signifi-
cantly affects the image quality as shown in the appendix. The 20
measurements that were acquired, based on the fractional factorial
design, are listed in Table 1, which also lists the factor level combi-
nations that were used as well as the measurement response, stan-
dard deviation of image intensity. The values covered here are at

voltages (160 kV–200 kV) chosen at the higher-end of the system
(225 kV source), which would be typically used for inspecting a
metallic sample. Depending on the material and applications,
various magnifications may be employed, which is covered in the
study. We covered magnifications from high to coarse in three
levels considering the constraints mentioned in the previous
section. The voxel sizes were determined by dividing detector
pixel pitch (127 µm) by geometric magnification values, and they
are listed in the table to help readers identify the data sets. Some
of the parameters are chosen based on the limitation discussed in
the Sec. 2. While only one image is often acquired per projection,
we wanted to study how increasing the number of images may
improve the image quality. As more images are averaged per pro-
jection, the image SNR theoretically increases by

��
N

√
, where N is

the number of images averaged. The trade-off would be the increase
of the total acquisition time.
The XCT scans acquired at different magnifications were aligned

at the same orientation in a three-dimensional (3D) space using an
image registration algorithm based on the maximization of normal-
ized mutual information as implemented in the AVIZO software [21].
For a detailed explanation of the general registration method,
readers are referred to other papers [22–25]. Once all data were reg-
istered to the same location, standard deviations were measured for
homogeneous areas (51 × 75 × 550 voxels) within the sample away
from the simulated defects.

4 Effect of X-Ray Computed Tomography Acquisition
Parameters on Image Quality
4.1 Data Analysis Overview. The analysis of image quality

focuses on three questions: (1) how repeatable are the scans,
(2) which of the six factors most impact the image quality, and
(3) which experimental factor combination leads to the best
image quality. The analysis is performed on the logarithmic scale,
a common pre-analysis transformation for inherently positive
response variables. The replicated runs (1 paired with 11, and 2
paired with 20) are used to answer question 1, and the least absolute
shrinkage and selection operator (LASSO) [26] is used to answer
question 2. The GLMNET package [27] for R [28] was used for com-
putations related to the LASSO. The shrinkage parameter for the
LASSO was calculated by a 10-fold cross validation and the

Fig. 2 Simulated spectra for different source voltages with 3.05-mm Cu filter for 1 Gy air Kerma (Kerma is an acronym for kinetic
energy released per unit mass, and 1 Gy is 1 Joule per kilogram)

Journal of Manufacturing Science and Engineering NOVEMBER 2019, Vol. 141 / 111002-3



“one-standard-error” rule described in Ref. [27]. The LASSO has
recently been compared with more traditional tools for analyzing
fractional factorial experiments and found to be especially useful
when, due to missing observations, the orthogonal structure of the
designed experiment is disturbed [29]. This is exactly our situation,
not because of missing observations, but because of experimental
constraints. Question 3 is answered directly from the experimental
results. The experimental factor combination with the lowest stan-
dard deviation would be considered to have the best image
quality out of the 20 experiments.
A second analysis centered on the calculation of POD for XCT

was also carried out. The numerical results that we present should
not be considered conclusive because as we describe in Sec. 5, it
is not possible to directly measure the size of the cuboidal defects
in our sample. We feel that there is, however, great value in this
description since to our knowledge such a description does not
appear in the literature on defect detection for AM. We intend
that this description will serve as a roadmap for future work in
the area.

4.2 Scan-to-Scan Repeatability. The replicated points
(1 paired with 11, and 2 paired with 20) were used to assess
scan-to-scan repeatability, e.g., the level of noise change when a
scan is repeated under identical settings of the acquisition parame-
ters. The standard deviations of the logarithm of the measurement
results from the replicate runs made with the SIRT algorithm
(experiments 2 and 20) and the replicate runs made with the FDK
algorithm (experiments 1 and 11) were averaged, which yielded
0.003. Since the analysis is performed on the logarithmic scale,
we interpret the number in the following way: if scans are repeated
using the same acquisition parameters, the noise level in the image
is expected to vary by 0.3%.

