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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract

Life cycle assessment (LCA) carries significant uncertainties and imprecision due to a number of factors, including the framework’s linearity
assumptions and the wide use of aggregate unit processes in practice. In this work, we exploit the unit manufacturing process (UMP) information
model (ASTM E3012-16) to enable parametric environmental analysis of manufacturing systems without disrupting the traditional LCA workflow.
We present a formal mapping of an extension of the ASTM E3012 data model and the ecoSpold2 data model. We then demonstrate the utility
of this mapping by (1) generating life cycle inventory (LCI) data from an example UMP model representing a vertical milling process and (2)
linking the results with an existing LCI database. To show value, we use the Brightway2 framework to process the LCI data and complete a LCA.
We conclude by comparing LCA results generated from the parametric milling UMP model against LCA results of a similar milling unit process
model from a commercial database.
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1. Introduction

Current life cycle assessment (LCA) practices carry signif-
icant uncertainty due to a lack of data and reusable parametric
models as well as the presence of a number of critically flawed
assumptions (e.g., models are linear to single inputs and are
transferable across similar geographical locations) [20]. Life
cycle inventory (LCI) database (“pre-computed”) models con-
tain methods, e.g., the pedigree matrix, to deal with such un-
certainties, yet the debate on their efficacy continues (see re-
cent editorial from Heijungs et al. [10]). As a result, practition-
ers seeking more precise, scalable, and parametric LCI mod-
els spend significant effort in constructing their own models
from scratch [7]. Without a standard model representation, it
has become increasingly more difficult to properly exchange,
reproduce, and explain LCA workflows. Leading researchers
and practitioners have recognized these challenges through a

∗ Corresponding author. Tel.: +1-301-975-3528 ; fax: +1-301-975-9749.
E-mail address: wzb@nist.gov (William Z. Bernstein).

recent LCA capability roadmap, stating that three of the most
critical opportunities are describing model contents, describing
model structure, and collaborative use of models [15]. In the
LCA community, some have attempted to improve the trans-
parency of their work by including supplemental material de-
scribing their models [5, 21]. However, manual reconstruction
is still required to replicate these studies.

In response to these challenges, this paper leverages an ex-
isting standard for representing parametric manufacturing pro-
cess models, i.e., unit manufacturing process (UMP) models as
defined by ASTM E3012-16 [1], and links them to traditional
LCA workflows. By generating LCI data from UMP models,
we demonstrate a means for storing and exchanging paramet-
ric LCI models for manufacturing processes. Manufacturing
processes present a key opportunity since existing manufac-
turing LCI models available in commercial databases do not
commonly feature process-level parametric relationships to en-
able decision making in traditional manufacturing workflows.
Instead, models rely on high-level aggregated assumptions that
are not scalable to low-level manufacturing operations, e.g., dis-
tinguishing differences in milling slots or pockets of the same

2212-8271 2019 Bernstein et al. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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volume. For example, the ecoinvent database1 scales all ma-
chining operations based on the weight of product produced
or operation conducted. In other words, removing material in
a complex manner to create a 1 kg sphere and cutting simpler
shapes to create a 1 kg cube would share identical environmen-
tal impacts. Such an assumption is fundamentally flawed and
causes significant uncertainty.

Motivated by such challenges, others have developed frame-
works and tools to develop, curate, and deploy parametric pro-
cess models to achieve more sustainable manufacturing [8, 9,
11, 13, 14, 19]. However, these solutions do not follow a strict
standards-based approach and are hence difficult to integrate
into traditional LCA workflows. Our approach is complemen-
tary to these efforts yet maintains a strong focus on standards
throughout its design and implementation.

