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Spin correlations of the frustrated pyrochlore oxide Tb2+xTi2−xO7+y have been investigated by using inelastic
neutron scattering on single-crystalline samples (x = −0.007, 0.000, and 0.003), which have the putative
quantum-spin-liquid (QSL) or electric-quadrupolar ground states. Spin correlations, which are notably observed
in nominally elastic scattering, show short-range correlations around L points [q = ( 1

2 , 1
2 , 1

2 )], tiny antiferro-
magnetic Bragg scattering at L and � points, and pinch-point-type structures around � points. The short-range
spin correlations were analyzed using a random-phase approximation (RPA) assuming the paramagnetic state
and two-spin interactions among Ising spins. These analyses have shown that the RPA scattering intensity well
reproduces the experimental data using temperature- and x-dependent coupling constants of up to tenth-neighbor
site pairs. This suggests that no symmetry breaking occurs in the QSL sample and that a quantum treatment
beyond the semiclassical RPA approach is required. Implications of the experimental data and the RPA analyses
are discussed.
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I. INTRODUCTION

Geometrically frustrated magnets archetypally on the two-
dimensional (2D) triangle [1] and kagome [2,3] lattices and on
the three-dimensional (3D) pyrochlore lattice [4] have been
actively studied for decades [5]. Among classical frustrated
magnets, spin ice [6] has been extensively studied from many
viewpoints, e.g., macroscopically degenerate ground states
[7], partial lifting of the degeneracy under magnetic field
[8], and fractionalized excitations [9,10]. Quantum effects in
frustrated magnetic systems ranging from quantum annealing
[11,12] to quantum-spin-liquid (QSL) states [13], the origin
of which dates back to the proposal of the resonating valence
bond state [14], have attracted much attention. Experimental
challenges of finding real QSL substances [15,16] and of
investigating QSL states using available techniques [17–22]
have been addressed in recent years.

Among frustrated magnetic pyrochlore oxides [4] a non-
Kramers pyrochlore magnet Tb2+xTi2−xO7+y (TTO) [23] has
been investigated for decades as a QSL candidate since
conventional magnetic order has not been observed in any
experiments under zero field and zero static pressure [4,16].
On the basis of theoretical insight that TTO is not much
different from classical spin ice, the phrase quantum spin ice
(QSI) was coined for the QSL state of TTO [24,25]. However,
its nature has remained elusive. Recently, we showed that
this putative QSL state is limited in a range of the small off-
stoichiometry parameter x < xc � −0.0025 [23,26,27]. In the
other range xc < x, we showed that TTO undergoes a phase
transition most likely to an electric multipolar [or quadrupole-
ordered (QO)] state (T < Tc) [28–30], which is described by
a pseudospin- 1

2 Hamiltonian modified from the classical spin

ice to a quantum model by adding transverse pseudospin terms
[31]. The estimated parameter set of this Hamiltonian [28] is
close to the theoretical phase boundary between the electric
quadrupolar state and a U(1) QSL state (QSI) [32,33], which
is thereby a theoretical QSL candidate for TTO. At present,
few researchers have addressed the problem of the QSL state
of TTO using well-x-controlled samples.

Previous neutron scattering experiments on TTO, which
were performed on samples with unknown and known x,
showed that spin correlations, defined by the wave vector
dependence of scattering intensity, are most clearly seen in
energy-resolution-limited (nominally) elastic scattering at low
temperatures. In the observed spin correlations there are three
important features: magnetic short-range order (SRO) with
the wave vector q = ( 1

2 , 1
2 , 1

2 ) (L point of the first Brillouin
zone of the fcc lattice) [34–37], pinch-point structures around
q = 0 (� point) [35,36], and tiny antiferromagnetic Bragg
reflections at the L and � points [26,28]. It should be noted
that the details of the observed scattering intensities in these
studies depended on samples (on x). This may intriguingly
suggest that the ground states of TTO are potentially highly
degenerate and they are lifted in various ways depending on
slight differences in samples.

Very recently, we performed inelastic neutron scat-
tering (INS) experiments on x-controlled TTO single-
crystalline samples with x = −0.007 < xc (QSL) and xc <

x = 0.000, 0.003 (QO) [23]. In this paper we focus on the
q = ( 1

2 , 1
2 , 1

2 ) SRO of these samples and perform quantitative
analyses in order to shed light on how these spin correlations
reflect the QSL state. In previous investigations [37,38], anal-
yses of the q = ( 1

2 , 1
2 , 1

2 ) SRO were carried out by assuming
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that there exist static short-range classical spins with cluster
sizes of the order of 10 Å. However, no clusters which ade-
quately reproduce the observed intensity pattern were found,
although a few clusters showing limited goodness of fit were
obtained [37,38]. This failure indicates either that the samples
were not well controlled or that the analysis methods they
used are not sufficiently systematic.

The first problem of controlling the composition of the
samples is resolved in the present study. In contrast, the
second problem can originate from a profound property of
the QSL state and will be resolved only by analyses reflecting
the quantum nature of the many-body ground state. However,
since no practical quantum model calculations are available
at present, in the present study, we attempt to apply a sys-
tematic but still semiclassical approach using a random-phase
approximation (RPA) [39]. This would lead us to a reasonable
result if the SRO could be interpreted within the classical spin
paradigm or would lead us to a certain paradoxical result if it
essentially contains many-body quantum effects.