4.3 Ranking. Table 2 lists the factors from the LASSO proce-
dure with non-zero coefficients in order by absolute magnitude.
Note that the raw numerical values of the coefficients are not
directly interpretable because the input factors are centered and
scaled before use. The magnitude and sign of the coefficients
directly provide useful information, which is the focus of this
section. Clearly, the most important factor is the number of
images, with increasing quality (lower standard deviation) as the
number of images increases. Magnification and frame rate impact
image quality similarly, with a higher magnification and a higher

frame rate leading to lower image quality. Voltage is ranked as
fourth most important with higher voltage leading to better
quality images. The main effect of the reconstruction algorithm
and its interaction with the frame rate impact image quality by a
similar magnitude, but in opposite directions. The experiments
were designed to be able to study the interactions between the six
main parameters, and the interaction between the algorithm and
the frame rate was the only interaction found to significantly influ-
ence the image quality. Surprisingly, the positive coefficient for
algorithm factor implies that on average SIRT reconstructions
lead to lower image quality. This could be an artifact of the
number of iterations used for reconstruction (see appendix). The
negative coefficient on the interaction between the number of
images and the algorithm implies that for FDK reconstructions
the deleterious effect of increasing the frame rate becomes worse,
but for SIRT reconstructions, the harmful effect of the increasing
frame rate is lessened.

4.4 Comparison of the Data With the Lowest and Highest
Standard Deviation. Experiment 8 had the lowest standard devia-
tion (highest image quality), and experiment 14 had the highest
standard deviation (lowest image quality), see Table 1. The
images are compared in Fig. 3, and the difference in the image
quality is quite significant as shown from the grayscale images.
Based on a visual inspection, it is possible to detect defects of all
sizes. However, an automatic inspection is desired in industrial set-
tings, and an image thresholding process is required. Otsu’s method
[30] was used to threshold the grayscale images to binary images as
an example. Connected components within the binary images can
be used to label each component and quantitatively measure the
volume. In the case of experiment 8, the thresholding and labeling
processes were successful. Different colors in the labeled image

Table 1 XCT acquisition parameters and standard deviation measurements

Experiment
Voltage
(kV)

Current
(mA) Magnification

Voxel size
(µm)

Frame rate
(frame/s)

Number of images
per projection

Reconstruction
algorithm

Standard deviation
(16-bit gray level)

1 180 90 5.62 22.60 2 4 FDK 697.7
2 180 90 5.62 22.60 2 4 SIRT 809.7
3 160 80 8.39 15.14 3.75 16 SIRT 1144.4
4 200 100 3.18 39.94 3.75 1 SIRT 1267.1
5 180 80 8.39 15.14 1 1 SIRT 1753.4
6 160 80 8.39 15.14 1 16 FDK 643.0
7 180 100 8.39 15.14 3.75 16 SIRT 864.9
8 160 100 3.18 39.94 1 16 SIRT 494.6
9 180 80 8.39 15.14 3.75 1 FDK 2842.9
10 160 80 3.18 39.94 1 1 FDK 915.4
11 180 90 5.62 22.60 2 4 FDK 695.2
12 160 100 8.39 15.14 1 16 FDK 614.5
13 160 80 3.18 39.94 1 16 SIRT 514.2
14 160 100 8.39 15.14 3.75 1 FDK 3042.6
15 160 100 3.18 39.94 3.75 16 FDK 577.8
16 200 100 3.18 39.94 1 1 FDK 686.5
17 200 80 3.18 39.94 3.75 16 FDK 530.2
18 160 100 8.39 15.14 1 1 SIRT 1876.7
19 160 80 3.18 39.94 3.75 1 SIRT 1908.5
20 180 90 5.62 22.60 2 4 SIRT 814.5

Table 2 Ranking of the investigated XCT acquisition parameters

Rank Factor LASSO coefficient estimate

1 Number of images −0.32
2 Magnification 0.18
3 Frame rate 0.16
4 Voltage −0.061
5 Algorithm—frame rate −0.0016
6 Algorithm 0.0010
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represent different connected components. On the other hand,
images in experiment 14 were too noisy to properly segment the
components. The main differences with the acquisition parameters
are magnification, frame rate, number of images, and reconstruction
algorithm as presented in Table 3. Except for the reconstruction
algorithm, the trend of high image quality in experiment 8 and
low image quality in experiment 14 follows the interpretation of
the impact of the factors in Sec. 4.3, e.g., raising the number of
images raises image quality.

