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We study the nonequilibrium dynamics of Abelian anyons in a one-dimensional system. We find that the
interplay of anyonic statistics and interactions gives rise to spatially asymmetric particle transport together
with a novel dynamical symmetry that depends on the anyonic statistical angle and the sign of interactions.
Moreover, we show that anyonic statistics induces asymmetric spreading of quantum information,
characterized by asymmetric light cones of out-of-time-ordered correlators. Such asymmetric dynamics is
in sharp contrast to the dynamics of conventional fermions or bosons, where both the transport and
information dynamics are spatially symmetric. We further discuss experiments with cold atoms where the
predicted phenomena can be observed using state-of-the-art technologies. Our results pave the way toward
experimentally probing anyonic statistics through nonequilibrium dynamics.
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Fundamental particles in nature can be classified as
either bosons or fermions, depending on their exchange
statistics. However, other types of quantum statistics are
possible in certain circumstances. For instance, Abelian
anyons are characterized by fractional statistics interpolat-
ing between bosons and fermions [1–5]. When two anyons
are exchanged, their joint wave function picks up a generic
phase factor, eiθ. Anyons play important roles in several
areas of modern physics research, such as fractional
quantum Hall systems [5–7] and spin liquids [8–10], not
only because of their fundamental physical interest, but
also due to their potential applications in topological
quantum computation and information processing [11–17].
In the beginning, the exploration of anyons was restricted
to two-dimensional systems. Later, Haldane generalized
the concept of fractional statistics and anyons to arbitrary
dimensions [18,19].
The physics of Abelian anyons in one dimension (1D)

has attracted a great deal of recent interest [20–36]. Anyons
in 1D exhibit a number of intriguing properties, including
statistics-induced quantum phase transitions [37–40],
asymmetric momentum distribution in ground states
[32–37,41], continuous fermionization of bosonic atoms
[42], and anyonic symmetry protected topological phases
[41]. Several schemes have been proposed for implement-
ing anyonic statistics in ultracold atoms [37,38,41–43] and
photonic systems [44] by engineering occupation-number
dependent hopping using Raman-assisted tunneling [37,38]
or periodic driving [42,44]. Cold atom quantum systems
[45–47] are powerful platforms not only for probing
equilibrium properties of many-body systems, but also

for studying uncharted nonequilibrium physics [48–57].
Yet, most of the nonequilibrium studies to date have
focused on fermionic or bosonic systems, where anyonic
statistics do not come into play.
In this work, we study the interplay between anyonic

statistics and nonequilibrium dynamics. In particular, we
study the particle transport and information dynamics
of Abelian anyons in 1D, motivated by recent proposals
[37,38,41,42] and the experimental realization of density-
dependent tunneling [43,58], as well as by technological
advances in probing nonequilibrium dynamics in ultracold
atomic systems [50,51]. As we shall see, statistics plays
an important role in the nonequilibrium dynamics of
anyons. First, distinct from the bosonic and fermionic
cases, anyons in 1D exhibit asymmetric density expansion
under time evolution of a homogeneous anyon-Hubbard
model (AHM). The asymmetric transport is controlled by
the anyonic statistical angle θ and interaction strength U.
When the sign of θ or U is reversed, the expansion changes
its preferred direction, thus revealing a novel dynamical
symmetry of the underlying AHM. We identify this
symmetry operator and analyze the asymmetric expansion
dynamics using perturbation theory, confirming the impor-
tant role played by statistics and interactions. In addition,
we use the so-called out-of-time-ordered correlator
(OTOC) [59] to characterize the spreading of information
in such systems. We find that information spreads with
different velocities in the left and right directions, forming
an asymmetric light cone.
In contrast to previous studies on ground-state properties

[30,33–35,37,38,41,42] or hard-core cases [29,36,60] of
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one-dimensional anyons, here we focus on the out-of-
equilibrium physics of anyonic systems which can be
implemented in experiment [37,38,41–43]. Moreover, we
focus mainly on observables that both reveal anyonic
properties directly and can be probed in cold atom systems,
where the anyonic statistics can be realized via correlated-
tunneling terms [42]. Crucially, our work provides a new
method for detecting anyonic statistics even in systems
where the ground state is difficult to prepare.
Model.—We consider one-dimensional lattice anyons

with on-site interactions—the anyon-Hubbard model
[37,38,41–44]:

ĤA ¼ −J
XL−1

j¼1

ðâ†j âjþ1 þ H:c:Þ þ U
2

XL

j¼1

n̂jðn̂j − 1Þ; ð1Þ

where n̂j ¼ â†j âj and J and U describe nearest-neighbor
tunneling and on-site interaction, respectively. Throughout
the Letter, we set J ¼ 1 as the energy unit. The anyon
creation (â†j ) and annihilation (âj) operators obey the
generalized commutation relations

½âj; âk�θ ≡ âjâk − e−iθsgnðj−kÞâkâj ¼ 0; ð2Þ

½âj; â†k�−θ ≡ âjâ
†
k − eiθsgnðj−kÞâ†kâj ¼ δjk; ð3Þ

where θ is the anyonic statistical angle. Here, sgnðkÞ ¼ −1,
0, 1 for k < 0,¼ 0, > 0, respectively. Equations (2) and (3)
imply that particles on the same site behave as bosons.
When θ ¼ π, these lattice anyons are “pseudofermions,” as
they behave like fermions off site, while being bosons on
site [37].
By a generalized, fractional Jordan-Wigner transforma-

tion, âj ¼ b̂je
−iθ

P
j−1
k¼1

n̂k , the above AHM can be mapped to
an extended Bose-Hubbard model (EBHM),

ĤB ¼−J
XL−1

j¼1

ðb̂†j b̂jþ1e−iθn̂j þH:c:ÞþU
2

XL

j¼1

n̂jðn̂j−1Þ; ð4Þ

where b̂j is the bosonic annihilation operator for site j, and

n̂j ¼ â†j âj ¼ b̂†j b̂j [26–28,37,38,42]. Under this transfor-
mation, anyonic statistics have been translated to density-
dependent hopping terms, which are the key ingredient to
implementing anyonic statistics in 1D. As mentioned, one
can realize such terms in cold atomic systems using either
Raman-assisted tunneling [37,38] or time-periodic driving
[42–44].
Asymmetric particle transport.—We consider the expan-

sion dynamics of anyons initially localized at the central
region of a 1D lattice, one per occupied site. The initial
state can be written as a product state in Fock space,
jΨ0iA ¼ Q

iâ
†
i j0i, with occupied sites distributed symmet-

rically around the lattice center. At times t > 0, the system
evolves under ĤA [Eq. (1)]. This procedure is equivalent
to a quantum quench from U=J ¼ ∞ to finite U=J. To
characterize particle transport, we study the dynamics of the
real space anyon density, nAj ðtÞ ¼ AhΨ0jeiĤAtn̂je−iĤAtjΨ0iA,
where we have set ℏ ¼ 1. Under the fractional Jordan-
Wigner transformation, the particle number operator n̂j
remains invariant (i.e., â†j âj ¼ b̂†j b̂j), ĤA maps to ĤB, and
the initial state picks upanunimportant phaseϕ, i.e., jΨ0iA ¼
eiϕ

Q
i b̂

†
i j0i ¼ eiϕjΨ0iB. These relations directly lead to the

following equality:

nAj ðtÞ ¼ BhΨ0jeiĤBtn̂je−iĤBtjΨ0iB ¼ nBj ðtÞ; ð5Þ

which indicates that anyonic and bosonic particle densities
are equivalent under time evolution governed by their
respective initial states andHamiltonians. Equation (5) maps
anyonic density to bosonic density, which can be directly
measured in cold atom experiments [37,38,41,42,50,51].

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 1. Density expansion dynamics for particles initially localized one per site in the central N sites, with different statistical angles θ
and interaction strengths U. In all plots, the particle number is N ¼ 4 and the lattice size is L ¼ 30. (a)–(b) Bosonic cases with zero and
nonzero interactions, respectively. (c) Pseudofermionic case (θ ¼ π) with nonzero interactions. (d)–(h) Anyonic cases with various
values for θ and U.

