
Quantum field theory for the chiral clock transition in one spatial dimension

Seth Whitsitt,1, 2 Rhine Samajdar,1 and Subir Sachdev1, 3

1Department of Physics, Harvard University, Cambridge, MA 02138, USA
2Joint Quantum Institute, National Institute of Standards and Technology

and the University of Maryland, College Park, MD, 20742, USA
3Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5

(Dated: August 30, 2018)

We describe the quantum phase transition in the N -state chiral clock model in spatial

dimension d = 1. With couplings chosen to preserve time-reversal and spatial inversion

symmetries, such a model is in the universality class of recent experimental studies of the

ordering of pumped Rydberg states in a one-dimensional chain of trapped ultracold alkali

atoms. For such couplings and N = 3, the clock model is expected to have a direct phase

transition from a gapped phase with a broken global ZN symmetry, to a gapped phase

with the ZN symmetry restored. The transition has dynamical critical exponent z 6= 1,

and so cannot be described by a relativistic quantum field theory. We use a lattice duality

transformation to map the transition onto that of a Bose gas in d = 1, involving the onset of

a single boson condensate in the background of a higher-dimensional N -boson condensate.

We present a renormalization group analysis of the strongly coupled field theory for the Bose

gas transition in an expansion in 2− d, with 4−N chosen to be of order 2− d. At two-loop

order, we find a regime of parameters with a renormalization group fixed point which can

describe a direct phase transition. We also present numerical density-matrix renormalization

group studies of lattice chiral clock and Bose gas models for N = 3, finding good evidence

for a direct phase transition, and obtain estimates for z and the correlation length exponent

ν.
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I. INTRODUCTION

Recent experiments on one-dimensional chains of Rb atoms excited to Rydberg states by Bernien

et al. [1] have displayed quantum transitions to ordered states with a period of N sites, with N ≥ 2.

This phase transition is described by a model of hard-core bosons proposed by Fendley et al. [2].

Such phase transitions are in the universality class of the ZN clock model with couplings which

preserve both time-reversal and spatial inversion symmetries. For N ≥ 3, the required clock models

must be chiral [3, 4]: domain walls have distinct energies depending upon whether the clock rotates

clockwise or counterclockwise upon crossing the wall while moving to the right.

There has been much theoretical and numerical work on ZN chiral clock models, both as quan-

tum models in one spatial dimension (d), and as classical models in two spatial dimensions [3–18].

These models exhibit a complex phase diagram with 3 types of phases:

(i) a gapped phase with long-range ZN order (this phase was referred to as ‘topological’ in a

parafermionic formulation [11, 12]),

(ii) a gapped phase with no broken symmetry and exponentially decaying ZN correlations, and

(iii) a gapless phase with incommensurate ZN correlations decaying as a power-law.

It is important to note, however, that many of the previous studies are under conditions in which

the Hamiltonian does not preserve time-reversal and/or spatial inversion symmetries. Imposing

time-reversal and spatial inversion symmetries will be crucial for our theoretical analysis, and in-

deed, such symmetries are present in the Rydberg atom realization [1]. With these symmetries

imposed, we will examine the direct transition between the two gapped phases noted above, with-

out an intermediate incommensurate phase. The possibility of such a direct transition was already

noted in early work [5], but was questioned subsequently [7] (see Appendix E). However, numer-

ical evidence for a direct transition for N = 3 has emerged in recent work [12, 14]. This paper

will provide a field-theoretic renormalization group analysis of the direct transition, along with

additional numerical density-matrix renormalization group (DMRG) results. Our main theoretical

tool will be a duality mapping of the chiral clock model transition in d = 1 onto that of a Bose

gas, involving the onset of a single boson condensate in the background of a higher-dimensional

N -boson condensate [19].

Let us begin by writing down a possible field theory for period-N ordering [2]. Let Φ be the

density wave order parameter, so that Φ→ e2πin/NΦ under translation by n lattice spacings, where

n is a positive or negative integer. Using translational and time-reversal symmetries (described in

more detail below), we obtain an action defined on continuous d = 1 space (x) and imaginary time

(τ):

SΦ =

∫
dx dτ

[
|∂τΦ|2 + |∂xΦ|2 + iαxΦ∗∂xΦ + s|Φ|2 + u|Φ|4 + λ

(
ΦN + (Φ∗)N

) ]
(1)

The same field theory also applies to the chiral clock model with order parameter Φ, in which

case Φ → e2πin/NΦ is an internal symmetry of the clock model, without combining with spatial

translations. So in the clock model, a state with 〈Φ〉 6= 0 has a spatially uniform condensate, while
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this state has period N ordering in the boson model of Ref. 2. The term proportional to the real

number αx is crucial, and is responsible for the chirality in both models. A nonzero αx yields an

inverse propagator for Φ which has a minimum at a nonzero wavevector kI = αx/2, and hence

induces incommensurate order parameter correlations. When treated perturbatively in u and λ,

SΦ will lead to condensation of Φ at kI , and hence a to state with long-range incommensurate

order. Taking Φ ∼ eikIx, we see that the phase-locking term proportional to λ spatially averages

to zero. Consequently, although SΦ has only a discrete ZN symmetry, the low-energy theory of

the incommensurate state has an emergent U(1) symmetry which leads to a gapless ‘phason’ mode

[20] (note that this argument applies also in spatial dimensions d > 1). This is the reason for

the difficulty in obtaining a theory for the direct transition in the chiral model from a gapped

disordered phase, to a commensurate ZN -ordered phase: the perturbative analysis of the field

theory in Eq. (1) implies that such a direct transition does not exist, and there is an intermediate

gapless incommensurate phase. On the other hand, there is ample evidence from numerical studies

for the existence of a direct transition [12, 14] in d = 1.

One of our main results will be an exact duality between models described by SΦ in d = 1,

and a theory of the condensation of a nonrelativistic Bose gas in d = 1. Specifically, we consider a

Bose gas, with Bose field Ψ, which undergoes a condensation transition in the presence of a higher-

dimensional background condensate of a ‘molecule’ of N bosons. This implies that we always have

〈ΨN 〉 6= 0. The continuum theory for the onset of a single boson condensate in the presence of a

N -boson condensate is [19]

SΨ =

∫
dx dτ

[
|∂τΨ|2 + |∂xΨ|2 + ατΨ∗∂τΨ + s|Ψ|2 + u|Ψ|4 + λ(ΨN + (Ψ∗)N )

]
, (2)

where ατ (and all other couplings) are real; note that there is no direct relationship between the

values of s, u, λ between SΦ and SΨ. At first glance, it might appear that the relationship between

SΦ and SΨ is trivial, and they are related simply by a Wick rotation which exchanges space (x)

and imaginary time (τ). However, that is not the case. There is a crucial difference in a factor of i

between the first-order derivative terms in Eqs. (1) and (2), and this difference is required by the

unitarity of both theories. A Wick rotation relationship would imply that the dynamical critical

exponent z of SΦ is the inverse of the z of SΨ, and that the scaling dimensions of Φ and Ψ are

equal. The actual relationship between the theories is a Kramers-Wannier type duality between

the Φ and Ψ fields, and one is the ‘disorder’ field of the other. Furthermore, unlike the N = 2

Ising case, the duality is not a self-duality for N > 2; consequently the scaling dimensions of Φ and

Ψ are not equal to each other for N 6= 2. Finally, because the duality does not actually involve a

Wick rotation, the values of z of the theories SΦ and SΨ are equal to each other, as are the values

of their correlation length exponents ν.

The advantage of working with SΨ is that it allows a perturbative study (near two spatial

dimensions) of a direct transition between a phase with 〈Ψ〉 = 0, to a phase with a uniform

condensate 〈Ψ〉 6= 0. Under the duality mapping in d = 1, these phases correspond to clock model

states with 〈Φ〉 6= 0 (and spatially uniform) and 〈Φ〉 = 0, respectively. Note that with a spatially



5

uniform Ψ condensate, the λ term in Eq. (2) does not average to zero, and so there is no emergent

U(1) symmetry and the Ψ-condensed phase is also gapped. A gapless phase of SΨ can appear

only in d = 1, and requires nonperturbative effects which are special to d = 1 [21]. The Bose

gas formulation of SΨ is naturally set up to provide a perturbative theory of a transition between

two gapped phases, without an intermediate gapless phase. We shall present a renormalization

group analysis of such a transition, building upon the analysis in Ref. 19, which examined SΨ in

an expansion in 2− d.

We reiterate that the duality mapping between SΦ and SΨ applies only in d = 1, and their global

phase diagrams are expected to coincide only in d = 1; SΦ can have a gapless incommensurate

phase for d ≥ 1, while SΨ has no gapless phase for d > 1. We will use the direct transition between

gapped phases of SΨ, present for d ≥ 1, to obtain a 2 − d expansion for the transition in d = 1;

then, we will employ duality to map it onto the direct transition of SΦ in d = 1.

The outline of the paper is as follows. Section II defines the lattice chiral clock model, and

analyzes its symmetries and duality properties. Section III contains further discussion of the

duality in the context of models which can be connected to the continuum quantum field theories;

we also present a general discussion on the nature of phases and phase transitions for different values

of N . Our main results on the renormalization group analysis of SΨ in a (2− d) expansion appear

in Section IV. Section V contains our numerical density-matrix renormalization group (DMRG)

results. We extend the numerical results of Ref. 14 on the chiral clock model, and compare critical

exponents between the transitions of the θ 6= 0, φ = 0 and θ = 0, φ 6= 0 models, which are related

by the the duality transition. We also examine a lattice discretization of the Bose gas model SΨ,

and determine the exponents of its transition. The Appendices contain various technical details.

Appendix D presents DMRG results on the chiral clock model along the self-dual line φ = θ; note

that this case does not have the parity and time-reversal symmetries to be the models studied

in the body of the paper. Here, we find numerical evidence for an intermediate incommensurate

phase.

II. CHIRAL CLOCK MODEL

A. Definition of the model

The quantum chiral clock model (CCM) in d = 1 spatial dimension may be defined on an open

chain of M sites by [22]

H = −f
M∑
j=1

(
τje

iφ + τ †j e
−iφ
)
− J

M−1∑
j=1

(
σjσ

†
j+1e

iθ + σ†jσj+1e
−iθ
)
, (3)

where we conventionally take f, J > 0. Here, the operators τ and σ commute on each site and

obey the algebra

τN = σN = I, τ † = τ−1, σ† = σ−1, σ τ = ω τ σ, (4)
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FIG. 1. A visual representation of the interactions in the Hamiltonian given in Eq. (3) for the case N = 3.

The state on each site can be represented as a linear combination of the three different states on the clock,

and the interaction strength between two adjacent states is given by the factors shown.

where ω = e2πi/N . An explicit matrix representation of these operators is

σ =


1 0 0 · · · 0

0 ω 0 · · · 0

0 0 ω2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ωN−1

 , τ =


0 0 0 · · · 0 1

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

 . (5)

Here, σ measures where on the “clock” the state is, while τ rotates the state clockwise through the

discrete angle 2π/N . This model has a global ZN symmetry implemented by the unitary operator

G =

M∏
j=1

τj , (6)

which acts as G†σjG = ωσj and G†τjG = τj .

For generic values of θ, φ, and N , the phase diagram of this model is very intricate and not

well-understood. For small values of θ and φ, where the interaction is always ferromagnetic, there

will be a disordered ground state with 〈σi〉 = 0 in the J � f limit and a commensurate ordered

ground state with 〈σi〉 6= 0 in the J � f limit. For intermediate values of J/f , then depending on

the precise values of θ, φ, and N , these two phases may be separated by an intermediate gapless

phase or a direct continuous transition [23]. In addition, for large enough angles θ and φ, this

model has incommensurate gapless phases persisting for the entire region 0 ≤ J/f ≤ ∞.

In this paper, we will largely be interested in the cases (θ 6= 0, φ = 0) and (θ = 0, φ 6= 0),

where the model has both time-reversal and spatial inversion symmetries. Our goal will be to

exploit the duality in this microscopic model (reviewed below) to map out the critical theories for

these transitions, and thus gain a better understanding of criticality in all systems in the same

universality class. To this end, we review the important symmetries of this model.
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B. Discrete symmetries

We now introduce the operators C, P , and T [12]. Charge conjugation is a unitary operator

defined by the relations

CσjC = σ†j , CτjC = τ †j , C2 = I. (7)

The operator C can be explicitly represented in the basis of Eq. (5) as C =
∏
j Cj , where Cj acts

at each site as

C =


1 0 0 · · · 0 0

0 0 0 · · · 0 1

0 0 0 · · · 1 0
...

...
...

. . .
...

...

0 1 0 · · · 0 0

 . (8)

Parity is a unitary operator defined as

PσjP = σ−j , P τjP = τ−j , P 2 = 1, (9)

and time-reversal is an anti-unitary defined as

TσjT = σ†j , T τjT = τj , T 2 = I. (10)

In the particular basis (5), we have T = K where K is complex conjugation.