4.5 Suggestions for Future Experiments. An X-ray source
spectrum is governed by the source voltage, current settings, and
filter material and thickness. The source voltage strongly affects
the X-ray spectrum and total flux, and it was found to be an impor-
tant parameter in the current study. In future experiments, it is sug-
gested to fix the source voltage for comparisons of other parameters
to reduce measurement uncertainty due to having different X-ray

spectra. The simulated energy spectrum also showed that a 3-mm
Cu filter was not enough to completely remove the characteristic
X-ray peaks, and the filter thickness should be more carefully
selected in future experiments. A simulation tool for XCT measure-
ments may help determine the noise level for different conditions
not experimentally measured. The voltage would also change the
penetration capability, which will affect the number of photons
passing through the sample and reaching the detector. While not
considered in this project, the effect of material thickness on detec-
tion capability would be an important factor to study as well. The
POD is expected to significantly decrease with an increase in mate-
rial thickness and a subsequent reduction of X-ray transmission.
Another consideration for future studies is the type of experiment

to run. The fractional factorial experiment used in this work is effi-
cient for screening many factors. Figure 4 plots the residuals from
the LASSO procedure against the fitted values. Overall, the residu-
als are symmetric around zero, as we would expect, but an apparent
curvilinear pattern remains, which may signal a need for higher
order terms such as quadratic or cubic. The use of efficient response
surface designs or even optimal designs that enable fitting higher
order terms may be beneficial. However, note that the magnitude
of the largest residuals is still quite small, around 5%. Furthermore,
the percentage of variability in the data described by our LASSO
model is more than 90%. Thus, even in light of the shortcomings,
the model fits the data quite well and is adequate for the purpose
of ranking the importance of the factors.

5 Probability of Detection
The acquired data sets were used to determine the POD for the

given artifact and XCT acquisition parameters. The NDE flaw
size detectability is often denoted as a90/95, the 95% lower confi-
dence bound for a defect size with 90% POD [11]. In this study,
the â versus a approach was used, where a is the actual size of
the defect, and â is the NDE measurement response to a defect of
that size [31]. Both a and â are volumes in this study, with a
being the true volume and â being the volume measured by XCT.
The artifact incorporated six simulated defects, which trapped
metal powders. The detectability of defects with trapped metal
powder can be less than that of a defect with no powder due to
additional X-ray attenuation of powders resulting in reduced
image contrast when imaged with coarser resolution than the size
of powders. For each of 12 acquisition settings, we have six mea-
surements, one for each simulated defect. To perform an
â versus a study, the true volume a must be found. Since the simu-
lated defects are fully enclosed, it would require a serial sectioning
process to measure volumes, which not only destroys the sample
but is also prone to produce errors due to smearing the edges.
Instead, we used an XCT measurement system that has spatial res-
olution that is an order of magnitude higher than the system to be
used for routine inspection of AM parts. The ZEISS Versa

Fig. 3 Comparison of the images of the lowest (experiment 8) and highest (experiment 14) standard deviation
data sets

Table 3 Acquisition parameters of experiment 8 and
experiment 14

Experiment 8 14

Voltage (kV) 160 160
Current (mA) 100 100
Magnification 3.177 8.394
Frame rate (frame/s) 1 3.75
Number of images 16 1
Reconstruction algorithm SIRT FDK
Standard deviation (16-bit gray level) 494.6 3042.6