II. METHODS

A. Experimental methods

Single-crystalline samples of Tb2+xTi2−xO7+y with x =
−0.007, 0.000, and 0.003 used in this study are those of
Ref. [23], where methods of the sample preparation and the
estimation of x are described. The QSL sample with x =
−0.007 remains in the paramagnetic state down to 0.1 K. The
QO samples with x = 0.000 and x = 0.003 very likely have
small and large electric quadrupole orders, respectively, at
T � Tc ∼ 0.4 K [26,27]. We note that the values of x among
different investigation groups are not necessarily consistent
[23] and that our x values of the samples used in Refs. [23,26–
29,40,41] are self-consistent.

Neutron scattering experiments were carried out on the
time-of-flight (TOF) spectrometer IN5 [42,43] operated with
λ = 8 Å at the Institut Laue-Langevin (ILL) for the x =
−0.007 and 0.000 crystal samples. The energy resolution of
this condition was �E = 0.021 meV (FWHM) at the elastic
position. Neutron scattering experiments for the x = 0.003
crystal sample were performed on the TOF spectrometer
AMATERAS operated with λ = 7 Å at the Japan Proton
Accelerator Research Complex (J-PARC). The energy res-
olution of this condition was �E = 0.024 meV (FWHM)
at the elastic position. Each crystal sample was mounted in
a dilution refrigerator to make its (h, h, l) plane coincide
with the horizontal scattering plane of the spectrometer. The
observed intensity data were corrected for background and
absorption using a homemade program [44]. Construction of
a four-dimensional S( Q, E) data object from a set of the TOF
data taken by rotating each crystal sample was performed
using HORACE [45].

To analyze the Q dependence of the (nominally) elas-
tic scattering intensity (Fig. 1 in Ref. [23]), we integrated
S( Q, E) in a small energy range −ε < E < ε. We chose
ε = 0.025 and 0.030 meV for IN5 and AMATERAS data,
respectively, which are a little larger than the instrumental
resolutions. These 3D data sets [S( Q)]el = ∫ ε

−ε
S( Q, E)dE

are normalized by the method described in Ref. [23], i.e.,

using the “arb. units” of Fig. 1 in Ref. [23]. Consequently, the
elastic intensities can be compared mutually among the three
samples.

B. RPA model calculation

The RPA model calculation of S( Q, E) using the
pseudospin- 1

2 Hamiltonian appropriate for quadrupole-
ordered phases is described in Ref. [40]. We used a similar
RPA method to calculate the elastic scattering intensity
[S( Q)]el assuming that the system is in the paramagnetic
phase. This assumption is made because we are interested
mainly in the low-temperature QSL and the high-temperature
paramagnetic states. Details and related definitions are
described in Appendix A.

For the sake of simplicity we consider a pseudospin- 1
2

Hamiltonian which is decoupled between magnetic dipole
(σ z

r ) and electric quadrupole (σx
r and σ

y
r ) terms, the latter of

which can be neglected for the present purpose. We adopt a
magnetic Hamiltonian expressed by

Hm =
∑
m

Jm

⎧⎨
⎩

∑
〈r,r ′〉m

σ z
r σ z

r ′

⎫⎬
⎭ + Dr3

nn

×
∑
〈r,r ′〉

{
zr · zr ′

|�r|3 − 3[zr · �r][zr ′ · �r]

|�r|5
}
σ z

r σ z
r ′ , (1)

which is an expansion of that of Refs. [28,40]. The first term
in Eq. (1) stands for magnetic coupling allowed by the space
group symmetry between the Ising spin operators. The sum-
mation runs over coupling constants Jm (m = 1, . . . , mmax,
mmax � 16) and corresponding site pairs 〈r, r ′〉m. These site
pairs are listed in Table III in Appendix A. The nearest-
neighbor (NN) coupling constant J1 is usually expressed as
Jnn for the NN spin ice model (Jnn = J1 > 0). The other
couplings as far as tenth-neighbor site pairs had to be included
to obtain a good fit of the experimental data. Since the
coupling constants beyond third-neighbor site pairs (Jm>4)
are probably much smaller than J1, they would be effective
values or experimental parameters. The second term in Eq. (1)
represents the classical dipolar interaction [46], where rnn

is the NN distance and �r = r − r ′. The parameter D is
determined by the magnitude of the magnetic moment of
the crystal-field ground-state doublet. We adopt D = 0.29 K,
corresponding to the magnetic moment 4.6μB [28].