PHYSICAL REVIEW LETTERS 121, 250404 (2018)

250404-2



Likewise, the state jΨ0iB can be easily prepared in such
experiments [50,51].
Exact diagonalization results on the expansion dynamics

for a variety of statistical angles and interaction strengths
are shown in Fig. 1. Figures 1(a) and 1(b) show transport
dynamics for the bosonic case (θ ¼ 0). Consistent with
experimental observations in Ref. [51], bosons exhibit
ballistic expansion when U ¼ 0 [Fig. 1(a)]. However,
any finite interaction strength (U ≠ 0) breaks the integra-
bility of the Bose-Hubbard model and dramatically sup-
presses the density expansion [Fig. 1(b)], leading to diffusive
(i.e., nonballistic) dynamics [51]. In contrast to bosonic
cases, for anyons with nonzero θ and even vanishing
interaction strength, the transport shows strong signatures
of being diffusive rather than ballistic [see Fig. 1(d)].
This implies that anyonic statistics itself can break integra-
bility and act as a form of effective interaction [61], as is
immediately clear from the correlated-tunneling terms in the
EBHM in Eq. (4). From Figs. 1(a) and 1(d) we also note that
for bosons or anyons with zero interaction strength, the
density expansion is symmetric.
Different from the above symmetric transport, for anyons

with 0 < θ < π and finite interaction strength U, the
dynamical density distribution is asymmetric, with one
preferred propagation direction [Figs. 1(e)–1(h)]. This is
the most striking feature of anyonic statistics’ effects on
transport behavior. Such asymmetric expansion is due
to inversion symmetry breaking of the AHM [37,62], a
direct consequence of the underlying 1D anyonic statistics
[Eqs. (2) and (3)]. A perturbation analysis reveals the
important role played by statistics and interactions (see
Supplemental Material for details [63]). Our results illus-
trate that anyonic statistics has clear signatures in non-
equilibrium transport, which may aid in their detection.
Previous works have suggested detecting anyonic statistics
via asymmetric momentum distributions in equilibrium
ground states [33–38,42], but ground states are often
difficult to prepare experimentally.
Figure 2(a) plots one measure of the above-mentioned

asymmetry, the particle number difference ΔN ¼PL=2
i¼1ðniþL=2 − niÞ between two halves versus statistical

angle θ. The results indeed show clear dependence on the
statistical parameter θ, thus demonstrating that one can
detect the underlying anyonic statistics using expansion
dynamics. Figure 2(b) shows the dependence of ΔN on
interaction strength for a fixed statistical angle. We note
that the largest asymmetric measure ΔN occurs for inter-
mediate values of U, as the expansion dynamics are
symmetric at both U ¼ 0 (analyzed below) as well as in
the limit of large U (the hard-core case) [29,36,60].
Symmetry analysis.—Comparing Figs. 1(g) and 1(h) to

Fig. 1(f), we can clearly see that by reversing the sign of the
statistical angle θ or interaction strength U, anyons also
reverse their preferred propagation direction. This dynami-
cal symmetry is further illustrated in Figs. 2(a) and 2(b),

which provide evidence that ΔN is indeed an odd function
of θ and an odd function of U. The results differ from
experimental findings for fermionic or bosonic gases
[50,51], where density expansion dynamics are identical
for �U (further analyzed in a recent theoretical work,
Ref. [64]).
To understand the dynamical symmetry, we focus on the

symmetry properties of the mapped EBHM for conven-
ience. ĤB explicitly breaks inversion symmetry I, as the
phase of the correlated-tunneling term depends only on the
occupation number of the left site (which becomes the right
site under inversion). It also breaks time-reversal symmetry,
as T e−iθn̂jT −1 ¼ eiθn̂j . However, if we consider the num-

ber-dependent gauge transformation R ¼ e−iθ
P

j
n̂jðn̂j−1Þ=2

and define a new symmetry operator K ¼ RIT , ĤB is
invariant under K [41,63]:

KĤBK† ¼ ĤB: ð6Þ

The transformed EBHMs with the opposite sign of inter-
action or statistical angle are related by the number parity

operator P ¼ eiπ
P

r
n̂2rþ1 or the time-reversal operator T ,

respectively,

PĤB;þUP† ¼ −ĤB;−U; ð7Þ

T ĤB;þθT −1 ¼ ĤB;−θ: ð8Þ

Using Eqs. (6)–(8), one can derive the following relations
[63]:

hn̂jðtÞiþU ¼ hn̂j0 ðtÞi−U; ð9Þ

hn̂jðtÞiþθ ¼ hn̂j0 ðtÞi−θ; ð10Þ

where h·i denotes the expectation value of a Heisenberg
operator taken with respect to the initial state given above,

(a) (b)

FIG. 2. (a) Particle number difference ΔN between the right
and left halves versus anyon angle θ at time t ¼ 4, which is
beyond the perturbative regime yet occurs before the quench hits
the boundary. The interaction strength is U ¼ 4. (b) ΔN versus
interaction strength U at time t ¼ 4, with θ ¼ π=3. The particle
number isN ¼ 4, and the lattice size is L ¼ 30 for both plots, just
as in Fig. 1.
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and sites j, j0 are related by the inversion operator I. In fact,
the above equations hold for a more general class of initial
states (see Supplemental Material [63]). Therefore, in
contrast to fermionic or bosonic gases [64] (symmetric
expansion), the above relations indicate that anyons flip
their preferred expansion direction when one changes the
sign of U or θ in Eq. (1). The above equalities also
immediately imply when θ ¼ 0 or π (bosons or pseudo-
fermions, respectively) or when U ¼ 0, the transport is
symmetric [shown in Figs. 1(a)–1(d)], consistent with
previous results for integrable systems [29,36,60].
Information dynamics.—The spreading of information in

an interacting quantum many-body system has received
tremendous interest [48,65–70]. For conventional fer-
mionic or bosonic systems with translation invariance,
information spreading occurs in a spatially symmetric
way [66–68]. However, as we demonstrate below, this is
not generally the case for anyonic systems, where statistics
can manifest itself in the information dynamics.
We diagnose information spreading by examining the

OTOC, a quantity that has received a great deal of recent
interest in studies of quantum scrambling [69–81]. We
define the anyonic OTOC as CjkðtÞ ¼ hj½âjðtÞ; âkð0Þ�θj2iβ.
Here, h·iβ is taken with respect to the thermal ensemble

e−βĤA=trðe−βĤAÞ with inverse temperature β. The use of the
generalized commutator defined by Eqs. (2) and (3) ensures
that CjkðtÞ vanishes at t ¼ 0. It then starts to grow when
quantum information propagates from site k to site j
[68–71]. We focus on the out-of-time-ordered part of the
above commutator,

FjkðtÞ ¼ hâ†jðtÞâ†kð0ÞâjðtÞâkð0Þiβeiθsgnðj−kÞ: ð11Þ

Figures 3(a)–3(d) show numerical results for various
interaction strengths U and statistical angles θ. In contrast
to the density transport shown in Fig. 1(b), quantum
information spreads in a ballistic way for bosons even
when U ≠ 0 [66,67]. Indeed, for bosons (θ ¼ 0), the
OTOCs map out a symmetric light cone, as shown in
Fig. 3(a). However, for the anyonic case (θ ≠ 0, π),
information propagation is asymmetric for the left and
right directions [Figs. 3(b)–3(d)], resulting in an asym-
metric light cone. We emphasize that this occurs even when
U ¼ 0, as the aforementioned dynamical symmetry
[Eqs. (9) and (10)] does not hold for the OTOC.
Figures 4(a) and 4(b) further illustrate the OTOC’s

growth for right and left propagation directions, respec-
tively, with θ ¼ π=3 and U ¼ 2. Indeed, information
clearly propagates faster from right to left [Fig. 4(b)] than
from left to right [Fig. 4(a)]. In order to extract the butterfly
velocities most accurately in a finite-size system, we
choose the leftmost site as the reference point for probing
information spreading rightward (and vice versa for infor-
mation spreading leftward). We define a butterfly velocity
Vb by the boundary of the space-time region where jFjkðtÞj

(a) (b)

(c) (d)

FIG. 3. OTOC growth jFjkðtÞj for different statistical angles θ
and interaction strengthsU. Here, L ¼ 7, β−1 ¼ 6, k ¼ 4, and the
local Hilbert space of each site is truncated to three states. Plotted
is (a) a bosonic case (θ ¼ 0) with nonzero interaction, as well as
anyonic cases with (b) vanishing and (c), (d) nonvanishing
interaction strengths. The red dots denote where the OTOCs fall
to 75% of their initial values. The color maps are interpolated to
noninteger j to better illustrate the light cone behavior.