Fig. 4 The residuals plotted against the fitted values from the
LASSO procedure
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XM500 system2 in NIST Boulder was used to measure the regions
of interest of the sample around individual defects as shown in
Fig. 5. The system configuration is slightly different from the
other XCT system as it incorporates a lens-coupled charge-
coupled device (CCD) camera detector. Optical magnification
was utilized in addition to geometric magnification. The parameters
shown in Table 4 were used. The effective image voxel size of
3.71 µm was achieved, which is a result of magnification (both
geometrical and optical) and camera binning. The material and
thickness of the filter are proprietary information of the vendor.
The reconstruction was performed with FDK algorithm in the
vendor’s software. In Fig. 5, examples of XCT images of the
largest (nominally 2 mm cube) and smallest (nominally 200 µm
cube) defects are shown. The trapped powders are clearly visible.
The defect volumes are measured based on sub-voxel determination
in the environment of VGSTUDIOMAX 3.1 [32]. The uncertainties are
found based on the 1/10th of a voxel uncertainty of surface determi-
nation process applied to a cube [33]. Since we measure the true
defect size, a, using a higher resolution XCT system than would
be used for routine inspections, the reader should treat the POD
analysis that follows as expository, not a definitive quantitative
statement about POD for LOF defects with XCT systems. A more

rigorous POD study would require the true defect size, a, to be mea-
sured by a technique that produces metrologically traceable [34]
measurements with completely characterized uncertainties. This
would require destructive measurements or artifacts for which the
defects are not fully enclosed.
Otsu’s method [30] was again used for thresholding, which

enabled volume measurements to be made in the high-resolution
XCT images. The measured volumes for each nominal defect sizes
are presented for different experiments and reference measurements
in Table 5. A binary response curve is shown in Fig. 6, with the hor-
izontal axis depicting the noise level (standard deviation of intensity)
of the image. The binary response of 1 means that all defects were
clearly thresholded and identified, and the response of 0 means
one or more of the defects were not thresholded properly. The exper-
iments with the two lowest standard deviation values in the 0 binary
response group properly detected all defects but the smallest. There
are more materials around the smallest defect, which reduced X-ray
penetration, and the higher local noise level around the smallest
defect reduced thresholding capability for the two acquisition set-
tings. Since all defects were not properly detected, the two results
are excluded from the following POD analysis. All other experi-
ments in the 0 binary response group had higher standard deviation
values than all of the experiments in the 1 binary response group, and
the results again indicate the importance of reducing noise level for a
proper detection of defects. The acquisition parameters that did not
permit automatic defect detection are omitted from Table 5 as well
as our POD analyses because we do not expect XCT operators to
perform manual inspection in industrial settings.
For the â versus a POD study, an arbitrary decision threshold

needs to be chosen based on the objective of the POD study [31].
If the threshold changes, the curve does too. In some previous
POD studies, the decision threshold was chosen as the NDE instru-
ment detection limit. For an example of ultrasound testing (UT), the
lowest signal response that is above the noise level was chosen [35].
In this case, the reliability of the minimum detectable limit is esti-
mated. Here, we want to discuss the choice of decision threshold
for screening out the critical defects and whether to accept the
part after an inspection for the critical defect size. In instances
similar to ours, where the â is a direct estimate of a, the reaction
may be to set the threshold to the size of defect that we want to
find, which may not be optimal. In contrast, in UT, defect size is
measured in a unit of area perpendicular to the sound beam, but
the measurement response is maximum echo amplitude (e.g., dB).
A threshold in terms of echo height must still be chosen.
One way to choose a threshold is to proceed iteratively. Choose

an initial threshold, estimate the POD curve and its lower bound,
and examine the POD for defect sizes that are of interest for your

Fig. 5 (a) XCT slice from the lower resolution XCT image and measurements of simulated defect volumes of
(b) 2-mm cube (nominal size) and (c) 200-µm cube (nominal size) from higher resolution XCT images

Table 4 XCT imaging parameters of higher resolution XCT scan

Parameters Values

Voltage (kV) 160
Current (µA) 62
Filter HE#6
SDD (mm) 28,999.0
SOD (mm) 15,999.6
Magnification (geometric) 1.81
Magnification (optical) 4.01
Camera binning 2
CCD camera pixel pitch (µm) 13.5
Effective image voxel (µm) 3.71
Frame rate (frame/s) 0.227
Number of images 1
Number of projection 3201
Reconstruction algorithm FDK