The generalized susceptibility χν,ν ′ (k, E = 0) is computed
by solving Eq. (A1) with E = 0, i.e.,∑

ν ′′
[δν,ν ′′ − χLJν,ν ′′ (k)]χν ′′,ν ′ (k, 0) = δν,ν ′χL, (2)

where Jν,ν ′ (k) denotes the Fourier transform of the magnetic
coupling constants [Eq. (A2)] and χL is the local susceptibility
[Eq. (A3)]. Using χν,ν ′ (k, 0), the elastic scattering [S( Q)]el is
given by

[S( Q = G + k)]el ∝ f (Q)2
∑

ρ,σ,ν,ν ′
(δρ,σ − Q̂ρQ̂σ )

×U (ν)
ρ,zU

(ν ′ )
σ,z χν,ν ′ (k, 0) cos[G · (dν − dν ′ )], (3)
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FIG. 1. Intensity maps of 3D data [S( Q)]el taken at 0.1 K for the QSL sample with x = −0.007. The 3D data are viewed by (a), (c), (e),
(g), (i), (k), and (m) 2D slices, which are parallel cross sections of Q = (h, h, l) + (k,−k, 0) with fixed k. These can be compared to (b), (d),
(f), (h), (j), (l), and (n) the typical RPA [S( Q)]el obtained by least-squares fit using the 13 coupling constants, J1, . . . , J13, listed in Table I.
Dashed lines in these 2D slices in (a)–(n) are boundaries of Brillouin zones. The bottom right corner shows the first Brillouin zone of the fcc
lattice (thin black lines), irreducible zone (thick orange lines), and two 2D slice planes labeled k = 0 and 0.25 (blue lines).

where f (Q) is the form factor of Tb3+ in the quasielastic
approximation [Eq. (A5)].

III. RESULTS

A. QSL sample with x = −0.007

Figures 1(a), 1(c) 1(e), 1(g), 1(i), 1(k), and 1(m) show a
3D data set [S( Q)]el taken at 0.1 K for the QSL sample with
x = −0.007. These 3D data are shown by seven 2D slices
of Q = (h, h, l) + (k,−k, 0) with fixed k values. Two slice
planes with k = 0 and 0.25 are illustrated in the bottom right
corner of Fig. 1 with the first Brillouin zone of the fcc lattice
and an irreducible zone. From Fig. 1 one can see that the
observed Q range encompasses an independent part of the
first Brillouin zone, which is an advantage over the previous
experiments, which is limited to the 2D slice with k = 0
[34–37].

The observed 3D data [S( Q)]el in Fig. 1 show two features:
strong short-range spin correlations with wave vector q =
( 1

2 , 1
2 , 1

2 ) and very weak pinch-point structures around Q =
(1, 1, 1) and (0,0,2). By comparing the 2D slice in Fig. 1(a)
with those of previous investigations [34–37], one can see
both differences and similarities among the investigations.
This fact confirms the importance of controlling the x value
for quantitative studies.

In order to measure the temperature dependence of the
q = ( 1

2 , 1
2 , 1

2 ) SRO we measured intensities along a trajectory
through Q = ( 1

2 , 1
2 , 1

2 ) by fixing the sample rotation angle.
The resulting temperature dependence of [S( Q)]el is plotted
in Fig. 2. As temperature is decreased below 0.4 K, the spin
correlations grow continuously without a phase transition. We
estimate the correlation length ξ from the half width at half
maximum (HWHM) of the peak (1/ξ = HWHM). It increases
to ξ ∼ 20 Å at 0.1 K. This correlation length and the temper-
ature scale of 0.4 K agree with those reported in Ref. [38],
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FIG. 2. Temperature dependence of intensity [S( Q)]el along a
trajectory through Q = ( 1

2 , 1
2 , 1

2 ), which was measured by fixing
the sample rotation angle. The abscissa is a projection of the Q
trajectory (blue line in inset) to a straight line Q = (1/2, 1/2, 1/2) +
(H/2, H/2, H ) (red dashed line in inset).

where powder samples were used (Fig. 3(b) in Ref. [38]).
We note that the correlation length reported in Ref. [37],
where a single crystal sample was used, is significantly shorter
(∼8 Å).

An important point concerning the discrepancy of the
correlation length noted above concerns the thermal response
time of the system. In particular, we observed very slow
cooling of the sample especially below 0.4 K in the present
experimental condition. More specifically, it took about 2 days
for the scattering intensity to become time independent after
cooling the mixing chamber down to 0.1 K. This slow cooling
is ascribable to very low thermal conductivity of TTO [48]
and the large size of the crystal sample for INS. One has
to carefully distinguish this long relaxation time from other
interpretations, for example, the cooling protocol dependence
reported in Ref. [49], where the authors might not have waited
enough time, which may possibly result in a short correlation
length.

We performed least-squares fits of the observed 3D data set
[S( Q)]el to the RPA intensity [Eq. (3)]. Adjustable parameters
are the coupling constants Jm (1 � m � mmax), the local
susceptibility χL, and an intensity scale factor. After several
trial computations, we became aware of the problem that these
parameters cannot be independently adjusted. To avoid this
problem and exclude unrealistic solutions, we fixed J1 and
imposed a restriction on Jm (2 � m � mmax) by adding the

penalty function
∑

2�m�mmax
( Jm

1 K )
8

to the weighted sum of
squared residuals

χ2 =
N∑

i=1

(
obs(i) − calc(i)

error(i)

)2

, (4)

where N = 10 185 is the number of intensity data used in the
fitting. Technical details of the least-squares fits are discussed
in Appendix B and Ref. [47].