Considering all three of these transformations, we see that our Hamiltonian in Eq. (3) transforms

as

CH(φ, θ)C = H(−φ,−θ), PH(φ, θ)P = H(φ,−θ), TH(φ, θ)T = H(−φ, θ). (11)

For θ = φ = 0, all three of these discrete transformations are symmetries, and this is the usual

(achiral) clock model. If θ = 0, we have the discrete symmetries

(CT )−1H(φ, 0)CT = H(φ, 0), P−1H(φ, 0)P = H(φ, 0), (12)

while if φ = 0, we have

T−1H(0, θ)T = H(0, θ), (CP )−1H(0, θ)CP = H(0, θ). (13)

Therefore, both Hamiltonians H(φ, 0) and H(0, θ) have separate time-reversal and parity sym-

metries, though their explicit definitions are different because they must be combined with C in

different ways. In contrast, for both φ 6= 0 and θ 6= 0, it is not possible to define separate T and P

symmetries. The only discrete spacetime symmetry is CPT :

(CPT )−1H(φ, θ)CPT = H(φ, θ), (14)

which involves a simultaneous reversal of space and time.
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C. Duality

The reason for our specific choice of the microscopic Hamiltonian of Eq. (3) is the existence of

an exact microscopic duality in the thermodynamic limit. Similar to the Kramers-Wannier duality

in the one-dimensional transverse-field Ising model [24], the duality transformation proceeds by

defining a “disorder operator” σ̃ which creates domain walls. Explicitly, we define a set of operators

on the links of the chain by

τ̃j+1/2 = σjσ
†
j+1, τ̃M+1/2 = σM , σ̃j+1/2 =

j∏
k=1

τ †k , (15)

which satisfy the same algebra as the original τ and σ. Here, we parametrize the position of the

dual variable σ̃ on the link connecting sites j and j + 1 by σ̃j+1/2, and similarly for τ̃ .

From Eq. (15), the operator σ̃j+1/2 twists all of the states from j = 1, ..., j counterclockwise

by an angle 2π/N , creating a domain wall at the link j + 1/2. In terms of these operators, the

Hamiltonian takes the form

H = −J
M−1∑
j=1

(
τ̃j+1/2e

iθ + τ̃ †j+1/2e
−iθ
)
− f

M−1∑
j=1

(
σ̃j+1/2σ̃

†
j+3/2e

iφ + σ̃†j+1/2σ̃j+3/2e
−iφ
)

− f
(
σ̃†3/2e

iφ + σ̃3/2e
−iφ
)
. (16)

This is the same form as our original Hamiltonian, except that the first term does not include

the operator τ̃M+1/2, and the last term acts as an external field acting on the first link of the

chain. Ignoring these boundary effects, the bulk part of this model is dual under the simultaneous

transformation

φ←→ θ, J ←→ f. (17)

This duality will be used in the following sections to obtain quantum field theories for the critical

chiral clock model where the fundamental continuum field represents the disorder variable σ̃, which

will give new insight into these transitions.

We note that the order and disorder operators, σ and σ̃, are both local and will have nontrivial

scaling dimensions at criticality. Since the mapping between them is highly nonlocal, there is

no simple relation between the scaling dimensions of these operators for generic θ and φ. An

exception is along the self-dual line θ = φ, where the two operators must have identical anomalous

dimensions.

III. CHIRAL CLOCK DUALITY IN QUANTUM FIELD THEORY

This section is split into two parts. In Section III A, we give a heuristic argument for the duality

described in the introduction and then give an overview of the duality in several cases of interest.

Section III B contains an explicit derivation of the duality directly from the microscopic chiral
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clock model for N = 3 by mapping to a Euclidean lattice field theory. The more complicated

construction for general N is presented in Appendix A, which also fills in some other technical

details in constructing the critical continuum field theory.

A. General discussion of the duality

We motivate the field-theoretic statement of the duality by considering a family of anisotropic

quantum rotor models whose phase transitions and critical field theories are well-understood. The

derivation of these models from the microscopic Hamiltonian Eq. (3) will contain some suspect

arguments, but the final critical theories can be rigorously related to the microscopic model using

the methods of Section III B and Appendix A. This simpler setting is intended to give an intuitive

outline of the duality, after which we give some general statements and conjectures about the

critical behavior of the CCM for various values of θ, φ, and N .

We begin by softening the discrete nature of the order parameter, replacing the Hilbert space

of each site by a rotor degree of freedom:

σj |ζi〉 = eiζj |ζj〉, (18)

where the eigenvalue of ζi can be any real number, but with a 2π redundancy. With this alteration,

the spatial part of the CCM is unchanged,

σjσ
†
j+1e

iθ + h.c. = cos (ζj − ζj+1 + θ) . (19)

Now recall that τ rotates the eigenvalue of σj by an angle 2π/N . Therefore, we can write

τj = e−
2πi
N
Lj , (20)

where Lj generates infinitesimal rotations of ζj ; e.g., in the ζ basis,

Lj = −i ∂
∂ζj

. (21)

Then, the remainder of the CCM can be written as

τje
iφ + h.c. = cos

(
−2π

N
Lj + φ

)
. (22)

At this point, we replace this operator by the first term in its power series:

cos

(
−2π

N
Lj + φ

)
−→ const.− (2π/N)2

2
L2
j + hφLj , (23)

where hφ ∝ φ. One may attempt to justify this step by appealing to a large N limit where Nφ

remains small, although we will consider all N ≥ 3 below. Alternatively, one may argue that the

term on the right-hand side will have the same disordering effect on the ζ field. In either case, we

may always appeal to the more technical derivation below to justify our conclusions.
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Our final rotor representation for the CCM will be

H =
f ′

2

∑
j

L2
j − J

∑
j

cos (ζj − ζj+1 + θ) + hφ
∑
j

Lj − hN
∑
j

cos (Nζj) . (24)

Here, in addition to the terms described above, we have also added an anisotropic external field

proportional to hN which breaks the U(1) symmetry of the model back down to ZN . The statement

of duality is that the critical properties of this Hamiltonian for (φ = 0, θ 6= 0) and (φ 6= 0, θ = 0)

map onto each other. Such a duality can only be valid at hN > 0, where a phase with ZN order

exists and a corresponding disorder operator can be defined. The action of the discrete symmetries

of the CCM are implemented as

G : ζj → ζj +
2π

N
, Lj → Lj ,

C : ζj → −ζj , Lj → −Lj ,

P : ζj → ζ−j , Lj → L−j ,

T : ζj → ζj , Lj → −Lj , (25)

and T is still anti-unitary, T i T = −i.
Our reason for introducing this model is to utilize the well-known results mapping critical

quantum rotors to quantum field theories [25]. For θ = φ = hN = 0, we have a U(1) rotor, whose

critical field theory is the Lorentz and U(1)-invariant theory for a complex field Φ:

S1 =

∫
dx dτ

[
|∂τΦ|2 + |∂xΦ|2 + s|Φ|2 + u|Φ|4 + · · ·

]
, (26)

where the ellipsis denotes all other allowed terms. The main effect of the anisotropic coupling hN

will be to break the U(1) symmetry down to ZN , so we expect the critical theory will be altered to

S2 =

∫
dx dτ

[
|∂τΦ|2 + |∂xΦ|2 + s|Φ|2 + u|Φ|4 + λ

(
ΦN + (Φ∗)N

)
+ · · ·

]
, (27)

where the ellipsis now also includes all real terms invariant under Φ → e2πi/NΦ. The actions S1

and S2 are not very useful starting points for studying the critical U(1) rotor model and achiral

clock models in one dimension, where we expect these field theories to be very strongly coupled,

but the critical points of these models have been understood using other methods (their behavior

is reviewed below).

If we add a nonzero θ, we only change the couplings in the spatial direction. In particular, since

θ 6= 0 breaks parity symmetry, we expect that we should add odd spatial derivative terms [2]:

SΦ =

∫
dx dτ

[
|∂τΦ|2 + |∂xΦ|2 + iαxΦ∗∂xΦ + s|Φ|2 + u|Φ|4 + λ

(
ΦN + (Φ∗)N

)
+ · · ·

]
. (28)

Finally, we consider the effect of φ 6= 0 and θ = 0, which we have argued should describe the critical

field theory for the disorder operator Ψ that is dual to the clock order parameter Φ experiencing

the chiral transition in Eq. (28). From Eq. (24), this is equivalent to adding an external field
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coupled to the conserved charge Q =
∑

j Lj associated with U(1) rotations of the theory. We do

not need to perform a detailed derivation of the field theory in this case; we simply need to find

the corresponding U(1) Noether charge of the action S1 to find the operator which couples to hφ.

This is equivalent to replacing ∂τ −→ ∂τ + hφ, and we obtain the theory

SΨ =

∫
dx dτ

[
|∂τΨ|2 + |∂xΨ|2 + ατΨ∗∂τΨ + s|Ψ|2 + u|Ψ|4 + λ(ΨN + (Ψ∗)N ) + · · ·

]
(29)

as claimed in the introduction.

1. Achiral clock model: φ = θ = 0

Setting φ = θ = 0 in either Eqs. (3) or (24), we expect the phase diagram to have the same

general structure as the phases mapped out for the discrete planar models studied in Refs. 26 and

27, which also discuss duality in these and related models. We review these results, which are useful

for what follows. Here we describe the possible behavior for all models with the same symmetries

as the specific models we gave above.

We first recall the properties of the U(1)-symmetric limit, hN → 0, which has relevance for the

critical properties of the large-N clock models. At hN = 0, the system undergoes a Kosterlitz-

Thouless (KT) transition between a disordered gapped phase and a gapless critical phase (which

we call a KT phase) [28]. The critical phase may be described by a free bosonic field theory, and

the scaling dimensions of physical operators vary continuously with the couplings. For small hN ,

the gapless critical phase is always unstable to a gapped phase with ZN order for small enough

f ′/J . The critical behavior for various values of N are as follows:

a. N = 3 : The U(1)-symmetric fixed point is unstable to the perturbation h3 [21]. The

Z3 clock model is identical to the three-state Potts model, which realizes the full S3 permutation

symmetry, and there is a direct continuous transition between the disordered and ordered phases.

The critical point is described by the c = 4
5 CFT, and the scaling dimension of every operator is

known exactly [29].

b. N = 4 : There is a direct transition between the Z4-ordered phase and the disordered

phase. The critical points are in the Ashkin-Teller (AT) universality class, which is really a family

of universality classes. The AT model may be defined as two copies of the Ising
(
c = 1

2

)
CFT which

are coupled together by their energy operators. This coupling is exactly marginal, and the resulting

AT model describes a line of fixed points with central charge c = 1. This line passes through the

four-state Potts fixed point, and eventually meets the U(1)-symmetric Kosterlitz-Thouless point

at h4 = 0 [21, 30].

c. N ≥ 5 : In this case, the phase transition will either be first-order or there will be an

intermediate KT phase. For these larger values of N , we may use intuition from the U(1)-symmetric

limit when describing transitions into this KT phase, where thermodynamic variables diverge with

an essential singularity. We note that the scaling dimension of the order parameter at the KT

transitions will not coincide with the U(1) value ∆σ = 1/8.
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2. Chiral clock model: θ 6= 0

We now consider the expected critical theories for φ = 0 and θ 6= 0, along with the dual

formulations obtained by applying the θ ↔ φ duality.

We first consider the hN → 0 limit. Although the duality between these theories only holds at

finite N , for N large enough, one expects that the leading operators ΦN + c.c. will be irrelevant

compared to the U(1) invariant part of the action, leading to enlarged U(1) symmetry in the critical

regime (we discuss this point further below). We note that the N ≥ 5 CCM is expected to always

have an incommensurate KT phase separating the ordered regions of the phase diagram [4].

Using the φ↔ θ duality, we expect that the phase transition from the commensurate ZN -ordered

phase to the incommensurate phase (the C–IC transition) can be described by

SΨ,U(1) =

∫
dx dτ

[
|∂τΨ|2 + |∂xΨ|2 + ατΨ∗∂τΨ + s|Ψ|2 + u|Ψ|4 + · · ·

]
, (30)

where Ψ creates a domain wall in the ZN -ordered state. Interestingly, the disorder operator con-

denses at zero momentum. This is the same critical theory which describes the Bose superfluid–

Mott insulator transition at variable density [31].

In fact, the identification of SΨ,U(1) as a description of the C–IC transition could be argued along

completely different lines. Schulz [32] has shown that the critical Pokrovsky-Talapov (PT) theory

of the C–IC transition can be mapped to that of a one-dimensional spinless fermion at the bottom

of a quadratic band, undergoing an insulator–Luttinger liquid transition [33, 34]. The equivalence

of this theory with the critical theory SΨ,U(1) has also been well-established [35]. Our present

derivation of the relation between SΨ and the PT transition completes this circle of dualities, and

gives an interesting interpretation of the field Ψ as the operator which creates domain walls in the

commensurate phase.