(a) (b)

(c) (d)

FIG. 4. (a) OTOC growth characterizing quantum information
spreading from the leftmost site, k ¼ 1, rightward. The OTOC
starts to fall when information reaches the jth site, and the black
arrows denote the OTOCs’ fall to 99% of their initial values.
Parameters: θ ¼ π=3, U ¼ 2, L ¼ 7. (b) Same as (a) but shows
information spreading from the rightmost site k ¼ 7 toward the
left. Inset: linear fit to extract the butterfly velocities for left (blue)
and right (red) directions, respectively. (c) Left (Vl

b) and right
(Vr

b) butterfly velocities’ dependence on statistical angle θ
when U ¼ 2. Inset: velocity ratio r ¼ Vl

b=V
r
b versus angle θ.

(d) Dependence of Vl
b and Vr

b on interaction strength U when
θ ¼ π=2. Inset: velocity ratio r ¼ Vl

b=V
r
b versus interaction

strength U.
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is suppressed by at least 1% of its initial value. The linear
fits of butterfly velocities Vl;r

b for two directions are shown
in the inset of Fig. 4(b). The extracted velocities’ depend-
ence on θ and U are further illustrated in Figs. 4(c)
and 4(d), respectively. As the results show, when U > 0
and 0 < θ < π, the left information propagation velocity is
always larger than the right one, with the greatest disparity
at intermediate values of U and θ.
Experimental detection.—To study the transport and

information dynamics of the AHM, one can experimentally
realize the transformed EBHM. As mentioned, the corre-
lated-tunneling terms in ĤB can be engineered using laser-
assisted tunneling [37,38] or lattice shaking [42–44].
Particle transport can be studied using similar protocols
as in previous experiments [50,51], where bosonic atoms
are first loaded in the center of a one-dimensional optical
lattice before being allowed to move under a homogeneous
bosonic Hamiltonian. The time-dependent densities, as
measured by absorption imaging, directly reflect the any-
ons’ expansion dynamics. On the other hand, measurement
of the OTOC defined by Eq. (11) is more challenging than
mapping out the atomic density. However, instead of
measuring Eq. (11), one can focus on a bosonic OTOC,
F̃jkðtÞ ¼ hb̂†jðtÞb̂†kð0Þb̂jðtÞb̂kð0Þi, which, by recent propos-

als, is experimentally accessible by inverting the sign of ĤB
[82–84] or by preparing two identical copies of the system
[68,69]. Numerics show that F̃jkðtÞ can also capture the
asymmetric features of OTOC growth [63], thus reflecting
anyonic statistics’ effect on information dynamics, albeit in
an indirect way.
Conclusion and outlook.—We have studied nonequili-

brium dynamics of Abelian anyons in a 1D system and
found that statistics plays a crucial role in both particle
transport and information dynamics. Our work provides a
novel method for detecting anyonic statistics using non-
equilibrium dynamics in ultracold atom systems [43].
We note the intriguing possibility that a similar dynami-

cal symmetry may exist in other models, such as the Zn
chiral clock model [85,86], which has symmetry properties
similar to the AHM. Finally, we point out that the inversion
symmetry breaking associated with anyonic statistics is
also present for non-Abelian anyons in quasi-1D systems
[87–89]—for example, Majorana fermions (or, more gen-
erally, parafermions) at the edge of (fractional) quantum
Hall systems, in deep connection with the underlying
chirality. We hope this study could motivate future inves-
tigation of out-of-equilibrium dynamics and chiral infor-
mation propagation in these topological systems.
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