In Fig. 3(a) we plot minimized values of χ2 as a function
of fixed J1 (a detailed discussion of inspecting the least-
squares fits is given in Ref. [47]). As J1 is decreased in
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FIG. 3. Minimized values of the weighted sum of squared resid-
uals χ 2 as a function of the fixed parameter J1. (a) Results of
least-squares fits of [S( Q)]el with adjustable parameters Jm (m �
mmax = 9, . . . , 15) for the QSL sample with x = −0.007 taken at
0.1 K (Fig. 1). The number of fit data is 10 185. (b) Results of
least-squares fits of [S( Q)]el with adjustable parameters Jm (m �
mmax = 5, . . . , 11) for the QSL sample with x = −0.007 taken at
0.7 K (Fig. 4). The number of fit data is 10 147.

the range J1 < −5D/3, which favors the antiferromagnetic
“all-in–all-out” long-range order (LRO) for Jm>1 = 0 [46],
the fits become unsatisfactory. These plots also show that the
inclusion of further coupling constants Jm with mmax � 14
does not improve the fitting.

By inspecting 3D data [S( Q)]el calculated using several
sets of fitted parameters, we chose a typical good result of
the fitting. This typical [S( Q)]el is shown in Figs. 1(b), 1(d)
1(f), 1(h), 1(j), 1(l), and 1(n), which is calculated using the
values of J1, . . . , J13 listed in Table I. One can see that the
RPA model calculation excellently reproduces the observed
[S( Q)]el. Almost the same features of the q = ( 1

2 , 1
2 , 1

2 ) SRO,
the very weak pinch-point structures, and the other structures
in Q space are seen in both the observed and calculated
[S( Q)]el. This goodness of fit indicates that the QSL sample
retains the space group symmetry of the pyrochlore structure
(Fd3̄m) as low as 0.1 K. The coupling constants listed in
Table I are much larger than those expected for bare exchange
interactions; for example, the seventh-neighbor coupling J9 is
as large as the nearest-neighbor J1. This fact indicates either
that the coupling constants are strongly renormalized, e.g., by
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TABLE I. Typical coupling constants Jm (in units of K) of Eq. (1) obtained by least-squares fits of observed 3D data sets [S( Q)]el to Eq. (3).
The calculated [S( Q)]el using these Jm are shown in Fig. 1 (x = −0.007, T = 0.1 K), Fig. 4 (x = −0.007, T = 0.7 K), Fig. 5 (x = 0.000,
T = 0.1 K), Fig. 6 (x = 0.000, T = 0.7 K), and Fig. 8 (x = 0.003, T = 0.1 K). Numerical uncertainty of Jm is discussed in Appendix B and
Ref. [47].

3D data J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14

Fig. 1 1.0 0.824 1.011 0.176 0.184 0.410 0.436 0.355 1.060 −0.026 −0.066 −0.071 0.378
Fig. 4 1.0 0.070 0.536 −0.373 −0.370 0.076 −0.007 −0.020 0.919
Fig. 5 1.0 0.836 1.191 0.102 0.109 0.487 0.745 0.574 1.732 0.037 0.014 −0.137 0.464
Fig. 6 1.0 −0.101 0.751 −0.501 −0.408 0.191 0.078 −0.019 1.364
Fig. 8 0.25 −0.279 −0.040 −0.237 −0.081 −0.124 0.297 0.022 0.098 −0.061 −0.031 −0.060 −0.119 0.191

integrating out excited states with E > ε, or that the present
analysis is an experimental parametrization.

Figures 4(a), 4(c) 4(e), 4(g), 4(i), 4(k), and 4(m) show a
3D data set [S( Q)]el taken at 0.7 K for the QSL sample with
x = −0.007. The image contrast of this [S( Q)]el becomes
much lower than that of 0.1 K. Only a slight trace of the

q = ( 1
2 , 1

2 , 1
2 ) SRO is seen. On the other hand, quite intrigu-

ingly, the pinch-point structure around Q = (1, 1, 1) becomes
clearer and bears a resemblance to that observed for the spin
ice compound Ho2Ti2O7 [6,50]. This agrees with our proposal
[28] that the magnetic part of the pseudospin- 1

2 Hamiltonian
of TTO is that of dipolar spin ice [46].
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FIG. 4. Intensity maps of 3D data [S( Q)]el taken at 0.7 K for the QSL sample with x = −0.007. The 3D data are viewed by (a), (c), (e),
(g), (i), (k), and (m) 2D slices, which are parallel cross sections of Q = (h, h, l) + (k,−k, 0) with fixed k. These can be compared to (b), (d),
(f), (h), (j), (l), and (n) the typical RPA [S( Q)]el obtained by least-squares fit using the nine coupling constants, J1, . . . , J9, listed in Table I.
Dashed lines in these 2D slices in (a)–(n) are boundaries of Brillouin zones.
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FIG. 5. Intensity maps of 3D data [S( Q)]el taken at 0.1 K for the QO sample with x = 0.000. The 3D data are viewed by (a), (c), (e), (g),
(i), (k), and (m) 2D slices, which are parallel cross sections of Q = (h, h, l) + (k, −k, 0) with fixed k. These can be compared to (b), (d), (f),
(h), (j), (l), and (n) the typical RPA [S( Q)]el obtained by least-squares fit using the 13 coupling constants, J1, . . . , J13, listed in Table I. Dashed
lines in these 2D slices in (a)–(n) are boundaries of Brillouin zones.