For N = 3, it is known that θ couples to an operator with scaling dimension 9/5, so it is a

relevant perturbation. Recent numerical progress [12, 14] has provided evidence that the N = 3

theory flows to a new fixed point where there is a direct continuous transition between the two

phases for intermediate θ; for other small values of N , less is known in the literature. As with the

achiral models, it would be interesting to establish a critical value Nc above which these models

cross over to U(1)-symmetric behavior.

As stressed in the introduction, the theory of Eq. (28) cannot perturbatively describe the onset

of ZN order at zero momentum, while the dual theory SΨ admits a perturbative expansion in 2−d
and 4 − N . In doing so, we envision a scenario where the U(1)-symmetric transition of Eq. (30)

in d < 2 dimensions is unstable to the addition of the operator ΨN + c.c., and the theory flows to

a fixed point which is smoothly connected to the CCM in d = 1. However, the precise nature of

the renormalization group flow of these field theories for general N at d = 1 cannot be addressed

by our methods; we cannot rule out the possibility that our perturbative fixed point is unstable,

and the CCM fixed point of interest does not smoothly connect to the d = 2, N = 4 case where

we apply perturbation theory.
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If we assume that the critical CCM is smoothly connected to the perturbative fixed point

considered below, we may make some predictions for the value of Nc where the critical CCM

crosses over to a U(1)-symmetric theory. Damle and Sachdev [19] computed the scaling dimension

of the operator ΨN + c.c. at the U(1) symmetric fixed point of Eq. (30) in an expansion in 2− d.

Extrapolating their results to d = 1 gave the unusual result that the operator was relevant for

N . 2.6 and N & 5.4, and irrelevant for N between these values. As pointed out in that work,

the predictions for large N are certainly an artifact of the expansion (in particular, the expansion

predicts unphysical negative scaling dimensions for N ≥ 6). In Section IV, we obtain equivalent

results to those in Ref. 19 truncated at small 4−N . There, we find that the operator ΨN + c.c. is

relevant for N < Nc and irrelevant for N > Nc, where

Nc ≈ 3.6. (31)

Here, we have extrapolated to d = 1 and arbitrary N , but Nc is close enough to N = 4 that this

may be a quantitatively accurate estimate.

Throughout this paper, we have ignored the N = 2 case. From Eq. (3), it is clear that the

lattice CCM reduces to the transverse-field Ising model in this case, and that nonzero angles θ and

φ are simply redefinitions of the constants f and J . At the level of our field theory duality, we can

see this by the fact that our order parameter can be chosen to be real, so that the couplings Φ∂xΦ

and Ψ∂τΨ are total derivatives and do not contribute to the action. Then, the duality between SΦ

and SΨ reduces to the ordinary Kramers-Wannier self-duality of the Ising model [24]. The exact

computations of Ref. 19 show that SΨ flows to the Ising fixed point for the N = 2 case, which

serves as an added verification of our assumption for the RG flows of these models.

B. Explicit derivation of the duality for N = 3

We now consider the explicit mapping of the one-dimensional quantum model (3) to a Euclidean

lattice field theory using transfer matrix methods [24]. In this section we treat the simplest case,

N = 3, and leave the more technically complicated but conceptually similar N > 3 case for

Appendix A. We write the partition function as

Z = Tr exp (−βH) = lim
a→0

lim
Mτ→∞

Tr
(
e−aH

)Mτ
, (32)

where aMτ = β. This represents Mτ products of a 3M × 3M transfer matrix e−aH . We first

decompose this into a product,

e−aH = T1T2 +O(a2), (33)

where

T1 = exp

aβf M∑
j

τje
iφ + h.c.

 , T2 = exp

aβJ M∑
j

σjσ
†
j+1e

iθ + h.c.

 . (34)
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We now insert a complete set of states between each factor of the transfer matrix. For the 3M -

dimensional Hilbert space defined in the problem, we use the basis |nj〉 where

σj |nj〉 = e2πinj/3|nj〉 (35)

with possible eigenvalues nj = 0, 1, ..., 2. The partition function becomes

Z =
∑
{nj(`)}

Mτ∏
`=1

〈{nj(`)}|T1T2|{nj(`+ 1)}〉 . (36)

The sum is over the 3MMτ values of nj(`). The matrix elements of T2 are trivial,

T2|{nj(`)}〉 = exp

2aβJ

M∑
j

cos

[
2π

3

(
nj(`)− nj+1(`)

)
+ θ

] |{nj(`)}〉, (37)

and it remains to evaluate the matrix elements

T1(n, n′) ≡
〈
n|T1|n′

〉
. (38)

For this, we write the eigenbasis |n〉 in terms of the eigenbasis of τ :

τ |ω〉 = e2πiω/3|ω〉, (39)

where ω = 0, 1, ..., 2. These bases are related by

|n〉 =
1√
3

2∑
ω=0

e2πiωn/3|ω〉. (40)

Using the above equations, we can evaluate the matrix elements in Eq. (36), obtaining an expression

resembling a classical partition function defined on a 2D lattice:

Z =
1

3Mτ

∑
{nj(`)}

exp

2aβJ

Mτ∑
`=1

M∑
j=1

cos

[
2π

3

(
nj(`)− nj+1(`)

)
+ θ

]
×
Mτ∏
`=1

M∏
j=1

2∑
ω=0

exp

(
2aβf cos

[
2π

N
ω + φ

])

× exp

(
−2πiω

3

(
nj(`)− nj(`+ 1)

))
. (41)

Our next step is to evaluate the sum over the ω, and then rewrite the resulting terms as a single

exponential. Explicitly, we can write

S3(∆n) ≡
2∑

ω=0

exp

(
2aβf cos

[
2π

N
ω + φ

]
− 2πiω

3

(
nj(`)− nj(`+ 1)

))

= A exp

[
B(φ) cos

(
2π

3
∆n

)]
exp

[
iϕ(φ)

2√
3

sin

(
2π

3
∆n

)]
(42)
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with the definitions

A =
[
e2aβf cosφ + 2e−aβf cosφ cosh

(√
3aβf sinφ

)]
e−B(φ),

B(φ) =
1

3
log

[ (
e3aβf cosφ + 2 cosh

(√
3aβf sinφ

))2
e6aβf cosφ − 2e3aβf cosφ cosh

(√
3aβf sinφ

)
+ 2 cosh

(
2
√

3aβf sinφ
)
− 1

]
,

tanϕ(φ) =

√
3 sinh

(√
3aβf sinφ

)
e3aβf cosφ − cosh

(√
3aβf sinφ

) . (43)

For small a, ϕ(φ) = φ; we take this as a strict equality from now on. We can also show that

B(φ) ≈ −2

3
log a (44)

for small a, so the φ-dependence disappears from the B(φ) term.

From this analysis, we expect that the critical behavior of the quantum model is equivalent to

the Euclidean lattice field theory obtained by the partition function

Z = C
∑
{nx,τ}

e−S (45)

with the action

−S = Kx

∑
x,τ

cos

[
2π

3
(nx,τ − nx+1,τ ) + θ

]
+Kτ

∑
x,τ

cos

[
2π

3
(nx,τ − nx,τ+1)

]
+

2iφ√
3

∑
x,τ

sin

[
2π

3
(nx,τ − nx,τ+1)

]
. (46)

Here, the quantum model is obtained in the limit Kx → 0, Ky → ∞ such that Kxe
3Ky/2 is finite

and tuned to the phase transition. We have Kx ∼ aβJ and Ky ∼ B = B(a, βf), but choose the

Kx and Ky as tuning parameters instead of J and f .

For φ = 0, the action (46) is equivalent to the two-dimensional classical chiral clock model

[3, 4], and this mapping has been known for a long time [8, 36, 37]. For φ 6= 0, there is a purely

quantum term proportional to φ contributing complex Boltzmann weights. This term was noticed

in Ref. 8, but the proper interpretation of the term as describing the Euclidean path integral of a

quantum field theory was overlooked. The coefficient of φ is such that each term in the partition

sum contributes phases of 1 and e±iφ, so the model still has an exact 2π periodicity in φ as required.

The original θ ↔ φ duality of the microscopic model is invisible here; it is a nontrivial infrared

self-duality of the theory which also involves some nontrivial transformation on Kx and Kτ . The

global symmetries of the original quantum model are now implemented as

G : nx,τ → nx,τ + 1,

T : nx,τ → nx,−τ ,

C : nx,τ → −nx,τ ,

P : nx,τ → n−x,τ . (47)
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In Appendix A we derive an equivalent field theory for this model in the scaling limit in terms

of a complex field Φ(x, τ), which acts as an order parameter of the spins σ. Our final field theory

in terms of this continuum complex field is

S ′ =
∫
dτ dx

(
iαxΦ∗∂xΦ + αxx|∂xΦ|2 + ατΦ∗∂τΦ + αττ |∂τΦ|2

+ r|Φ|2 + λ
(
Φ3 + Φ∗3

)
+ u|Φ|4 + · · ·

)
, (48)

where αx goes to zero for θ = 0, and ατ goes to zero for φ = 0. The symmetries of the original

model are now implemented by

G : Φ(x, τ)→ e2πi/3Φ(x, τ),

T : Φ(x, τ)→ Φ(x,−τ),

C : Φ(x, τ),→ Φ∗(x, τ)

P : Φ(x, τ)→ Φ(−x, τ). (49)

From Eq. (48), we can see that specializing to the case (θ 6= 0, φ = 0), gives the action SΦ of

Eq. (1). Then, after applying the duality of Section II C, and following the same steps for the

“disorder parameter” Ψ ∼ σ̃, we obtain the dual action SΨ of Eq. (2), completing our proof.

IV. RENORMALIZATION GROUP ANALYSIS OF THE ZN DILUTE BOSE GAS

In this section, we will study the renormalization group (RG) properties of the ZN dilute Bose

gas (DBG) starting from the action

SB =

∫
dτ ddx

[
Ψ∗∂τΨ + |∇Ψ|2 + s|Ψ|2 +

u

2
|Ψ|4 +

λ0

N !

(
ΨN + Ψ†N

)]
. (50)

Here, we have generalized the action SΨ to d spatial dimensions, and truncated the action to

the most relevant terms. The units in the space and imaginary time directions have been chosen

such that the coefficients of the first two terms are unity. At the free theory, u = λ0 = 0, the

dynamical critical exponent is given by z = 2, and the scaling dimensions of the couplings in units

of momentum or inverse length are

dim(s) = 2,

dim(u) = 2− d,

dim(λ0) = 2 + d−Nd/2. (51)

Close to the free theory, s is always relevant, identifying it as the coupling which tunes through the

phase transition. We will hereafter always assume this coupling is tuned to criticality, and define it

to vanish at this value: s = sc = 0. The couplings u and λ are both marginal for d = 2 and N = 4,

and there are no additional relevant or marginal operators allowed by symmetry. This suggests an

expansion in both ε = 2− d and δ = 4−N , so that we may exhibit a flow to an interacting fixed
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FIG. 2. The interaction vertices in the diagrammatic expansion of the ZN DBG. Both of the λ0 vertices

have a total of N propagators attached to them.

point which remains perturbatively accessible. We may then perform a diagrammatic expansion

on this model, where the free propagator is

G(ω, k) =
1

−iω + k2
, (52)

and the interaction vertices are pictured in Figure 2.

We now define renormalized fields and couplings,

τ =
Zτµ

−2

Z
τR,

ψ = Z1/2ψR,

u =
Zgµ

2−d

ZZτSd
g,

λ0 =
Zλµ

2+d−Nd/2

ZN/2−1ZτS
N/2−1
d

λ, (53)

where Sd = (4π)−d/2 is a dimensional factor defined to simplify future expressions. We have also

introduced an arbitrary momentum scale, µ, which renders the renormalized couplings dimen-

sionless. We renormalize the theory by first computing correlation functions in bare perturbation

theory using the action SB for arbitrary ε and δ. These correlation functions will be divergent in

some dimension-one manifold of the ε− δ plane, including at the point ε = δ = 0. We then express

these correlation functions in terms of the renormalized fields and couplings specified in Eq. (53),

and choose the renormalization constants Zi such that the correlation functions of the renormalized

fields are regular in a finite neighborhood of the origin of the ε− δ plane when expressed in terms

of the renormalized couplings.

In particular, if we consider the one-particle irreducible (1PI) vertex of n fields in momentum

and frequency space, the bare and renormalized quantities are related by

Γ
(n)
R ({ωRi, ki}, g, λ, µ) = Zn/2

(
Zτ
Z

)
Γ(n)({ωi, ki}, u0, λ0), (54)
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where we have defined ωR = Zτµ
−2ω/Z in congruence with Eq. (53), and these vertex functions

are defined without overall delta functions enforcing momentum and frequency conservation. By

the renormalizability of our theory, the constants Zi may be specified by computing the three 1PI

vertices displayed in Figure 3.