2Certain commercial equipment, instruments, or materials are identified in this
paper in order to specify the experimental procedure adequately. Such identification
is not intended to imply recommendation or endorsement by the National Institute
of Standards and Technology, nor is it intended to imply that the materials or equip-
ment identified are necessarily the best available for the purpose.
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application. If they are satisfactory, the chosen threshold can be
used to identify defective parts. If not, the threshold should be
adjusted up or down depending on if its POD is too high or too
low for defect sizes of interest for your application. If the POD for
defect sizes of interest for the initial threshold is too low, the thresh-
old should be adjusted down. If the POD is too high, the threshold
should be increased. This should be continued until the POD for
the defect sizes of interest for your application is acceptable. The
reader may note that they can achieve (essentially) POD= 1 for
their defect size of interest by choosing a low enough threshold.
This is true, but it does not come for free. The threshold specifies
when a defect is declared to be larger than some critical size. If the
threshold is pushed too low, many defects that are smaller than the
critical size will still be flagged as larger.
This suggests a second approach for choosing a threshold, bal-

ancing the true positive rate (TPR) (the probability of declaring a
defect larger than some critical size when it really is) and the
false positive rate (FPR) (probability of declaring a defect larger
than some critical size when it is not). For example, if the threshold
is set to be extremely small so that all defects are classified as larger
than the critical size, both the TPR and FPR are one. In contrast, if
the threshold is set to be extremely large so that no defects are clas-
sified as larger than the critical size, the TPR and FPR are identically
zero. The goal is to set a threshold that balances these competing
aspects so that the TPR is large and that FPR is small instead of
focusing only on the POD. A common plot for simultaneously dis-
playing the TPR and FPR as the threshold changes is the receiver
operating characteristic curve, which has found extensive use in a
diverse collection of fields such as signal processing [36], diagnos-
tic medicine [37], and more recently machine learning [38]. We do

not employ such a strategy here because to calculate the TPR and
FPR in the a versus â study, it is necessary to hypothesize a distri-
bution of defect sizes in an AM part to be inspected.
Once a satisfactory decision threshold and a corresponding POD

curve are found, the inspector can use the decision threshold to
accept or reject an actual part during a future XCT inspection. If
there is a defect with a signal response higher than the decision
threshold, the part can be rejected with the determined POD and
confidence. If one is interested in estimating the detection capability
of the XCT setting, an example decision threshold may be chosen as
the volume of 8 voxels, which is the minimum measurable size of
features based on the Nyquist sampling theorem in 3D [39]. If the
geometric unsharpness was not properly addressed as already men-
tioned in Eq. (2), the number of voxels may have to be increased.
Based on this decision threshold, one can determine the reliability
of the XCT setting and a90/95 value for damage tolerance analysis.
For experiment 1, â (lower resolution XCT) is plotted against a

(higher resolution XCT) in log-log scale in Fig. 7. A linear relation-
ship was found, and a line was fit to the points. We demonstrate the
development of a POD curve using a decision threshold of
0.001 µm3. As an example, we chose a 100-µm cube (0.001 mm3)
as the true defect size (a) of interest (e.g., critical defect size).
Since our â versus a curve is almost 1:1, we also chose 0.001 µm3

as the decision threshold in the scale of â as an example to describe
the process of determining a PODcurve.As described in the previous
paragraph, the final decision threshold will be iteratively chosen
based on the resulting POD curve. The decision threshold is shown
in Fig. 7 as the dotted line.
To generate a POD curve, a normal distribution is used with

mean values determined by the fitted line and standard deviation

Fig. 6 Binary detection response of 20 experiments Fig. 7 Plot of â versus a in log scale of experiment 1

Table 5 Volumemeasurements of defects (the signal response measurements (â) were performed for experiments 1, 2, 3, 6, 7, 8, 11,
12, 13, 15, 17, and 20. The true defect sizes (a) are shown in the last row)

Experiment 2-mm cube (mm3) 1-mm cube (mm3) 0.8-mm cube (mm3) 0.6-mm cube (mm3) 0.4-mm cube (mm3) 0.2-mm cube (mm3)