We performed least-squares fits of the observed 3D data
set [S( Q)]el to the RPA intensity [Eq. (3)] in the same way as
those of 0.1 K. In Fig. 3(b) we plot minimized values of χ2

as a function of the fixed J1. Figure 3(b) shows that as J1 is
decreased in the range J1 < −5D/3, the fits become unsatis-
factory and that the inclusion of further coupling constants Jm

with mmax � 10 does not improve the fitting. By inspecting
several calculated [S( Q)]el, we chose a typical good result
of the fitting. This typical [S( Q)]el is shown in Figs. 4(b),
4(d) 4(f), 4(h), 4(j), 4(l), and 4(n), which is calculated using
the values of J1, . . . , J9 listed in Table I. Considering the
lower image contrast and larger statistical errors, the agree-
ment is acceptably good. In fact, both the weakly peaked
structures with q = ( 1

2 , 1
2 , 1

2 ) and the pinch-point structure
around Q = (1, 1, 1) are reproduced in the RPA [S( Q)]el.
It should be noted that the typical coupling constants listed
in the first (0.1 K) and second (0.7 K) rows in Table I are
considerably different. This strong temperature dependence
also suggests that the fitted values of the coupling constants

are either renormalized values or experimental parameters.
We also note that at 0.7 K the largest Jm is J1 = 1.0 K, which
favors the spin ice state and agrees with our estimation of Jnn

(= J1) based on high-temperature susceptibility (T > 5 K)
[28], which may possibly support the interpretation that Jm

are renormalized at low temperatures.

B. QO sample with x = 0.000

We show 3D data sets [S( Q)]el for the QO sample with
x = 0.000 taken at 0.1 and 0.7 K in Figs. 5(a), 5(c) 5(e),
5(g), 5(i), 5(k), and 5(m) and 6(a), 6(c) 6(e), 6(g), 6(i), 6(k),
and 6(m), respectively. By comparing these figures with the
corresponding [S( Q)]el shown in Figs. 1 and 4 for the QSL
sample, one can see that the 3D data [S( Q)]el of these QSL
and QO samples show many similarities, which suggests a
common origin. This is in stark contrast to the difference in
their inelastic spectra shown in Fig. 2 of Ref. [23]. Close
inspection of the 3D data [S( Q)]el in Figs. 5 and 1 shows that
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FIG. 6. Intensity maps of 3D data [S( Q)]el taken at 0.7 K for the QO sample with x = 0.000. The 3D data are viewed by (a), (c), (e),
(g), (i), (k), and (m) 2D slices, which are parallel cross sections of Q = (h, h, l) + (k,−k, 0) with fixed k. These can be compared to (b), (d),
(f), (h), (j), (l), and (n) the typical RPA [S( Q)]el obtained by least-squares fit using the nine coupling constants, J1, . . . , J9, listed in Table I.
Dashed lines in these 2D slices in (a)–(n) are boundaries of Brillouin zones.

the peaked structures at Q = ( 1
2 , 1

2 , 1
2 ) and ( 1

2 , 1
2 , 3

2 ) of the
QO sample are slightly broader than those of the QSL sample
and that the peak width of the QO sample is slightly larger
than the QSL sample. This indicates that the small quadrupole
order slightly suppresses the q = ( 1

2 , 1
2 , 1

2 ) SRO.
We performed least-squares fits of the observed 3D data

sets [S( Q)]el to the RPA intensity Eq. (3) in the same way as
those of the QSL sample. The resulting minimized values of
χ2 are plotted as a function of the fixed J1 in Figs. 7(a) and
7(b) for the 0.1 and 0.7 K data, respectively. Figures 7(a) and
7(b) and 3(a) and 3(b) show that the least-squares fits provided
results parallel to those of the QSL sample. In fact, the typical
coupling constants obtained by the fits, which are listed in
Table I, have many similarities for the two samples at both
0.1 and 0.7 K. Using these typical Jm listed in Table I, we
calculated RPA [S( Q)]el and show them in Figs. 5(b), 5(d)
5(f), 5(h), 5(j), 5(l), and 5(n) and 6(b), 6(d) 6(f), 6(h), 6(j),
6(l), and 6(n). The observed and calculated [S( Q)]el agree
excellently and acceptably well at 0.1 and 0.7 K, respectively.

C. QO sample with x = 0.003

Figures 8(a), 8(c) 8(e), 8(g), 8(i), 8(k), 8(m), 8(o), and
8(q) show a 3D data set [S( Q)]el taken at 0.1 K for the
QO sample with x = 0.003. These 3D data are substantially
different from those of the QSL sample and the QO sam-
ple with x = 0.000. The pinch-point structure disappears.
The q = ( 1

2 , 1
2 , 1

2 ) SRO becomes much broader than that of
the QO sample with x = 0.000. Another new point of this
sample is that a tiny magnetic Bragg reflection appears at
Q = ( 1

2 , 1
2 , 3

2 ). A Q scan through this reflection is plotted in
Fig. 8(s), which shows that it disappears at 0.4 K. We note that
detector gaps of AMATERAS prohibited us from measuring
Q = ( 1

2 , 1
2 , 1

2 ) and (0,0,2) reflections.
The appearance of tiny magnetic Bragg reflections at