Once we have obtained the renormalization constants, we may consider the dependence of the

interaction couplings on our arbitrary momentum scale µ by defining the usual beta functions,

βg = µ
dg

dµ
, βλ = µ

dλ

dµ
. (55)

These may be computed directly from the definitions of g and λ in Eq. (53). Introducing the

convenient shorthand

Zg ≡ log

(
Zg
ZZτ

)
,

Zλ ≡ log

(
Zλ

ZN/2−1Zτ

)
,

hg ≡ 2− d = ε,

hλ ≡ 2 + d−Nd/2 = ε+ δ − εδ/2, (56)

we can write the beta functions as

βg =
−hgg − hggλdZλdλ + hλgλ

dZg
dλ

1 + g
dZg
dg + λdZλdλ + gλ

dZg
dg

dZλ
dλ − gλ

dZg
dλ

dZλ
dg

,

βλ =
−hλλ− hλgλdZgdg + hggλ

dZλ
dg

1 + g
dZg
dg + λdZλdλ + gλ

dZg
dg

dZλ
dλ − gλ

dZg
dλ

dZλ
dg

. (57)

The critical points of the system are given by solving βg = βλ = 0.

Once we obtain a fixed point, we compute critical exponents. For example, the scaling of the

dimensionless renormalized coupling τR determines the scaling of the time dimension with respect

to momentum, which gives the dynamical critical exponent z:

µ
dτR
dµ
≡ zτR

⇒ z = 2− βg
d

dg
log

(
Zτ
Z

)
− βλ

d

dλ
log

(
Zτ
Z

)
. (58)

All other critical exponents are related to the scaling dimensions of operators. For example, by

renormalizing the two-point function, we have effectively computed the scaling dimension ∆Ψ

associated with the operator Ψ:

∆Ψ =
d

2
+

1

2
βg

d

dg
logZ +

1

2
βλ

d

dλ
logZ. (59)

Similarly, by renormalizing the interaction vertices, we have effectively computed the scaling dimen-

sions of the operators ΨN + c.c. and |Ψ|4. We will find below that these operators will generically
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mix at the interacting fixed point, as they have the same scaling dimension at ε = δ = 0, and

they transform identically under the symmetries of SB when λ 6= 0. The eigenoperators under

dilatations will have scaling dimensions given by

∆Ψ4
±

= 2d+ z + ω± (60)

with

det

[(
∂βg
∂g

∂βg
∂λ

∂βλ
∂g

∂βλ
∂λ

)
− ω± I

]
= 0 (61)

i.e., the two numbers ω± are the two eigenvalues associated with the matrix formed by linearizing

the beta functions at the critical couplings. The eigenvectors of this matrix determine the precise

nature of the operator mixing.

The last operator we are interested in is the leading relevant operator, |Ψ|2. Since this does not

appear in our action at criticality, we need to define a new renormalization constant,

|Ψ|2 =
Z2

Zτ

(
|Ψ|2

)
R
, (62)

where Z2 is chosen to cancel divergences upon insertion of this composite operator. With this

particular definition, the 1PI vertex with n insertions of Ψ or Ψ∗ and m insertions of |Ψ|2 is

renormalized as

Γ
(n,m)
R ({ωRi, ki}, g, λ, µ) = Zn/2−1Z1−m

τ Zm2 Γ(n,m)({ωi, ki}, u0, λ0). (63)

We will calculate Z2 by renormalizing the vertex Γ(2,1), pictured in Figure 4. With this definition,

the scaling dimension of |Ψ|2 is

∆|Ψ|2 ≡ d+ βg
d

dg
log

(
Z2

Zτ

)
+ βλ

d

dλ
log

(
Z2

Zτ

)
. (64)

After computing these scaling dimensions, we will obtain the critical exponents of SB. However,

because the field Ψ is the disorder operator of the CCM, many of the critical exponents will not

have a simple relation to the critical exponents associated with the CCM order parameter Φ,

which is a nonlocal operator in this theory. We do expect that |Ψ|2, as the lone relevant operator

allowed by symmetry at the critical point, will map to the corresponding relevant operator in the

CCM transition. This implies that the critical exponent ν will coincide at the ZN CCM and DBG

critical points. Furthermore, the dynamical critical exponent z is a property of the exact low-

energy dispersion of the quantum critical point rather than any particular operator, and therefore

it should also be the same in both theories.

A. Diagrammatic expansion

We now outline the diagrammatic expansion for renormalizing SB. The diagrams needed to

renormalize the interactions are pictured in Figure 3. We can immediately identify the main



20

FIG. 3. Diagrams contributing to the 1PI vertices (top) Γ(2), (middle) Γ(4), (bottom) Γ(N). The ellipses

represent the insertion of propagators required so that each λ0 vertex has a total of N lines attached.

technical challenge, which is that the loop diagrams are only defined for integer N . For example,

the first correction to Γ(2) pictured in Figure 3 is an (N − 1)-loop diagram, and a given loop

diagram only makes sense for an integer number of loops. However, we are interested in an

analytic expansion in the theory in small δ = 4 −N . This requires finding an expression for this

diagrams for all integers N , analytically continuing this expression to arbitrary values of N , and

then performing the expansion in N = 4− δ. The method by which we compute and analytically

continue these diagrams is outlined in Appendix B, which also contains derivations of the integrals

needed.

Using the expressions for I
(M)
1−4 given in Appendix B, the bare 1PI vertices pictured in Figures
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3 and 4 are given by

Γ(2)(ω, k) =− iω + k2 − λ2
0

Γ(N)
I

(N−2)
1 (ω, k) +

uλ2
0

2Γ(N − 2)
I

(N−1)
2 (ω, k)

+
2uλ2

0

Γ(N − 1)
I

(N−1)
3 (ω, k), (65)

Γ(4) =− 2u+ 2u2I
(1)
1 (p1 + p2) +

λ2
0

Γ(N − 1)
I

(N−3)
1 (p1 + p2)

− 2u3I
(1)
1 (p1 + p2)2

− 2uλ2
0

Γ(N − 1)

[
I

(1)
1 (p1 + p2)I

(N−3)
1 (p1 + p2)

]
− uλ2

0

2Γ(N − 3)
I

(N−2)
2 (p1 + p2)

− uλ2
0

Γ (N − 2)

[
I

(N−2)
3 (p1 + p2, p3) + 3 perms.

]
− 2uλ2

0

Γ(N − 1)

[
I

(N−2)
4 (p1, p3) + 3 perms.

]
, (66)

Γ(N)(ωi, ki) =− λ0 + λ0u
N∑
i<j

I
(1)
1 (pi + pj)− λ0u

2
N∑
i<j

I
(1)
1 (pi + pj)

2

− λ0u
2
∑

i<j<k<`

[
I

(1)
1 (pi + pj)I

(1)
1 (pk + p`) + I

(1)
1 (pi + pj)I

(1)
1 (pk + p`)

+ I
(1)
1 (pi + pj)I

(1)
1 (pk + p`)

]
− 2λ0u

2(N − 2)

N∑
i<j

I
(2)
3 (pi + pj)

− λ2

N !

bN2 c∑
n=2

(
N

n

)
I

(n−1)
1 (pi)I

(N−n−1)
1 (−pi), (67)

Γ(2,1)(ωi, ki) =1 +
λ2

0

Γ (N − 1)
I

(N−2)
4 (p1, p1 + p2). (68)

Here, the terms labelled “perm.” denote the same integrals with permutations of the labelled

external momenta. We then apply the renormalization conditions of Eqs. (54) and (63):

Γ
(2)
R (ω, k) = Zτ Γ(2)(ω, k),

Γ
(4)
R (ω, k) = Z Zτ Γ(4)(ω, k),

Γ
(N)
R (ω, k) = ZN/2−1 Zτ Γ(N)(ω, k),

Γ
(2,1)
R (ω, k) = Z2 Γ(2,1)(ω, k). (69)

Finally, we express the bare couplings appearing on the right-hand side of the equation in terms of

the renormalized 1PI couplings defined in Eq. (53), and then choose the renormalization constants

to render these functions finite near ε = δ = 0.
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FIG. 4. Diagrams contributing to the renormalization of Γ(2,1).

Using the above expressions, we will renormalize the theory to second order in the couplings. We

have also obtained the renormalized vertex Γ(2) to third order in the couplings; because this vertex

does not have a contribution at first order, knowing the fixed point to second order is sufficient to

obtain Zτ and Z (and therefore z and ∆ψ) to third order. The third-order calculation does not

involve any extra difficulty because the diagrams appearing in Γ(2) at third order involve no new

integrals compared to those needed to renormalize the interaction vertices at second order.

From the expressions for I1−4, the bare 1PI vertices have divergences in the form of poles in

the ε− δ plane. For example, in the 1PI four-point function we find simple poles of the form

Γ
(4)
R = Zg +

f1(ε, δ)

ε
+

f2(ε, δ)

ε/2 + δ − εδ/2
+ reg. (70)

at leading order, where the fi(ε, δ) are complicated functions and “reg.” indicates finite contribu-

tions. As usual, there is a very large ambiguity in defining the Zg to subtract these poles, and this

ambiguity will not affect universal quantities at the critical point. If we only had simple poles in ε, a

common choice is to subtract the poles in ε without subtracting any finite part of the bare vertices.

This is the modified minimal subtraction scheme, MS, where “modified” refers to the extra factors

of Sd inserted in the definitions of our couplings in Eq. (53). However, is it not possible to subtract

the pole 1/(ε/2 + δ− εδ/2) without retaining some of the ε or δ dependence in the numerator. One

may choose to subtract the pole with the entire function f2(ε, δ) in the numerator, but instead we

have chosen

Zg = 1− f1(0, 0)

ε
− f2(ε1(δ), δ)

ε/2 + δ − εδ/2
, (71)

where

ε1(δ) ≡ − 2δ

1− δ
. (72)

One may check that this choice renders Eq. (70) a regular function of ε and δ wherever the fi

remain regular. Our reason for this choice is that it reduces exactly to the MS scheme in the δ = 0
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limit, allowing us to check the renormalization constants against those of the N = 4 theory in the

MS scheme, which are much easier to obtain.

At second order, we find a more complicated pole structure in the ε− δ plane, but we continue

to renormalize the theory by demanding that our renormalization scheme reduces to MS for δ = 0.

For example, we find a contribution of the form

Zg +
f3(ε, δ)

ε(ε/2 + δ − εδ/2)
. (73)

We renormalize this by choosing

Zg = 1− f3(0, δ)

εδ
+
f3(ε1(δ), δ)

δ(ε− ε1(δ))
, (74)

which satisfies the two conditions that (1) the resulting expression is regular for all ε and δ, and

(2) the δ → 0 limit of Zg reduces to the MS scheme if we work exactly at N = 4.

B. RG results and critical exponents

The renormalization constants are tabulated in Appendix C. One may check that with these

choices, the ΓR are finite functions of external frequency and momentum for small ε and δ and

arbitrary ε/δ. We can obtain the beta functions to second order in the couplings using Eqs. (56)-

(57), and then truncate the resulting expressions by assuming that ε and δ are of the same order

as g and λ. The resulting beta functions are

βg = −εg + g2 +
λ2

4
(1 + α1δ)− gλ2

(
38

27
+ ln

4

3

)
,

βλ = − (ε+ δ − δε/2)λ+ 6λg(1− 7δ/12)− 12g2λ ln
4

3
− 2

27
λ3. (75)

Here, α1 = 2− γE − ln 2. We may obtain higher-order dependence on ε and δ using our obtained

renormalization constants, but this will not contribute to the perturbative fixed point to the order

that we are working.

Similarly, we can calculate the quantities z, ∆Ψ, and ∆|Ψ|2 directly from Eqs. (58), (59), and

(64), obtaining

z = 2− 4λ2

27
(1 + αzδ) +

4 ln 2

9
gλ2, (76)

∆Ψ =
d

2
− λ2

18
(1 + αΨδ) +

ln 2

6
gλ2, (77)

∆|Ψ|2 = d+
8λ2

27
, (78)

where αz = 9
4 − γE −

1
2 ln 3 and αΨ = 13

6 − γE −
1
2 ln 3.

We now consider solutions to the equations βg = βλ = 0. We find the U(1)-symmetric fixed

point at (g∗, λ∗) = (ε, 0). Computing the stability of this fixed point to λ perturbations, we have:

dim(λ) = δ − 5ε+ 3εδ + 12 log(4/3)ε2, (g, λ) = (ε, 0). (79)
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This equation also follows from Eq. (4) in Ref. 19. The U(1) fixed point is stable for small values

of ε and δ, but it becomes unstable if we tune them to be large enough. The properties of this

fixed point have been studied in detail, see e.g., Ref. 31.