Both E3012-16 and ISO14048 [12] contain data represen-
tations for representing environmental impacts of manufac-
turing processes2. However, these representations are incom-
patible due to their differing purposes. E3012-16 is designed
to communicate and formally characterize the performance of
manufacturing processes through a common information model
while the ecoSpold2 format was created to curate LCI datasets
for LCAs in databases and conforms to ISO 14048, which
defines requirements for LCA data formats [12]. Providing a
model transformation from E3012 into LCA workflows allows
for more accurate manufacturing process models to be consid-
ered when conducting an LCA. This would allow manufactur-
ers to reuse their production models in LCAs and would allow
LCA practitioners to better understand how a change at the pro-
duction phase could ripple throughout the entire product lifecy-
cle. This paper explores this model transformation by mapping
an E3012 model3 into ecoSpold2 and conducting an LCA using
the Brightway2 framework [17]. Note that the E3012 model en-
codes UseBounds for each model input and output, facilitating
record-keeping related to uncertainty quantification [2].

In this paper, we present (1) the development of a formal
mapping between the UMP and ecoSpold2 information models,
(2) the generation of LCI data demonstrated through a milling
case study, and (3) guidance for the revision of E3012 to facil-
itate its utility in LCA workflows. We view this work as criti-
cal in (a) forming a bridge between previous efforts of curating
parametric manufacturing models, such as the Cooperative Ef-
fort on Process Emissions in Manufacturing (CO2PE!) [7] and
(b) presenting a cohesive vision for a UMP repository [3].

2. Methods and tools deployed

The main goal of this work is to develop a pipeline that ports
data from the UMP representation into the traditional LCA
workflow. Here, we assume that users are implementing the
revised E3012 information model [2] to communicate and ex-
change UMP models. We also assume that LCA software in our

1 We considered ecoinvent 3.4 (see: https://www.ecoinvent.org/)
2 The LCA data format used in this paper is ecoSpold2
3 We use the schema extension proposed in Bernstein et al.[2]. The extension

has been proposed as a E3012 revision and is under ballot in ASTM E60.13.

Fig. 1. Pipeline realized by mapping E3012 to ecoSpold2. Each labeled step
(A-D) signifies a stage of data transformation or manipulation (A-D).

workflow accepts the ecoSpold2 information models as inputs.
Based on prior experience, we also assume that user input is
necessary due to the required domain expertise of selecting LCI
models from traditional databases. Requirements for achieving
the mapping between the UMP and ecoSpold2 formats in an
open-source manner, include (1) an open tool that accepts and
runs UMP models, (2) open LCA software that ports to LCI
models, and (3) an interactive framework that prompts practi-
tioners for domain expertise when needed.

Figure 1 presents the data pipeline for generating LCA re-
sults from parametric models curated as UMP models. To be-
gin, a manufacturer or modeler contributes a parametric model
representing a manufacturing process. In our work, ASTM
E3012 is used to represent domain-specific data about the
physical inputs, outputs, and resources, as well as mathemat-
ically defined transformations and product and process infor-
mation [1]. We leverage the UMP Builder [2] (labeled as A in
Fig. 1) to help manufacturers validate their conformance to the
standard, share and reuse their UMP models, as well as inter-
face with modeling, simulation, and analysis tools.

From the UMP model, we extract the structure and content to
obtain operational code by using the MOdel Composition and
Analysis (MOCA) tool [16] (B in Fig. 1), outputting a Jupyter
notebook4. This code contains control parameters set by the
manufacturer and variable constraints that enable bounded sim-
ulations. The output code from MOCA can also be used for
optimization, which could help improve a system with respect
to a given metric of interest, e.g., cost or energy consumption.
Executing the simulation generates a text file that stores all the
values involved in each of the instances, e.g., control parame-
ters, intermediate variables and metrics of interest.

Using both the parametric model and the simulation results,
we perform a user-assisted mapping (C in Fig. 1) that yields
an ecoSpold2 file compatible with Brightway2 (D in Fig. 1),
an LCA framework. This file contains not only data describing
the physical input and output of the manufacturing process in
question but also links to other entries that provide inventory
data of processes involved. This improves precision of results
by covering the complete life cycle of the product. The gen-
erated ecoSpold2 file is then added to a dataset to be used by

4 Used for evaluating the UMP models (see: http://jupyter.org/)
2
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Fig. 2. Necessary fields for a generated ecoSpold file. Color of each field clas-
sifies how information is ported from UMP models in our implementation.