Q = ( 1
2 , 1

2 , 3
2 ), ( 1

2 , 1
2 , 1

2 ), and (0,0,2) was reported only for
samples with large quadrupole orders [26,28,38]. In order to
complement our previous experimental data for the magnetic
Bragg reflections shown in Fig. 5 of Ref. [26], we show
the temperature dependence of the intensities of the Bragg
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FIG. 7. Minimized values of the weighted sum of squared resid-
uals χ 2 as a function of the fixed parameter J1. (a) Results of least-
squares fits of [S( Q)]el with adjustable parameters Jm (m � mmax =
9, . . . , 15) for the QO sample with x = 0.000 taken at 0.1 K (Fig. 5).
The number of fit data is 11 418. (b) Results of least-squares fits of
[S( Q)]el with adjustable parameters Jm (m � mmax = 5, . . . , 11) for
the QO sample with x = 0.000 taken at 0.7 K (Fig. 6). The number
of fit data is 10 520.

reflections at Q = ( 1
2 , 1

2 , 1
2 ) and (0,0,2) in Fig. 9. Although

statistical errors are large, one can see that the temperature
dependence agrees with that shown in Fig. 3 of Ref. [28].
Since several observations of the magnetic Bragg reflections
have been accumulated, one may now have to accept the
conclusion that the tiny magnetic Bragg reflections, indicating
LRO of magnetic moments of the order of ∼0.1μB, have a
common origin attributed to the quadrupole LRO. They may
possibly be caused by multispin interactions [51,52], which
couple the magnetic and quadrupole moments.

We performed least-squares fits of the 3D data set [S( Q)]el

to the RPA intensity [Eq. (3)] in the same way as for the QSL
sample. In Fig. 10 we plot minimized values of χ2 as a func-
tion of the fixed J1. Figure 10 shows that as J1 is decreased
in the range J1 < −5D/3, the fits become unsatisfactory
and that the inclusion of further coupling constants Jm with
mmax � 15 does not improve the fitting. By inspecting several
calculated [S( Q)]el, we chose a typical good result of the
fitting. This typical [S( Q)]el is shown in Figs. 8(b), 8(d) 8(f),
8(h), 8(j), 8(l), 8(n), 8(p), and 8(r), which is calculated using
the values of J1, . . . , J14 listed in Table I. One can see that
the agreement between the calculated and observed [S( Q)]el

is not as good as that of the QSL sample. This less satis-
factory agreement suggests that the quadrupole order breaks
the space group symmetry. In fact, the proposed quadrupole
order in Ref. [28] breaks this symmetry. We note that the
typical coupling constants obtained by the fitting (Table I) are
substantially different from those of the QSL sample.

Figure 11 shows the temperature dependence of the 2D
intensity map in the plane Q = (h, h, l) observed in a tem-
perature range 0.2 � T � 0.6 K. Although the Q range and
statistical errors are limited, these 2D maps show that the q =
( 1

2 , 1
2 , 1

2 ) SRO disappears already at 0.2 K. The pinch-point
structure around (1,1,1), which is similar to that of the QSL
sample at 0.7 K, is barely observable in the 0.3 and 0.4 K
data. In the temperature range above 0.5 K, where the electric
quadrupole order disappears, another kind of spin correlation
seems to develop.

IV. DISCUSSION

The question of what [S( Q)]el measures is a little difficult
to answer correctly. By the present definition, the (nominally)
elastic scattering intensity [S( Q)]el = ∫ ε

−ε
S( Q, E)dE is de-

fined on the basis of the present experimental conditions;
therefore, [S( Q)]el is different from theoretically elastic scat-
tering. For the sake of simplicity as well as for our interest
in the QSL state, we would like to discuss [S( Q)]el at the
lowest temperature of the present experiments (T = 0.1 K).
Considering that this temperature scale is approximately equal
to the instrumental energy resolution scales, [S( Q)]el at 0.1 K
is essentially (and roughly) expressed by

∑
|Ei−EG|,|Ej −EG|<0.1K

e−βEi

Z

∣∣∣∣∣〈j |
∑

r

σ z
r ei Q·r |i〉

∣∣∣∣∣
2

, (5)

where EG denotes the ground-state energy and the summation
runs over low-energy states, |i〉 and |j 〉.

In previous analyses of the q = ( 1
2 , 1

2 , 1
2 ) SRO [37,38], a

few static Ising-spin clusters were assumed to exist, where
certain disorders suppressing LRO are also assumed implic-
itly. These assumptions would be justified if the system be-
haved within the classical spin paradigm, where states |i〉 and
|j 〉 in Eq. (5) are expressed simply by single states described
by the Ising-spin clusters. However, when quantum effects
are included, the simple low-energy states would be replaced
by linear combinations of the Ising-spin-cluster states. As
the number of Ising-spin-cluster states in a linear combina-
tion is increased, the system departs from the classical spin
paradigm, and consequently, the cluster analyses [37,38] will
not work properly. We speculate that the failures to obtain
sufficient goodness of fit in Refs. [37,38] indicate that this
really happened. For the present RPA analyses, although
RPA takes into account quantum effects to a certain extent,
RPA is basically a classical approach, and therefore, the
same problem would occur, especially when quantum effects
become substantially large, e.g., QSL states. We speculate
that the breakdown of the classical paradigm is manifested
as the necessity of the unexpectedly large number of coupling
constants in the present RPA fitting.