For λ 6= 0, we have the following weak-coupling fixed point:

g∗ =
1

6
(ε+ δ) +

40ε2 + 559δ2 + 113εδ + 324 ln(4/3)(ε+ δ)2

5832
,

λ∗ =
1

3

√
(ε+ δ) (5ε− δ) +

2360ε3 − 1015δ3 + 4290δε2 + 2373δ2ε+ 324(7ε− 2δ)(δ + ε)2 ln(4/3)

2916
√

(ε+ δ) (5ε− δ)

− α1δ

6

√
(ε+ δ) (5ε− δ). (80)

This fixed point only exists when δ < 5ε. We first discuss the stability of this fixed point, and the

possibility that it is a stable endpoint from the free or U(1)-symmetric fixed points. The condition

for stability is that ω+ and ω−, defined by Eq. (61), are both positive. Computing these at the

fixed point, we find the two eigenvalues to be

ω± =
1

6
(δ − 2ε)± 1

6

√
64ε2 − 11δ2 + 44εδ

+
1063δ2 − 2480ε2 − 1903εδ − 648(2ε− δ)(ε+ δ) log 4

3

5832

±
4960ε3 − 2339δ3 − 13740δε2 − 5001εδ2 − 648(ε+ δ)(14ε2 − δ2 + 22εδ) log 4

3

5832
√

64ε2 − 11δ2 + 44εδ
. (81)

To leading order, we find that there is no region where this fixed point exists and is stable. This

is the primary reason we have carried out the present computation to second order. Using the full

expression, we find that there is a region where where the fixed point is stable and both eigenvalues

ω± are positive, although this region does not include ε = δ = 1; see Figure 5. However, we note

that the exact results of Ref. 19 imply that for ε = 1, δ = 2, the U(1)-symmetric fixed point flows

to the transverse-field Ising fixed point, so this region of stability presumably continues to increase

at higher orders. Therefore, this prediction of an unstable fixed point may be a failure of our

expansion in obtaining quantitatively accurate values of the ω±. In what follows, we assume that

the region of stability extends to ε = δ = 1, the primary case of interest.

Evaluating z, ∆Ψ, and ∆|Ψ|2 at this fixed point, we find

z = 2− 4(ε+ δ)(5ε− δ)
243

+

(
−4720− 4536 log 4

3 + 2430 log 2
)
ε3 +

(
2273 + 1782 log 4

3 − 486 log 2
)
δ3

59049

+

(
−3265− 3402 log 4

3 + 1458 log 2
)
δε2 −

(
1906 + 1296 log 4

3 − 486 log 2
)
δ2ε

19683
, (82)
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FIG. 5. Region in ε− δ space where the ZN fixed point is stable, evaluated to second order in an expansion

in ε = 2 − d and δ = 4 − N . The eigenvalue ω+ is zero along the full line, and the eigenvalue ω− is zero

along the dashed line. The shaded region between these two lines is the region where both eigenvalues are

positive, representing the region of stability of the fixed point. The dotted line is δ = 5ε; the fixed point

only exists in the region δ < 5ε.

∆ψ =
2− ε

2
− (ε+ δ)(5ε− δ)

162

+

(
−2360− 2268 log 4

3 + 1215 log 2
)
ε3 +

(
1096 + 891 log 4

3 − 243 log 2
)
δ3

78732

+

(
−1565− 1701 log 4

3 + 729 log 2
)
δε2 −

(
899 + 648 log 4

3 − 243 log 2
)
δ2ε

26244
, (83)

∆|ψ|2 = 2− ε+
8(ε+ δ)(5ε− δ)

243
. (84)

These expressions are simply related to the critical exponents of the theory. As noted above, the

exponent ν, defined as the exponent characterizing the divergence of the correlation length, will

coincide with the exponent ν in the CCM in one dimension. This exponent is given by

ν−1 = d+ z −∆|Ψ|2 . (85)

We also give the anomalous dimension of the field Ψ, defined as

η = 2∆Ψ + 2− d− z. (86)

This anomalous dimension will characterize the correlations of the domain walls of the CCM rather

than the order parameter.
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Exponent LO NLO

z 1.87 1.57

ν 0.60 N/A

η 0.03 0.11

TABLE I. Critical exponents predicted for the Z3 DBG in one dimension to leading order (LO) and next-

to-leading order (NLO). The exponents z and ν in the one-dimensional DBG coincide with those in the

one-dimensional CCM.

We note that all of these exponents lie between those for the one-dimensional 3-state Potts

model and the U(1)-symmetric DBG model. In those cases, the exponents are known exactly:

(z, ν, η) = (2, 1/2, 0) U(1) DBG,

(z, ν, η) = (1, 5/6, 4/15) 3 - state Potts, (87)

(since the one-dimensional 3-state Potts model is self-dual, the exponent η for Φ and Ψ coincide).

The second-order correction to the exponents z and η is rather large, which may indicate that the

series is already diverging and may require resummation at higher order.

Finally, we may also compare these results with those recently obtained using exact diagonal-

ization on a lattice boson model in the same universality class as the Z3 CCM [14],

z ≈ 1.33, ν ≈ 0.71. (88)

Our field-theoretic results do not give precise quantitative matches with these results, but we do

find that the exponents shift in the correct direction for agreement with the CCM.

V. NUMERICAL RESULTS

In this section, we numerically investigate the Z3-symmetry-breaking QPT in the context of

both the chiral clock (Sec. V A) and dilute Bose gas (Sec. V B) models. The critical exponents of

interest to us in characterizing the nature of this transition are the dynamical critical exponent z

and the correlation length exponent ν, which are defined by [25]

∆ ∼ |g − gc|z ν ; ξ ∼ |g − gc|− ν , (89)

where g is some tuning parameter, ∆ denotes the mass gap, and ξ is the correlation length. For the

purpose of numerically evaluating these exponents, we resort to finite-size scaling (FSS) [38, 39] as

sketched below.

The FSS approach employs the relation between the divergence of a thermodynamic quantity

K (g) in the bulk system, as K (g) ∼ |g − gc|−κ when g → gc, and its scaling at criticality, as

K (gc) ∼ Lκ/ν , on a lattice of L sites. The exponent κ/ν can thus be estimated by plotting K
against the system size, where K is to be chosen appropriately. For instance, near the quantum

critical point (QCP), one can assume that the gap obeys a scaling ansatz of the functional form

∆ = L−z F
(
L1/ν (g − gc)

)
, (90)
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with F some universal scaling function. Additionally, in this regard, it is also useful to consider

the Callan-Symanzik β function [40] defined as

β (g) =
∆ (g)

∆ (g)− 2
∂∆(g)

∂ ln g

. (91)

From Eqs. (90) and (91), it follows that these two quantities scale as −z and −1/ν, respectively,

at the QCP, thus giving us access to the required exponents.

Our numerical calculations in this section are based on the density-matrix renormalization group

(DMRG) algorithm [41–46]. We use finite-system DMRG [47, 48] with a bond dimension m = 150

for a chain of up to L = 100 sites with open boundary conditions; the first and second energy levels

are individually targeted. After three sweeps, the energy eigenvalues were found to be suitably

converged to an accuracy of one part in 1010.

A. The φ↔ θ duality

The φ↔ θ duality, introduced in Sec. II C, maps the Hamiltonian of the chiral clock model onto

itself under the simultaneous interchange of both f ↔ J and φ ↔ θ. Despite this mapping, the

two sides of the phase diagram are not the same in that the energy levels are not identical owing

to boundary effects.

The critical exponents of the chiral Z3 transition were recently studied for φ = 0, θ 6= 0 by

Ref. 14; here, we consider its dual case with θ = 0 and 0 ≤ φ < π/6, varied in steps of π/48, in

the subspace J = 1 − f . The precise location of the QPT can be ascertained by plotting Lz ∆L

against the tuning parameter f for various lattice sizes (ranging from L = 60 to L = 100) and

values of z. Eq. (90) asserts that the quantity Lz∆ is independent of the length of the system L

right at the QCP f = fc. This, in turn, implies that, with the correct choice of z, all the curves

for Lz∆ should cross at fc for different values of L, thereby allowing us to determine both fc and z

simultaneously. Following this prescription, we are able to determine the intersection point of the

curves for different lengths to an accuracy of 10−4 by scanning progressively finer intervals. The

variation of the crossing points with φ (for θ = 0) is noted in Table II, along with the corresponding

values for φ = 0, θ 6= 0 (from Ref. 14). Although the QCPs in the two cases are obtained separately,

it is easy to observe that fc|φ=0 = 1− fc|θ=0, as predicted by the duality.

The values of z obtained in this fashion can be independently corroborated in order to check for

any dependence (or lack thereof) on the particular system sizes over which FSS is applied. While

our former approach relied on considering ∆ as a function of f , one can alternatively study the

scaling of ∆ as a function of L instead, at f = fc. Using the ansatz ∆ (L) = cL−z, we obtain the

best functional fit for the gap, treating the coefficient c and the exponent z as free parameters.

Table II lists the values of z thus obtained, together with those for φ = 0, θ 6= 0. The exponents

in these two cases while close, are not exactly the same since they are essentially determined from
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θ fc|φ=0 z zc φ fc|θ=0 z̄ z̄c

π/48 0.4990 1.003 1.00(9) π/48 0.5010 1.000 1.00(7)

π/24 0.4961 1.021 1.029(6) π/24 0.5040 1.013 1.01(4)

π/16 0.4913 1.022 1.02(3) π/16 0.5090 1.047 1.04(8)

π/12 0.4842 1.078 1.078(2) π/12 0.5161 1.118 1.119(0)

5π/48 0.4748 1.135 1.132(7) 5π/48 0.5257 1.155 1.150(6)

π/8 0.4627 1.229 1.226(8) π/8 0.5379 1.224 1.216(4)

7π/48 0.4475 1.368 1.366(1) 7π/48 0.5531 1.331 1.324(6)

TABLE II. Calculated dynamical critical exponents for φ = 0, θ 6= 0 (z) and φ 6= 0, θ = 0 (z̄). Two

independent sets of values of z are distinguished: the first series is our estimate from the crossing points

whereas the second (designated by the subscript c) is for the values determined from fitting ∆ to cL−z.

curve-fitting. Nonetheless, the good agreement between the two serves as a highly nontrivial check

of the duality.

Another interesting aspect of the duality is the physics along the self-dual line of the CCM:

when f = J and φ = θ, the model is self-dual. Unlike previously, in this case, we find that there is

no direct order–disorder phase transition and a sliver of the gapless incommensurate phase always

intervenes. Further numerical details pertaining to the self-dual phase boundary are presented in

Appendix D.

B. Lattice model for the dilute Bose gas

The renormalization group analysis of the ZN dilute Bose gas (50) in Sec. IV is complemented

by our numerics in this section, which focus exclusively on the case N = 3. To this end, we study

a lattice Hamiltonian, which is a variation upon the usual Bose-Hubbard model, described by a

hopping strength t, a chemical potential µ, and an onsite repulsion U . The only addition is a

point-split perturbation which breaks the symmetry down to Z3. Explicitly,

H = −t
∑
〈i,j〉

(
b†i bj + bi b

†
j

)
− µ

∑
i

b†i bi + U
∑
i

b†i bi

(
b†i bi − 1

)
+ λ

∑
i

(
bi bi+1 bi+2 + b†i b

†
i+1 b

†
i+2

)
,

where bi and b†i are the bosonic annihilation and creation operators, respectively. Taking the limit

U →∞ imposes a hard-boson constraint i.e., each site can be occupied by no more than one boson.

With this constraint implicit hereafter, the Hamiltonian reduces to

H = −t
∑
〈i,j〉

(
b†i bj + bi b

†
j

)
− µ

∑
i

ni + λ
∑
i

(
bi bi+1 bi+2 + b†i b

†
i+1 b

†
i+2

)
; ni ≤ 1, (92)
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where we have introduced the number operator ni = b†i bi for notational clarity.

With λ = 0, this system exhibits a U(1)-symmetry-breaking QPT: this is the usual Bose gas

transition between a Mott-insulating ground state (t � µ) a superfluid phase (t � µ), in which

the U(1)-symmetry is spontaneously broken. The more interesting case, which we now turn to, is

the ground state of the system for λ > 0; without loss of generality, we set t = 1 . For |µ/λ| � 1,

the ground state is unique and tends towards being entirely empty or entirely filled depending on

the sign of µ. On the other hand, for |µ/λ| � 1, one is in the Z3-ordered phase, where three states

with different fillings mod 3 (each of which is individually Z3-symmetric) are degenerate, and the

system can break the Z3 symmetry by choosing a linear combination of the three states. Both the

disordered and the Z3-ordered phase are gapped, provided λ/t is sufficiently large.

A convenient metric to characterize the phases and observe the transition between them is the

spatial entanglement entropy (EE) [49–51]. Formally, if a system is partitioned into two regions,

say, A and B, then the reduced density matrix of region A is obtained by tracing over the degrees

of freedom of region B as ρa ≡ Trb ρ; the EE is then defined as S ≡ −Tr(ρa ln ρa). If there is

topological ground-state degeneracy, one expects an EE of order ∼ lnD, where D is the degeneracy

[52]. Hence, we set t = 1 and numerically calculate the EE using DMRG with m = 100 to detect

the QPT and the (approximate) phase boundaries in the (µ, λ) parameter space. Figure 6 shows a

sharp increase in the central-cut EE, which saturates to a value ∼ O(ln 3), as µ is varied across the

phase transition. Furthermore, both the EE and the energy gap ∆ are symmetric under µ↔ −µ,

which implies that the system undergoes the same phase transition at (µc, λc) and (−µc, λc).
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FIG. 6. (a) The central-cut entanglement entropy as a function of µ and λ for a chain of length L = 100.