1 9.379 1.274 0.666 0.298 0.100 0.021
2 9.342 1.271 0.662 0.298 0.100 0.020
3 9.393 1.268 0.662 0.304 0.102 0.021
6 9.250 1.256 0.656 0.298 0.098 0.018
7 9.326 1.274 0.667 0.302 0.100 0.020
8 9.528 1.267 0.663 0.293 0.098 0.023
11 9.376 1.273 0.663 0.298 0.100 0.020
12 9.262 1.262 0.660 0.299 0.098 0.019
13 9.569 1.258 0.648 0.299 0.107 0.026
15 9.576 1.271 0.660 0.292 0.098 0.025
17 9.608 1.263 0.649 0.296 0.104 0.026
20 9.334 1.269 0.662 0.299 0.100 0.020
True defect size (a) 9.147 (±0.0266%) 1.204 (±0.0523%) 0.652 (±0.0642%) 0.280 (±0.0851%) 0.0899 (±0.124%) 0.0146 (±0.228%)
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determined by the root mean squared error of the linear fit. Figure 8
shows one such normal distribution. The x-axis in Fig. 8(a) is the
logarithm of â. The POD at each â value is the area under the
normal distribution curve above the decision threshold as shown
in Fig. 8(b). When the normal distribution curve mean value is cen-
tered at log(0.0011) as an example, the POD is 75.8% based on the
decision threshold of log(0.001). The POD is estimated from differ-
ent normal distribution curves with the mean values centered at dif-
ferent â values. The POD values and the corresponding a may be
found, leading to the curve shown in Fig. 9 with the x-axis being
the actual size of defect (a) and the y-axis being POD. The uncer-
tainty in a is not addressed in our POD analysis because it is
much smaller than the error in our fitted lines (â versus a). If the
uncertainty in a were closer in magnitude to the error in the linear
fits, it would be necessary to use errors in variable regression tech-
niques [40] to fit the lines, and the corresponding Monte Carlo boot-
strap procedure used to estimate uncertainty of PODcurves should be
revised appropriately, too.
An important aspect of POD curves is to be able to account for

uncertainty. The 95% lower confidence bound is typically esti-
mated. To estimate the uncertainty of the curve, a parametric boot-
strap method was used [41]. The bootstrap method we employ
accounts for the mismatch between the fitted line and the values
of â. On the basis of the fitted line and its root mean squared
error, new â values are simulated from a normal distribution with

a mean determined by the original fitted line and a standard devia-
tion of root mean squared error from the original linear fit. Based
on the new set of â values, a new line is fit, which will have a new
slope, a intercept, and a root mean squared error. A new POD
curve is generated for the new line. For an example with 1000 rep-
etitions, 1000 data sets and corresponding lines fits are generated
as shown in Fig. 10(a), and the corresponding 1000 POD curves
are generated as shown in Fig. 10(b). The 95% lower confidence
POD curve is found by finding the lower 5th percentile POD
values for each a value of interest. The resulting 95% lower con-
fidence bound for the POD curve is shown in Fig. 11. In this
study, the POD curve will be interpreted as whether the given
inspection setting would be suitable for inspection of the defect
of interest (producing a signal response of 0.001 mm3). For exper-
iment 1, the original POD curve provided 100% POD (essentially)
at a true defect size of 0.001 mm3, and the 95% confidence curve
provided 99.7% POD. If the user does not find the POD values
acceptable for the application, a different decision threshold can
be chosen to repeat the process until an acceptable POD curve
is obtained for the defect size of interest. The 95% lower confi-
dence POD curves for the 12 experiments with clear volume mea-
surements are plotted in Fig. 12. The POD values vary depending
on the acquisition parameters, and all experiments provided high
95% confidence POD values for 0.001 mm3 defect. However, it
would not be appropriate to rank the acquisition settings based
on the POD values. A POD curve is a complex function of the
quality of â versus a fit and the choice of decision threshold. Dif-
ferent XCT acquisition settings may be preferred for different
decision thresholds.