The observed [S( Q)]el shown in Fig. 1 can be excellently
reproduced by the RPA formulas [Eqs. (2) and (3)]. We
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think that there are two reasons for this successful fit. First,
the RPA formulas act as an inverse Fourier transform. The
many coupling constants imply that many inverse Fourier
components are needed to reproduce the observed [S( Q)]el.
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FIG. 9. Temperature dependence of the intensity of Bragg reflec-
tion of the powder sample with x = 0.005 used in Ref. [26]. These
data were measured on the triple-axis spectrometer SPINS operated
with λ = 5 Å at NIST. Error bars represent one standard deviation.

For example, the terms related to J3 (> 0) in Eq. (2) give rise
to higher [S( Q)]el at wave vectors Q = ( 1

2 , 1
2 , 1

2 ), ( 1
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2 , 3
2 ),

etc. Second, the coupling constants Jm in Eq. (1) are allowed
by the space group symmetry. As a consequence, the RPA
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FIG. 10. Minimized values of the weighted sum of squared resid-
uals χ 2 are plotted as a function of the fixed parameter J1. These are
obtained by least-squares fits of [S( Q)]el with adjustable parameters
Jm (m � mmax = 8, . . . , 15) for the QO sample with x = 0.003 taken
at 0.1 K (Fig. 8). The number of fit data is 10 570.
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intensity formulas reflect the symmetry of the pyrochlore
structure. In this sense, we may conclude that the QSL state
of TTO retains the space group symmetry.

Apart from the analyses, one can obtain a few hints for
further investigations of the QSL state of TTO directly from a
few experimental facts. As discussed in Sec. III A, the 3D data
set [S( Q)]el at 0.7 K (Fig. 4) shows the pinch-point struc-
ture around Q = (1, 1, 1). This suggests that the QSI state
proposed in Ref. [24] is somehow continuously connected to
the QSL state of TTO. The tiny magnetic Bragg reflections
observed in several QO samples, discussed in Sec. III C, are
now regarded as an experimental fact. Thus, the pseudospin- 1

2
Hamiltonian will have to be modified to include coupling
between magnetic and quadrupole moments.

V. CONCLUSIONS

Spin correlations of the frustrated pyrochlore oxide
Tb2+xTi2−xO7+y have been investigated by inelastic neu-
tron scattering using single-crystalline samples showing both
the quantum-spin-liquid and quadrupole-ordered states. The
observed spin correlations show pinch-point type structures
around � points, an antiferromagnetic short-range order
around L points, and tiny antiferromagnetic Bragg scatter-
ing at L and � points. The q = ( 1

2 , 1
2 , 1

2 ) short-range order
was analyzed using a model calculation of a random-phase
approximation assuming two-spin interactions among Ising
spins. Analyses have shown that the RPA scattering intensity
well reproduces the experimental data using temperature- and
x-dependent coupling constants of up to tenth-neighbor site
pairs. The unexpectedly large number of coupling constants
required in the fitting suggest a breakdown of the classical spin
paradigm at low temperatures and the necessity of a quantum
spin paradigm.
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APPENDIX A: RPA MODEL CALCULATION
AND DEFINITIONS

Methods of the RPA model calculation and related
definitions are summarized in this section. The effective
pseudospin- 1

2 operators σ z
r reside on the pyrochlore lattice

sites r = tn + dν , where tn are fcc translation vectors and dν

are four crystallographic sites in the unit cell. These sites and
their symmetry axes xν , yν , and zν [40] are listed in Table II.
Representative site pairs 〈r, r ′〉m of the coupling constants Jm

in Eq. (1) are listed in Table III.
The generalized susceptibility χν ′′,ν ′ (k, E), where k is a

vector in the fcc first Brillouin zone, is computed by solving
an RPA equation [39],

∑
ν ′′

[
δν,ν ′′ −

∑
ν ′′′

χ0
ν,ν ′′′ (E)Jν ′′′,ν ′′ (k)

]
χν ′′,ν ′ (k, E) = χ0

ν,ν ′ (E),

(A1)

where Jν,ν ′ (k) denotes the Fourier transform of the magnetic
coupling constants Jn,ν;n′,ν ′ between sites tn′ + dν ′ and tn +
dν ,

Jν,ν ′ (k) =
∑

n

Jn,ν;n′,ν ′eik·[(tn+dν )−(tn′+dν′ )], (A2)

and χ0
ν,ν ′ (E) is the single-site susceptibility. In the paramag-

netic phase

χ0
ν,ν ′ (E) = δν,ν ′χL

�0

�0 − iE
, (A3)

where χL = 1/(4kBT ) is the local susceptibility [39] and �0

is a small positive constant.

TABLE II. Four crystallographic sites dν (ν = 0, 1, 2, 3) and
their local symmetry axes xν , yν , and zν [40].