The EE decreases sharply from O(ln 3) to zero on moving across the phase transition from the ordered to

the disordered phase. (b) Cross-section of (a) along the line λ/t = 1, greatly zoomed in to the QCP, for

three different system sizes. The transition point corresponding to the jump tends to the actual critical

point for an infinite lattice as we move to progressively larger systems.
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In order to precisely pinpoint the QCP, we use the same finite-size scaling considerations as

in Sec. V A. At each fixed value of λ, we systematically tune µ to drive the phase transition and

note the intersection point of the curves of Lz ∆ for L varying between 60 to 100. For instance,

Figure 7(a) displays an example of this method for λ = 1, from which we extract the critical point

µc = 1.7970, and the associated exponent z = 1.779. Repeating this procedure over several discrete

values of λ leads to the phase diagram illustrated in Figure 8(a). Similarly, FSS arguments based

on the scaling of the Callan-Symanzik β function (91) can yield the correlation length exponent ν.

Accordingly, we fit the β function, displayed in Figure 7(d), to an ansatz of the form

β (L) = c0 L
−1/ν (1 + c1 L

−ζ);

(
ζ >

1

ν

)
, (93)

allowing for subleading corrections to ensure a more robust fit. The values of ν thus obtained are

compiled in Table III together with the corresponding exponents for z.
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FIG. 7. Finite-size scaling analysis of the Z3 dilute Bose gas. (a) Scaling of the variable Lz ∆ as a function

of µ for individual system sizes. With z = 1.779, all the curves intersect right at the critical point. The

finesse of the crossing depends crucially on the correct choice of z: on zooming in, the contrast in sharpness

between z = 1.779 (b) and z = 2 (c) is vivid. (d) The Callan-Symanzik β function plotted on a logarithmic

scale against the system size. The slopes of the curves in the linear region, corresponding to large lattices,

give us the respective values of −1/ν.

We find that the exponents move in the direction of those for the 3-state Potts model (where

z = 1 and ν−1 = 6/5), in consistency with our RG results. Over the range of couplings we have

accessed, the critical exponents appear to vary continuously. A rather unlikely explanation of
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λ µc z ν−1

0.2 1.9904 1.956± 0.003 1.963(8)

0.4 1.9625 1.894± 0.010 1.900(5)

0.6 1.9186 1.887± 0.002 1.899(3)

0.8 1.8622 1.847± 0.037 1.86(5)

1.0 1.7970 1.779± 0.034 1.798(3)

1.5 1.6156 1.641± 0.042 1.683(1)

2.0 1.4329 1.511± 0.052 1.57(4)

2.5 1.2638 1.387± 0.064 1.484(7)

3.0 1.1129 1.272± 0.071 1.405(2)

TABLE III. Numerically calculated dynamical and correlation length critical exponents for the Z3 dilute

Bose gas with t = 1. Upon turning on λ, the exponents start deviating nontrivially from the values of z = 2,

ν = 1/2 of the U(1)-symmetry-breaking transition. The extracted value of z depends slightly on the range

of system sizes considered in the FSS procedure. Denoting the exponent obtained from FSS over the interval

L = a to L = b by za,b, we take z ≡ z60,100, and the uncertainty estimate ε ≡ max(|z60,80 − z|, |z80,100 − z|).

these results, which we cannot rule out, is that λ is exactly marginal, leading to a critical line

with varying exponents. A more generic (and likely) explanation is that the scaling dimension of

λ is parametrically small, and these results are due to crossover behavior between the U(1) and Z3

DBG fixed points. The latter scenario is consistent with the small region of stability found in our

RG calculation; this explanation amounts to the claim that the point ε = δ = 1 lies close to the

boundary of the region of stability in Figure 5 in the exact theory.

VI. CONCLUSIONS

The phase transitions of the quantum (classical) ZN chiral clock model in one (two) spatial

dimensions have been the subject of a number of theoretical and numerical studies [3–18]. The

phase structure of this model in the case where N = 3, and the model has separate time-reversal

and spatial inversion symmetry, was debated in the early literature: some studies favored a direct

transition between a disordered phase and a gapped phase with broken Z3 symmetry [4, 6], while

others predicted the appearance of a gapless incommensurate phase separating the two gapped

ones [7] (we review the arguments of Ref. 7 in Appendix E). Recent numerical work gives strong

evidence for the first scenario [12, 14] but a quantum field theory describing the direct transition

was lacking. These questions have recently become relevant for experimental studies of trapped

ultracold Rydberg atoms [1].
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FIG. 8. (a) Schematic phase diagram of the Z3 dilute Bose gas obtained from DMRG and FSS calculations.

For λ = 0, the QPT involves U(1) symmetry breaking whereas for nonzero λ, the symmetry broken is

Z3. The phase diagram is symmetric upon reflection about µ = 0. (b) Both phases are gapped. To see

this, the difference in energies between the ground state and the first three excited states, are plotted for

a system of size L = 50 and λ = t = 1. In the ordered phase, the ground state is threefold degenerate in

the infinite-volume limit. However, in a finite chain, there is always a splitting between them and therefore

DMRG can probe and distinguish the states within this (ideally) degenerate manifold. Contrarily, on the

disordered side, there exists a unique ground state.

In this paper, we have presented a quantum field theory for the critical ZN chiral clock model,

which is capable of describing the direct transition described above. Interestingly, the field theory

is written in terms of the ‘disorder parameter’ Ψ (which creates domain walls in the ordered phase)

rather than the order parameter of the clock degrees of freedom, Φ. The field theory for Ψ also

describes the onset of a condensate in a dilute Bose gas, in the background of a static, higher-

dimensional N boson condensate. We performed a perturbative renormalization group analysis of

this field theory for small ε = 2 − d and δ = 4 − N , where we found a weak-coupling fixed point

describing a direct transition with ZN symmetry breaking. We give the first analytical predictions

for the critical exponents of this transition, obtaining ν ≈ 0.60 and z ≈ 1.57.

We also performed a numerical DMRG study of a lattice boson model the order parameter of

which, Ψ, is described directly by our field theory. This study contains strong evidence for a direct

transition between a gapped disordered phase and a gapped phase with broken Z3 symmetry. The

critical exponents obtained numerically do not appear to have fully converged to their universal

values in the finite system sizes studied, but their flow is consistent with our field-theoretic results.

We also presented additional DMRG results on the Z3 clock model, going beyond those in Ref. 14:

these results confirm the duality properties, and yield exponents similar to those for the lattice

boson model.

In the future, the field-theoretic advances presented here could be extended to nonequilibrium

dynamics, and so could address corresponding experimental studies on Rydberg atoms.



33

Note added: We learnt of numerical studies [53] on large systems which also find a direct transition

without an intermediate gapless incommensurate phase.
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Appendix A: Derivation of quantum field theory for general N

In Section III B, we gave the transfer matrix calculation of the Euclidean lattice field theory

for the N = 3 chiral clock model, and argued for the form of its continuum limit. Here, we will

generalize this calculation to arbitrary N , and give a direct mapping from the Euclidean lattice

field theory to the continuum quantum field theory of a complex order parameter field.

Following the derivation in Section III B, the steps until Eq. (41) generalize to arbitrary N in

an obvious way, and we obtain the expression for the partition function

Z =
1

NMτ

∑
{nj(`)}

exp

2aβJ

Mτ∑
`=1

M∑
j=1

cos

[
2π

N

(
nj(`)− nj+1(`)

)
+ θ

]
×
Mτ∏
`=1

M∏
j=1

N−1∑
ω=0

exp

(
2aβf cos

[
2π

N
ω + φ

])

× exp

(
−2πiω

N

(
nj(`)− nj(`+ 1)

))
. (A1)

In this expression, the integers nj(`) are defined modulo N , and live on a rectangular lattice

parametrized by j = 1, 2, ...,M and ` = 1, 2, ...,Mτ .

We now consider the sum over ω, which has the form

SN (∆n) =

N−1∑
ω=0

exp

(
2aβf cos

[
2π

N
ω + φ

]
− 2πi∆n

N
ω

)
. (A2)

We wish to write this in the form SN (∆n) ∼ ef(∆n) so that we may combine it with the other
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exponents in Eq. (A1), and we are only interested in the a→ 0 limit. This sum may be written

SN (∆n) = exp (2aβf cosφ) + δN,2Z exp (−2aβf cosφ) cos (π∆n)

+

bN−1
2 c∑

k=1

{
α1(k,N) cos

(
2πk∆n

N

)
+ iα2(k,N) sin

(
2πk∆n

N

)}
, (A3)

where bxc is the floor function, δN,2Z is zero (one) if N is odd (even), and

α1(k,N) = 2 exp

(
2aβf cos

[
2πk

N

]
cosφ

)
cosh

(
2aβf sin

[
2πk

N

]
sinφ

)
,

α2(k,N) = 2 exp

(
2aβf cos

[
2πk

N

]
cosφ

)
sinh

(
2aβf sin

[
2πk

N

]
sinφ

)
. (A4)

In the small a limit, SN (0) approaches a constant while the other values of SN (∆n) vanish linearly

with a.

The function SN (∆n) satisfies SN (∆n+N) = SN (∆n) and SN (−∆n) = SN (∆n)∗, so we take

the ansatz

SN (∆n) = A exp

( M∑
m=1

K(m)
τ cos

(
2πm

N
∆n

)
+ iϕ[∆n]

)
, (A5)

where ϕ[−x] = −ϕ[x]. By taking the logarithm of the magnitude of both sides of this equation,

we obtain a linear system

log |SN (∆n)| = logA+
M∑
m=1

K(m)
τ cos

(
2πm

N
∆n

)
. (A6)

The left-hand side is still a periodic even function of ∆n, so this clearly justifies our ansatz.

Now, if ∆n were a real number, we would need to take M = ∞ to represent the real function

on the left-hand side. However, we only need this equality to match for the finite set of values

∆n = 0, 1, 2, ...,
⌊
N
2

⌋
, so we only need M large enough so that we can solve the linear set of

equations represented in Eq. (A6). Assuming that the linear system is nonsingular (which we have

checked for N = 3, 4, 5), we can take M =
⌊
N
2

⌋
. Additionally, because most of the coefficients

|SN (∆n)| vanish linearly at small a, the coefficients K
(m)
τ will diverge as log a in the limit a→ 0.

We now consider the complex phase of SN (∆n). For determining this, we turn back to Eq. (A2)

and write

SN =

N−1∑
ω=0

exp

(
2aβf cos

[
2π

N
ω + φ

]
− 2πi∆n

N
ω

)

=
∞∑
k=0

N−1∑
ω=0

(2aβf)k

k!
cos

[
2π

N
ω + φ

]k
e−

2πi∆n
N

ω

= N eiϕ[∆n]. (A7)



35

Since we are taking the a→ 0 limit, we determine ϕ[∆n] from the first nonzero term in the power

series in k. This can be obtained using the identity

N−1∑
ω=0

e−
2πi
N
ωκ =

N κ = 0 mod N

0 else
, (A8)

which can be used to simplify the sum:

N−1∑
ω=0

cos

[
2π

N
ω + φ

]k
e−

2πi∆n
N

ω

= 2k
N−1∑
ω=0

(
e2πiω/N+iφ + e−2πiω/N−iφ

)k
e−

2πi∆n
N

ω. (A9)

Using the symmetry properties of ϕ[∆n], it suffices to consider 0 < ∆n < N/2. Then for a given

∆n, we need to go to the k = ∆n term in this sum before we get a nonzero expression after

summing over ω, which is given by expanding the above binomial and evaluating the term

2k
N−1∑
ω=0

e2πikω/N+ikφe−
2πi∆n
N

ω = N2∆neiφ∆n. (A10)

Comparing with Eq. (A7), we find the phase in the small a limit to be

ϕ[∆n] = φ∆n, 0 ≤ ∆n < N/2. (A11)

Together with the relations ϕ[−∆n] = −ϕ[∆n] and ϕ[∆n+N ] = ϕ[∆n], this completely determines

the function ϕ[∆n]. For the cases N = 3, 4, we can write

ϕ(∆n) =
2φ√

3
sin

(
2π

3
∆n

)
, (N = 3),

ϕ(∆n) = φ sin

(
2π

4
∆n

)
, (N = 4). (A12)

For larger values of N , the periodicity and symmetry of ϕ[∆n] will imply that we can write it as

a Fourier series,

ϕ[∆n] = φ

bN−1
2 c∑

m=1

cm sin

(
2πm

N
∆n

)
, (A13)

where the numerical coefficients cm can be calculated directly from matching this expression to

Eq. (A11). For N = 3 and 4, we have c1 = 2√
3

and c1 = 1 respectively, and all other coefficients

vanish.