Brightway2 for performing LCA, assuming that the ecoSpold2
file has been appropriately generated.

To be clear, Fig. 1-[A, B, and D] represent steps that are gen-
erally applicable to other scenarios. The UMP Builder [2], can
be used to generate models conforming to the revised E3012
schema. MOCA [16] can be used to graphically develop oper-
ational models using a domain-specific modeling language and
Brightway2 [17] can be used to conduct LCAs. Our mapping
(Fig. 1-C) facilitates the correlation between all three tools.

3. Mapping between the E3012 and ecoSpold2 data formats

Even though there are similarities between the E3012 and
ecoSpold2 formats, we identified major differences that in-
volved necessary steps for validation to successfully append the
LCI database, e.g., exchangeIds and unitIds. Figure 2 classifies
the mandatory fields for an ecoSpold2 file to be accepted by
Brightway2 based on whether the information is available from
the UMP model or additional support is required.

With the data provided by the UMP model and the simula-
tions from MOCA, some of the required fields to generate valid
ecoSpold2 files can be directly populated (Fig. 2, in green).
However, in other cases, the system prompts the user to select
an equivalent entry in the database (Fig. 2, in blue). For exam-
ple, if the UMP model includes aluminum scrap as an output,
the user must specify the appropriate option available in the LCI
database, e.g., “treatment of aluminium scrap, post-consumer,
prepared for recycling, at remelter” or “treatment of aluminium
scrap, new, at remelter” as in ecoinvent. Linking inappropriate
activities can significantly impact the LCA results. Data types
shown in orange in Fig. 2 signify ecoSpold2-specific informa-
tion not currently represented in E3012:

• technology, capturing characterizations of the technolog-
ical domain of the activity, e.g., the relative modernity
and significant peculiarities of the domain
• macroEconomicScenario, allowing for alternative

macro-economic activities to be modelled and captured

• dataGeneratorAndPublication, containing information
about who collected, compiled, or published the data,
which may be the same person as under dataEntryBy
• inputOutputGroup, providing more details by classify-

ing them into categories, such as materials/fuels, electric-
ity/heat, services, or activities from the technosphere

For these instances, we added dummy data to meet ecoSpold2
requirements. These additions do not affect the LCA results.

To accomplish the mapping, the Mapping Module (MM)
first extracts the input and output names and symbols (captured
as MathML equations) from the E3012 model. For each input
and output, a corresponding exchange in ecoSpold2 will be cre-
ated. The MM uses the symbols to extract the input and output
quantities computed by the MOCA simulation and maps them
to the amount of the respective exchange.

To perform a LCA, each exchange needs to be linked to an
activity. Inputs of the UMP model are linked to exchanges that
are produced by an activity while outputs of the UMP model
are linked to exchanges consumed by an activity. The exchange
representing the reference product, i.e., the resulting product of
the manufacturing process, does not need to be linked. Since
the database could contain thousands of datasets, identifying
the appropriate activity to link is user-assisted. For an exchange
used as an input, the MM will provide activities that contain a
“reference product” exchange matching with the name of the
E3012 input. For an exchange used as an output (excluding
the reference product), the MM is going to provide activities
that consume the exchange as input from the technosphere, and
match with the name of the E3012 output. The user must choose
the appropriate activity from the prompted list.

Since E3012 does not currently handle a way to specify a
reference product, the user is prompted to specify which out-
put relates to the product generated. The reference product ex-
change is treated differently since it needs not to be linked to an
existing activity. Once the appropriate activity has been chosen,
the MM generates a IntermediateExchangeId and includes a ac-
tivityLinkId, which represents the id of the entry to be linked.