ν dν xν yν zν

0 1
4 (0, 0, 0) 1√

6
(1, 1, −2) 1√

2
(−1, 1, 0) 1√

3
(1, 1, 1)

1 1
4 (0, 1, 1) 1√

6
(1,−1, 2) 1√

2
(−1, −1, 0) 1√

3
(1, −1, −1)

2 1
4 (1, 0, 1) 1√

6
(−1, 1, 2) 1√

2
(1, 1, 0) 1√

3
(−1, 1, −1)

3 1
4 (1, 1, 0) 1√

6
(−1,−1, −2) 1√

2
(1,−1, 0) 1√

3
(−1,−1, 1)
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TABLE III. Representative site pairs 〈r, r ′〉m = 〈tn + dν, tn′ +
dν′ 〉m of the coupling constants Jm from Eq. (1) are listed using
(ν, ν ′) and r ′ − r . Distances between the site pairs |r ′ − r| show that
the constants Jm in this list are up to 11th-neighbor coupling and that
for 3rd-, 7th-, 9th-, and 10th-neighbor site pairs, there are two, two,
three, and two nonequivalent site pairs, respectively.

Jm (ν, ν ′) r ′ − r |r ′ − r|
J1 (0,1) (0, 1/4, 1/4) 0.35355
J2 (0,1) (1/2, 1/4, −1/4) 0.61237
J3 (0,0) (1/2, 1/2, 0) 0.70710
J4 (0,0) (1/2,−1/2, 0) 0.70710
J5 (0,1) (0, 3/4, −1/4) 0.79057
J6 (0,1) (1/2, 1/4, 3/4) 0.93541
J7 (0,0) (1, 0, 0) 1
J8 (0,1) (1, 1/4, 1/4) 1.06066
J9 (0,1) (0, 3/4, 3/4) 1.06066
J10 (0,1) (1/2, 3/4, −3/4) 1.17260
J11 (0,0) (1,−1/2, −1/2) 1.224745
J12 (0,0) (1, 1/2, −1/2) 1.224745
J13 (0,0) (1, 1/2, 1/2) 1.224745
J14 (0,1) (0, 5/4, 1/4) 1.274755
J15 (0,1) (1, 3/4, −1/4) 1.274755
J16 (0,1) (1/2, 5/4, −1/4) 1.36930

The neutron magnetic scattering intensity S( Q = G +
k, E), where G is a reciprocal lattice vector, is given by

S( Q, E) ∝ f (Q)2 1

1 − e−βE

∑
ρ,σ,ν,ν ′

(δρ,σ − Q̂ρQ̂σ )

×U (ν)
ρ,zU

(ν ′ )
σ,z Im{χν,ν ′ (k, E)e−iG·(dν−dν′ )}, (A4)

where U (ν)
ρ,α is the rotation matrix from the local (α) frame

defined at sites tn + dν to the global (ρ) frame [40,53]. In
the quasielastic approximation, the elastic scattering intensity
[S( Q)]el is given by integrating Eq. (A4) in the small range
|E| < ε,

[S( Q)]el =
∫ ε

−ε

S( Q, E)dE ∝ f (Q)2
∑

ρ,σ,ν,ν ′
(δρ,σ − Q̂ρQ̂σ )

×U (ν)
ρ,zU

(ν ′ )
σ,z

∫ ε

−ε

Im{χν,ν ′ (k, E)e−iG·(dν−dν′ )}
E

dE

∝ f (Q)2
∑

ρ,σ,ν,ν ′
(δρ,σ − Q̂ρQ̂σ )U (ν)

ρ,zU
(ν ′ )
σ,z

×χν,ν ′ (k, 0) cos[G · (dν − dν ′ )], (A5)

where �0 � ε is assumed.

APPENDIX B: LEAST-SQUARES FIT

Technical details of the least-squares fits are summarized
in this section. The computations of the least-squares fits
were performed on the CX400 supercomputer using a non-
linear least-squares program [54] based on the Levenberg-
Marquardt algorithm. The difficulty of the present minimiza-
tion problem of χ2 [Eq. (4)] is caused by the fact that χ2 has
many local minima in the parameter space. A trivial origin
of this difficulty is that infinitesimal changes of Jnn,eff →
(1 + ε)Jnn,eff, where Jnn,eff = J1 + 3

5D (> 0) is the effective
ferromagnetic NN coupling for small Jm (m � 2) [46], Jm →
(1 + ε)Jm (m � 2), and χL → (1 − ε)χL in Eq. (A1) bring
about [S( Q)]el → (1 − ε)[S( Q)]el [Eq. (A5)] and, conse-
quently, do not change the Q dependence of [S( Q)]el. To
avoid the (nearly) rank deficiency in the QR decomposition
due to this fact, we fixed J1 in performing the least-squares
fits. Indications of the occurrence of this problem can be seen
as several ranges of χ2 � const in the curves in Figs. 3, 7,
and 10. In addition, there were other unknown origins for the
many local minima. These difficulties could be avoided by
introducing a weak constraint of the parameters, i.e., adding

the penalty function
∑

2�m�mmax
( Jm

1 K )
8

to χ2. This penalty
function weakly restricts Jm in the range |Jm| < 1 K, which
is a reasonable assumption and can be treated in the frame-
work of the Levenberg-Marquardt algorithm. By inspecting
the results of the least-squares fits, we can conclude that
sufficiently accurate solutions of the minimization problem
were obtained for the present purpose [47]. The uncertainty of
the typical coupling constants listed in Table I is of the order
of 0.1 K [47].
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