Combining these results, we may now write the partition function in Eq. (A1) as

Z = C
∑
{nx,τ}

e−S[nx,τ ], (A14)
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with the Euclidean action

−S[nx,τ ] = Kx

∑
x,τ

cos

[
2π

N
(nx,τ − nx+1,τ ) + θ

]
+
∑
x,τ

bN2 c∑
m=0

K(m)
τ cos

[
2πm

N
(nx,τ − nx,τ+1)

]

+ iφ
∑
x,τ

bN−1
2 c∑

m=1

cm sin

[
2πm

N
(nx,τ − nx,τ+1)

]
. (A15)

Here, the quantum model is obtained in the extreme anisotropic limit Kx → 0, K
(m)
τ → ∞. In

particular, if the divergence of the coefficients is K
(m)
τ → ηm log a at small a, we take the limits

such that the combinations Kxe
−K(m)

τ /ηm are finite at a = 0, and the couplings J and f are tuned

to the phase transition.

Due to universality, we do not expect the details of the nearest-neighbor interactions to change

the critical properties of the phase transition provided the interactions have the same symmetry

properties and remain short-ranged. Thus, for all values of N , it should be valid to truncate the

interactions proportional to Kτ to a single cosine potential:

−S[nx,τ ] = Kx

∑
x,τ

cos

[
2π

N
(nx,τ − nx+1,τ ) + θ

]
+Kτ

∑
x,τ

cos

[
2π

N
(nx,τ − nx,τ+1)

]

+ iφ
∑
x,τ

bN−1
2 c∑

m=1

cm sin

[
2πm

N
(nx,τ − nx,τ+1)

]
. (A16)

At this point, the couplings Kx and Kτ are chosen as tuning parameters instead of J and f . We

also assume that the critical region of the phase diagram extend away from the extreme anisotropic

region, so we may take Kx/Kτ ∼ O(1). Since we expect the model to still contain the same phase

structure, this is justified provided the transition remains continuous.

We now turn this into a continuum field theory for a complex scalar. We first simplify our

action (A16) by taking cm>1 = 0, so that we only keep one of the sine terms. For N > 4 this

will ruin the periodicity of the model under φ → φ + 2π, while for the important cases N = 3, 4

it is exact; in all cases, the periodicity of φ will be obscured by our final expressions anyway. We

rewrite the fields as a unit vector, vx,τ =
(
cos
(

2π
N nx,τ

)
, sin

(
2π
N nx,τ

))
,

−S =
∑
r,r′

Kabr,r′varvbr′

Kabr,r′ = Kxδr,r+x̂

(
cos θδab + sin θεab

)
+Kτδr,r+τ̂δ

ab − i φ c1δr,r+τ̂ ε
ab. (A17)

Then, the partition function can be written as

Z = exp

∑
r,r′

Kabr,r′
∂2

∂Xa
r ∂X

b
r′

∏
r

1

N

N−1∑
nr=0

exp

(
X1

r cos

[
2π

N
nr

]
+X2

r sin

[
2π

N
nr

]) ∣∣∣∣∣
Xr=0

, (A18)
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where we have introduced the auxiliary real fields X1,2
r at each lattice site. Subsequently, we work

with the complex field Φr = X1
r + iX2

r . We define the quantities

Gr,r′ = Kx

(
δr,r′+x̂ + δr,r′−x̂

)
cos θ +Kτ (δr,r+τ̂ + δr,r−τ̂ )

+ iKx

(
δr,r′+x̂ − δr,r′−x̂

)
sin θ + φ c1

(
δr,r′+τ̂ − δr,r′−τ̂

)
,

V (Φ,Φ∗) = − log

[
1

N

N−1∑
n=0

exp

(
Φ

2
ωn +

Φ∗

2
ω∗n
)]

, (A19)

where ω = e2πi/N . Then, performing the sum over nr leads to the partition function

Z = exp

2
∑
r,r′

Gr,r′
∂2

∂Φ∗r∂Φr′

 exp

(
−
∑
r

V (Φr,Φ
∗
r)

)∣∣∣∣∣
Φr,Φ∗r=0

. (A20)

At this point, it is noticed that this generates identical diagrams to the theory with interaction

potential V (Φ,Φ∗) and Green’s function Gr,r′ [54]. That is, the partition function is identical to

that obtained using the following action for the field Φ:

SΦ =
∑
r,r′

Φ∗r
(
Gr,r′

)−1
Φr +

∑
r

V (Φr,Φ
∗
r) . (A21)

The original ZN symmetry is still present, taking the form Φ → e2πi/NΦ. We will later expand

the potential for small Φ, Φ†, and for now it is useful to pull out the quadratic piece, U (Φr,Φ
∗
r) ≡

V (Φr,Φ
∗
r) + 1

4 |Φ|
2, so the potential U only contains nonlinearities in Φ. We then have

SΦ =
∑
r,r′

ψ∗r

[(
Gr,r′

)−1 − 1

4
δr,r′

]
Φr +

∑
r

U (Φr,Φ
∗
r)

=

∫
BZ

d2k

(2π)2

(
4−G(k)

4G(k)

)
|Φ(k)|2 +

∑
r

U (Φr,Φ
∗
r) , (A22)

where

G(k) = 2Kx [cos θ cos kx − sin θ sin kx] + 2Kτ cos kτ + 2iφ c1 sin kτ . (A23)

This is a formally exact representation of the lattice field theory in Eq. (A16) except for having

taken cm>1 = 0 for N > 4 (and as promised, the periodicity of our theory under φ → π + 2π is

opaque even in the cases N = 3, 4 where we did not make an approximation).

We now consider the critical regime, where we may expand near k→ 0. For the cases of interest,

we have (
4−G(k)

4G(k)

)
= r + αxkx + κxk

2
x + κτk

2
τ · · · (φ = 0, θ 6= 0), (A24)

(
4−G(k)

4G(k)

)
= r′ + iα′τkτ + κ′xk

2
x + κ′τk

2
τ · · · (φ 6= 0, θ = 0), (A25)
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where the coefficients are complicated but generically nonzero real functions of Kx, Kτ , and either

θ or τ . We may also formally write the potential as its power series in Φ and Φ∗,

U (Φr,Φ
∗
r) = λ

(
Φ3 + Φ∗3

)
+ u|Φ|4 + · · · . (A26)

Going back to position space, kx,τ → i∂x,τ , and in the continuum limit, these become the theories

claimed in Eqs. (1) and (2)

Appendix B: M-loop integrals

In the text we need to compute certain M -loop integrals where M needs to be analytically con-

tinued to an arbitrary complex number. We show how to perform these integrals in this Appendix.

Before computing specific integrals, we outline the main steps. We first perform all frequency

integrals; due to the structure of the propagator, this will combine most of the denominators. We

then combine any remaining denominators, usually by using Feynman parameters. This will leave

us with M integrals over internal momenta of the form

I =

∫ ( M∏
i=1

ddki

(2π)d

)
1

f(k1, k2, ..., kM )γ
, (B1)

where the function f is at most quadratic in the ki, and there may be additional integrations over

Feynman parameters.

We next repeatedly complete the square for all the ki. Focusing on a specific k, the most general

form for f(k) we encounter is

f(k) = F + ηk2 + α (k +K1)2 + β (k +K2)2 (B2)

for some constants (which may depend on the other momenta) F , K1, K2, η, α, δ. After writing

f(k) = F + (η + α+ β)

(
k +

αK1 + βK2

η + α+ β

)2

+
η

η + α+ β
(αK2

1 + βK2
2 ) +

αβ

η + α+ β
(K1 −K2)2, (B3)

we may shift k → k − (αK1 + βK2)/(η + α + β) and scale k → k/
√
η + α+ β. Performing this

procedure for all ki, our integral eventually takes the form

I = J

∫ ( M∏
i=1

ddki

(2π)d

)
1(

k2
1 + k2

2 + · · ·+ k2
M + ∆2

)γ (B4)

for some Jacobian J . Applying the identity∫
ddk

(2π)d
1

(k2 +m2)γ
=

Γ
(
γ − d

2

)
Γ (γ)

Sd

(m2)γ−d/2
(B5)

iteratively, we have

I = JSMd
Γ (γ −Md/2)

Γ (γ)

(
∆2
)Md/2−γ

. (B6)

In this expression, the dependence on M may be analytically continued to arbitrary values.
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FIG. 9. Definition of the integral I
(M)
1 (Ω,K).

1. I
(M)
1

The first integral we encounter is given by the diagram in Figure 9. Explicitly, this is

I
(M)
1 (Ω,K) ≡

∫ ( M∏
i=1

dωid
dki

(2π)d+1

)
1(

−iω1 + k2
1

)
· · ·
(
−iωM + k2

M

)(
i
(

Ω +
∑M

i ωi

)
+
(
K +

∑M
i ki

)2
) .

After performing each ω integral, all of the denominators combine:

I
(M)
1 (Ω,K) =

∫ ( M∏
i=1

ddki

(2π)d

)
1(

iΩ +
∑M

i k2
i + (K +

∑M
i ki)2

) , (B7)

which is of the form Eq (B1). To demonstrate how the steps outlined above look in this simple

case, we now apply Eq. (B3) iteratively:∫ ( M∏
i

ddki
(2π)d

)
1

iΩ + k2
1 + k2

2 + · · ·+ k2
M + (k1 + k2 + · · ·+ kM +K)2

=

∫ ( M∏
i

ddki
(2π)d

)
1

iΩ + 2k2
1 + k2

2 + · · ·+ k2
M + 1

2(k2 + k3 + · · ·+ kM +K)2

=

∫ ( M∏
i

ddki
(2π)d

)
1

iΩ + 2k2
1 + 3

2k
2
2 + · · ·+ k2

M + 1
3(k3 + k4 + · · ·+ kM +K)2

= · · ·

=

∫ ( M∏
i

ddki
(2π)d

)
1

iΩ + 2k2
1 + 3

2k
2
2 + · · ·+ M+1

M k2
M + 1

M+1K
2

=
1

(M + 1)d/2

∫ ( M∏
i

ddki
(2π)d

)
1

iΩ + 1
M+1K

2 +
∑M

i k2
i

. (B8)

Here, we have shifted the integration in each step at will. In the last equality, we rescaled the

momenta giving the Jacobian
[(

1
2

) (
2
3

)
· · ·
(

M
M+1

)]d/2
= (M + 1)−d/2. We may now use Eq. (B6),

obtaining the final result

I
(M)
1 (Ω,K) = SMd

Γ (1−Md/2)

(M + 1)d/2

(
iΩ +

1

M + 1
K2

)Md/2−1

. (B9)
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FIG. 10. Definition of the integral I
(M)
2 (Ω,K).

2. I
(M)
2

The second integral appears in the diagram in Figure 10, which is given by

I
(M)
2 (Ω,K) ≡

∫ ( M∏
i=1

dωid
dki

(2π)d+1

)
1(

−iω1 + k2
1

)
· · ·
(
−iωM + k2

M

) [
i
(

Ω +
∑M

i=2 ωi

)
+
(
K +

∑M
i=2 ki

)2
]

× 1[
i
(

Ω + ω1 +
∑M

i=3 ωi

)
+
(
K + k1 +

∑M
i=3 ki

)2
] . (B10)

After integrating over all of the frequencies, this becomes

I
(M)
2 (Ω,K) ≡

∫ ( M∏
i=1

ddki

(2π)d

)
1[

iΩ +
∑M

i=2 k
2
i +

(
K +

∑M
i=2 ki

)2
]

× 1[
iΩ + k2

1 +
∑M

i=3 k
2
i +

(
K + k1 +

∑M
i=3 ki

)2
] . (B11)

We now integrate over the special momenta k1 and k2, which combines the two denominators:

I
(M)
2 (Ω,K) =

S2
d Γ

(
1− d

2

)2
2d

∫ ( M∏
i=3

ddki

(2π)d

)
1[

iΩ +
∑M

i=3 k
2
i + 1

2

(
K +

∑M
i=3 ki

)2
]2−d . (B12)

The remaining integral is of the form given in Eq. (B1), so we can perform the steps as above,

obtaining

I
(M)
2 (Ω,K) =

SMd

(2M)d/2
Γ
(
1− d

2

)2
Γ (2−Md/2)

Γ (2− d)

[
iΩ +

1

M
K2

]Md/2−2

. (B13)

We can check that I
(2)
2 (Ω,K) = I

(1)
1 (−Ω,−K)2, as can be seen directly from the diagrams.
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FIG. 11. Definition of the integral I
(M)
3 (Ω,K, ν3,K3). Here, Ω and K are the total frequency and momentum

flowing into the diagram from the left.