6 Conclusions
The effect of XCT acquisition parameters on image quality for

detection of AM defects was studied, and a method to determine
the probability of detection was demonstrated in this paper. Due
to the complex external and internal geometry of an AM compo-
nent, XCT is considered as a promising nondestructive inspection
technique. However, XCT is a relatively new NDE technique
with many possible acquisition settings, which greatly affects the
inspection results. Due to the large number of acquisition parame-
ters and the possible ranges of variation, it is challenging for a
novice operator to find a suitable setting. A methodology to deter-
mine reliability of XCT inspection is also currently lacking. An arti-
fact incorporating simulated defects was generated using a LPBF
AM technique to study the two objectives: effect of acquisition

Fig. 8 (a) Determination of POD from normal distribution curve and (b) the normal distribution curve overlaid on the â versus a plot

Fig. 9 POD curve for experiment 1
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parameters on image quality (in terms of noise level) and probabil-
ity of detection.
A fractional factorial experiment was conducted by varying six

different parameters of XCT acquisition and reconstruction algo-
rithms that affect the noise level in XCT images. The noise level
in the image is related to the total X-ray detected fluence, which
is affected by the X-ray spectrum, distance from source to detec-
tor, frame rate, number of images per projection, sample thick-
ness, and reconstruction algorithm. In this experiment, voltage,
current, magnification, frame rate, number of images averaged
per projection, and reconstruction algorithm were varied. The
standard deviation of image intensity was used as the metric to
characterize noise level in the reconstructed images. The
LASSO regression procedure was used to identify and rank the
most important factors affecting the image quality. The number
of images averaged to produce each projection was found to be
the most important factor. Other parameters included magnifica-
tion, frame rate voltage, interaction of reconstruction algorithm
with frame rate, and reconstruction algorithm in the order of sig-
nificance. Repeated measurements were also performed, and the
repeatability of image quality was found to be very high. (Stan-
dard deviation of the measure (standard deviation of image inten-
sity) was 0.3%.)
A process for determining a POD curve for XCT measurements

was also demonstrated based on the measured data. A signal

response (â versus a) model was used. For the signal response
(â) value, the XCT images were thresholded to measure the
volume of the defects. For the true defect size (a), defect
volumes were measured using a higher resolution (3.71 µm/
voxel) XCT system. The data sets with a lower noise level (stan-
dard deviation) provided a complete thresholding of all produced
defects, and the results indicated the importance of reducing
noise level for a reliable detection of defects, in general. A detailed
procedure of determining a POD curve was explained, and the
uncertainty of the curve (95% lower confidence bound) was also
determined by using a parametric bootstrap method. The POD
curve provides a reliability statement for the NDE inspection for
critical defects. A discussion regarding the choice of decision
threshold was also provided where the choice of decision threshold
is influenced by the reliability of inspection and economics of
inspection. The established methodology will be used as a basis
for future POD studies of XCT for different AM defects and part
geometries.
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Fig. 11 POD curve of experiment with the 95% lower confidence
bound

Fig. 10 (a) Data generated with bootstrap method and the corresponding line fits for 1000 sets and (b) the corresponding POD
curves

Fig. 12 POD curves of 12 experiments detected defects
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Appendix: SIRT Iteration
The simultaneous iterative reconstruction technique (SIRT) [42]

as implemented in ASTRA was used for the reconstruction process. A
fixed number of iterations were used after qualitatively inspecting
the image quality. To understand the effect of number of iterations
on image gray level standard deviation, a simple test was per-
formed. It shows that the standard deviation of SIRT-produced
images increases as the number of iteration increases. This is due
to the inherent noise of the projection data, which the original
SIRT algorithm does not account for. Therefore, applying more iter-
ation inevitably increases the noise level. One way to solve the
problem is to apply a proper regularization to account for the noise
in the system matrix [43,44], which is an active topic of research.
At around 1000 iterations, the standard deviation is at a level
similar to that produced by the FDK algorithm, as shown in
Fig. 13. Therefore, we chose to use 1000 iterations for this project.
However, using a lower number of iterations could have reduced
the noise level and thereby improved the detection capability.
On the other hand, using a lower number of iterations sacrifices

feature sharpness. A line plot across the edge of sample is shown
in Fig. 14. The edge transfer function shows a reduced sharpness
for a lower number of iterations. Therefore, smaller features could
have been missed at lower iteration levels.
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