3. I
(M)
3

The third integral, which is shown in Figure 11, is

I
(M)
3 ≡

∫ ( M∏
i=1

dωid
dki

(2π)d+1

)
1(

−iω1 + k2
1

)
· · ·
(
−iωM + k2

M

)
× 1[

i
(

Ω +
∑M−1

i ωi

)
+
(
K +

∑M−1
i ki

)2
] [
i
(
ν3 +

∑M
i ωi

)
+
(
K3 +

∑M
i ki

)2
] . (B14)

We first integrate over the frequencies,

I
(M)
3 =

∫ ( M∏
i=1

ddki

(2π)d

)
1[

iΩ +
∑M−1

i k2
i +

(
K +

∑M−1
i ki

)2
] [
iν3 +

∑M
i k2

i +
(
K3 +

∑M
i ki

)2
] , (B15)

and then combine the denominators using Feynman parametrization,

I
(M)
3 =

∫ 1

0
du

∫ ( M∏
i=1

ddki

(2π)d

)[
uiΩ + (1− u)iν3 +

M−1∑
i

k2
i + (1− u)k2

M

+ u

(
K +

M−1∑
i

ki

)2

+ (1− u)

(
p3 +

M∑
i

ki

)2 ]−2

. (B16)
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We perform the momentum integral using Eq. (B1), obtaining

I
(M)
3 = SMd Γ (2−Md/2)

∫ 1

0
du(1− u)−d/2 [(M + 1) + u(M − 1)]−d/2

×
[
uiΩ + (1− u)iν3 +

u [(M + 1)− u(M − 1)]

(M + 1) + u(M − 1)
K2

+
(1− u) [1 + u(M − 1)]

(M + 1) + u(M − 1)
K2

3 −
2u(1− u)(M − 1)

(M + 1) + u(M − 1)
K ·K3

]Md/2−2

.(B17)

We have obtained one pole from the Gamma function sitting out front, but another pole (which

we will see is 1/ε) occurs due to the region near u → 1 in the integral; in particular, due to the

factor of (1− u)−d/2.

To extract the divergent behavior, let us temporarily assume M = 2 − δ, a case which is used

in the main text. We write the term in the brackets as[]Md/2−2

=

[
iΩ +

1

M
K2

]Md/2−2

+

{[]Md/2−2

−
[
iΩ +

1

M
K2

]Md/2−2
}

=

[
iΩ +

1

2− δ
K2

]Md/2−2

+

(
ε+ δ − εδ

2

)
log

[ []
iΩ + 1

MK
2

]
+ · · · , (B18)

where we are exploiting the expansion in ε = d−2 and δ = 2−M in the last line. Now, the second

term has an overall coefficient
(
ε+ δ − εδ

2

)
which will cancel the pole in the Gamma function, and

near u→ 1, the argument of the logarithm goes to 1, killing the pole in epsilon, so the latter term

is finite. In the main text, we will also need to evaluate this integral for M = 3− δ, where identical

steps lead to the same cancellation of divergences.

In conclusion, we only need the first term, which only depends on Ω and K. This divergent

part of the integral may be written as

I
(M)
3 = SMd

Γ (2−Md/2)

M

[
iΩ +

1

M
K2

]Md/2−2

F (d,M), (B19)

with the special function defined as

F (d,M) ≡M
∫ 1

0
du(1− u)−d/2 [(M + 1) + u(M − 1)]−d/2

=
1

2− d
+ freg(d,M). (B20)

Here, freg(d,M) is regular for d ≤ 2, M > 1. Some explicit values we will use are

freg(2, 2) =
1

2
log

(
16

3

)
,

freg(2, 3) = log 3. (B21)
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FIG. 12. Definition of the integral I
(M)
4 (Ω1,K1, ν3,K3), where (Ω1,K1) enters from the top left and (Ω3,K3)

exits from the top right.

4. I
(M)
4

This integral, shown in Figure 12, is

I
(M)
4 = ≡

∫ ( M∏
i=1

dωid
dki

(2π)d+1

)
1(

−iω1 + k2
1

)
· · ·
(
−iωM + k2

M

)
× 1[

i
(
ν1 +

∑M
i ωi

)
+
(
K1 +

∑M
i ki

)2
] [
i
(
ν3 +

∑M
i ωi

)
+
(
K3 +

∑M
i ki

)2
] . (B22)

After the frequency integrations, we end up with two denominators. After combining them with

Feynman parameters and performing the momentum integrals, we obtain

I
(M)
4 (Ω,K) =

SMd

(M + 1)d/2
Γ (2−Md/2) (B23)

×
∫ 1

0
du

[
u

(
iν1 +

K2
1

M + 1

)
+ (1− u)

(
iν3 +

K2
3

M + 1

)
+
Mu(1− u)

(M + 1)
(K1 −K3)2

]Md/2−2

.

We will only need this integral near M = 2 where the remaining integral is finite, and the divergence

is entirely due to the gamma function out front. Setting M = 2 − δ and d = 2 − ε, the divergent

part of the integral close to ε = δ = 0 is

I
(2−δ)
4 =

S2−δ
d

(3− δ)1−ε/2
1

(ε+ δ − εδ/2)
. (B24)
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Appendix C: Renormalization constants for the ZN dilute Bose gas

In the main text, we outlined our method for computing the renormalization constants for the

ZN DBG. In our renormalization convention, we found it useful to define the auxiliary quantities

ε1(δ) = − 2δ

1− δ
,

ε2(δ) = − δ

1− δ/2
,

ε3(δ) = − 2δ

3− δ
, (C1)

as well as the functions

α1(ε, δ) =
4

Γ(3− δ)(2− δ)1−ε/2 ,

α2(ε, δ) =
2Γ(ε/2)

Γ(ε)Γ(1− δ)(4− 2δ)1−ε/2 ,

α3(ε, δ) =
18

Γ(4− δ)(3− δ)1−ε/2 ,

α4(ε, δ) =
3Γ(ε/2)2

2Γ(2− δ)(6− 2δ)1−ε/2Γ(ε)2
,

α5(ε, δ) =
6

Γ(3− δ)(3− δ)1−ε/2 . (C2)

All of these functions have the simple limit αi(0, 0) = 1.

In terms of these definitions, the explicit expressions for the renormalization constants are

Zg = 1 +
g

ε
+
g2

ε2
+

α1(ε1(δ), δ)λ2

8g (δ + ε/2− εδ/2)
− 3(1− δ/4)(1− δ/3)α1(ε1(δ), δ)λ2

2δ(ε− ε1(δ))

+
α2(ε2(δ), δ)λ2

4δ(ε− ε2(δ))
+

2λ2

δ(ε− ε2(δ))Γ(3− δ)
+
λ2α(ε1(δ), δ)

4εδ

− λ2

δ + ε− εδ/2

[
α2(ε2, δ)

8
(Γ(ε2/2)− 2/ε2) +

4

Γ(3− δ)(3− δ)1−ε2/2

+
2freg(ε2, 2− δ)

Γ(3− δ)

]
(C3)

Zλ = 1 +
6

ε
g(1− δ/4)(1− δ/3) +

21g2

ε2
(1− δ/4)(1− δ/3)(1− δ/2 + δ2/14)

− 6g2 log(4/3)

ε
(1− δ/4)(1− δ/3)(1− δ/2) +

3λ2

8εy1
, (C4)
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Z = 1 +
λ2α3(ε2, δ)

18y2
− gλ2 2α3(ε2, δ)

3δ(ε− ε2)
(1− δ/4)(1− δ/3) + gλ2 α4(ε3, δ)

3δ(ε− ε3)

+ gλ2α3(0, δ)(1− δ/3)

3δ(ε− ε3)
− gλ2α4(ε3, δ)[Γreg(ε3)− 1/ε3]

3y3

− gλ2α3(0, δ)(1− δ/3)freg(ε3, 3− δ)
3y3

, (C5)

Zτ = 1− λ2α3(ε2, δ)

54y2(1− δ/3)
+ gλ2 2α3(ε2, δ)

9δ(ε− ε2)
(1− δ/4)− gλ2 α4(ε3, δ)

9δ(ε− ε3)(1− δ/3)

− gλ2 α3(0, δ)

9δ(ε− ε3)
+ gλ2α4(ε3, δ)[Γreg(ε3)− 1/ε3]

9y3(1− δ/3)
+ gλ2α3(0, δ)freg(ε3, 3− δ)

9y3
, (C6)

Z2 = 1− λ2α5(ε2, δ)

6y2
. (C7)

Plugging these definitions into Eqs. (66)–(69), one can check that the resulting renormalized 1PI

vertices are finite for arbitrary external frequency and momentum. One may also check that

the δ → 0 limit of these reduce to simple poles in ε with no finite part, which was our defined

renormalization scheme.

Appendix D: The self-dual phase boundary in the chiral clock model

A second example of a trivial–topological phase transition can be found in the three-state chiral

clock for f = J and φ = θ < π/6. The model is self-dual along this line, which culminates in a

tricritical Lifshitz point at φ = θ = π/6. Our first line of investigation is to look at how the gap

closes as a function of the detuning from criticality. Figure 13(a) demonstrates that the scaling

expected from Eq. (89) is reasonably well-satisfied for θ ≤ π/12; however, for larger θ (and φ), this

relation clearly breaks down. The marked distinction between these two regimes can be understood

based on the onset of Lifshitz oscillations [55] as one approaches the tricritical point.

Along the self-dual line, the FSS diagrams (Figs. 13(c) and 13(d)) bring to light an interesting

feature: the mass gap oscillates as the system size is varied, with a frequency that increases with

θ up to φ = θ = π/6, beyond which the oscillation amplitudes die out as the system transitions

to the incommensurate phase. It is perhaps worth mentioning that oscillatory energy gaps have

been known to occur in other three-state [8] and four-state [56] systems as well. Such features were

carefully analyzed [57] for the one-dimensional XY model in a transverse field, where they can be

attributed to analytically demonstrable level crossings. In the CCM, however, the same is owed to

different origins. Similar oscillations were observed in the EE of this model by Zhuang et al. [12]

and studying the shapes of the EE curves, they proposed the empirical relation

L = φ−3.75 + 1.16, (D1)
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FIG. 13. Scaling of the gap with the parameter f along the self-dual line f = J , φ = θ for L = 100. For

small θ, the gap seemingly closes as a power law while beyond π/12, such a relation no longer holds. (b)

The energy gap as a function of system size along the self-dual line φ = θ ≤ π/12 at f = fc = 0.5. The

length scale of the Lifshitz oscillations for the chiral angles in this figure is greater than 100 sites. (c–d) The

energy gap oscillates with the system size along the self-dual line φ = θ > π/12 at f = fc = 0.5. [Inset]:

The same, on a logarithmic scale. The minima of the Lifshitz oscillations occur at nonzero ∆ i.e. the gap,

although small, does not close.

for the length scale of the oscillations, L. Above a certain point, φ = θ > 0.29 to be precise, L
becomes comparable to (or smaller than) our system size L = 100. Hence, despite an immediate

onset on tuning even slightly away from φ = θ = 0, it is only above θ = π/12 (amongst the

discrete values scanned) that the oscillations become manifestly observable. Since this length scale

corresponds to that associated with the incommensurate order [12], it is reasonable to believe that

the transition between the ordered and disordered phases proceeds through the incommensurate

phase as previously suggested [9, 17]. This constitutes evidence to support that there should

indeed be a narrow sliver of an incommensurate phase extending all the way to φ = θ = 0 along

the f = J = 0.5 line in the phase diagram.
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Appendix E: Analysis as λ→ 0

This appendix will review the arguments of Ref. 7 for the presence of an intermediate incom-

mensurate phase.

In our formalism, these arguments are most easily presented using the Bose gas action SΨ in

Eq. (2). We begin with the case λ = 0. Then, SΨ describes a z = 2 quantum phase transition

at T = 0 with decreasing s, associated with a nonanalyticity in the boson density [31]. Let

the transition occur at s = sc. Then, at length scales larger than the mean-particle spacing

ξ ∼ (sc − s)−1/2, we have a Luttinger liquid description of this dilute Bose gas [35]. Such a

Luttinger liquid is described by the quantum fields θ and φ which obey the commutation relation

(we use the notation of Ref. 31)

[φ(x), θ(y)] = i
π

2
sgn(x− y) . (E1)

Note that these variables bear no relation to those in the body of the paper. The boson field is

Ψ ∼ eiθ (E2)

and the action is

Sθ =
K

2πv

∫
dxdτ

[
(∂τθ)

2 + v2(∂xθ)
2
]
, (E3)

where v is the sound velocity, and K is the dimensionless Luttinger parameter. The main observa-

tion we shall need is that the Luttinger parameter K → 1 in the s↗ sc limit of the z = 2 quantum

phase transition; the dilute Bose gas in this limit is a ‘Tonks gas’, and is described as free fermions.

Now consider turning on a nonzero λ in the Luttinger liquid regime. Then, the action Sθ implies

the scaling dimension

dim
[
ΨN
]

=
N2

4K
. (E4)

So λ is a relevant perturbation to the Luttinger liquid only if N <
√

8K. For K = 1 and N = 3,

λ is irrelevant, and so the Luttinger liquid phase (i.e., incommensurate phase) is stable.

The weakness in the above argument is that it applies only to the Luttinger liquid phase present

for s < sc, and not to its z = 2 critical endpoint at s = sc. To examine the stability of the critical

endpoint, we have to study the regime of length scales smaller than ξ ∼ (sc − s)−1/2, where the

Luttinger liquid description is not valid [35]. In other words, there is an important issue in the

order of limits: the arguments above are for λ→ 0 before s→ sc, but these limits should be taken

in the opposite order.
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