For the rest of the fields (Fig. 2, in orange), the user manually
adds information during mapping. For example, the geography
field can be instantiated by finding the appropriate geograph-
ical location in the meta-data files, e.g., the id corresponding
to United States. A similar approach can be used for timePe-
riod, macroEconomicScenario, dataGeneratorAndPublication,
and fileAttributes. Some fields such as technology and modelin-
gAndValidation are required in the ecoSpold2 schema. How-
ever, Brightway2 does not use their content. In other words,
dummy values added for these fields do not affect LCA results.

In our implementation, we assume that all physical inputs
and outputs of manufacturing processes are received from or
generated to the technosphere, representing activities generated
by human-driven economic processes. In future work, we plan
to enable mapping to activities and flows to and from the eco-
sphere, representing flows that directly interface with ecologi-
cal systems (e.g., waste water into a river from a coal burning
plant). However, this requires more detailed and structured in-
formation about the inputs and outputs in the E3012 data model.

3



	 William Z. Bernstein  et al. / Procedia CIRP 80 (2019) 364–369� 367
Bernstein et. al / Procedia CIRP 00 (2018) 000–000 3

Automatic User-assisted Fully manual

activityDescription

activity

geography

technology
timePeriod

macroEconomicScenario

flowData intermediateExchange
elementaryExchange

administrativeInformation
dataEntryBy

dataGeneratorAndPublication
fileAttribtues

inputOutputGroup
comment
unitName

activityLinkId
unitId

intermediateExchangeId
elementaryExchangeId

id
amount

modellingAndValidation

Fig. 2. Necessary fields for a generated ecoSpold file. Color of each field clas-
sifies how information is ported from UMP models in our implementation.

Brightway2 for performing LCA, assuming that the ecoSpold2
file has been appropriately generated.

To be clear, Fig. 1-[A, B, and D] represent steps that are gen-
erally applicable to other scenarios. The UMP Builder [2], can
be used to generate models conforming to the revised E3012
schema. MOCA [16] can be used to graphically develop oper-
ational models using a domain-specific modeling language and
Brightway2 [17] can be used to conduct LCAs. Our mapping
(Fig. 1-C) facilitates the correlation between all three tools.

3. Mapping between the E3012 and ecoSpold2 data formats

Even though there are similarities between the E3012 and
ecoSpold2 formats, we identified major differences that in-
volved necessary steps for validation to successfully append the
LCI database, e.g., exchangeIds and unitIds. Figure 2 classifies
the mandatory fields for an ecoSpold2 file to be accepted by
Brightway2 based on whether the information is available from
the UMP model or additional support is required.

With the data provided by the UMP model and the simula-
tions from MOCA, some of the required fields to generate valid
ecoSpold2 files can be directly populated (Fig. 2, in green).
However, in other cases, the system prompts the user to select
an equivalent entry in the database (Fig. 2, in blue). For exam-
ple, if the UMP model includes aluminum scrap as an output,
the user must specify the appropriate option available in the LCI
database, e.g., “treatment of aluminium scrap, post-consumer,
prepared for recycling, at remelter” or “treatment of aluminium
scrap, new, at remelter” as in ecoinvent. Linking inappropriate
activities can significantly impact the LCA results. Data types
shown in orange in Fig. 2 signify ecoSpold2-specific informa-
tion not currently represented in E3012:

• technology, capturing characterizations of the technolog-
ical domain of the activity, e.g., the relative modernity
and significant peculiarities of the domain
• macroEconomicScenario, allowing for alternative

macro-economic activities to be modelled and captured

• dataGeneratorAndPublication, containing information
about who collected, compiled, or published the data,
which may be the same person as under dataEntryBy
• inputOutputGroup, providing more details by classify-

ing them into categories, such as materials/fuels, electric-
ity/heat, services, or activities from the technosphere

For these instances, we added dummy data to meet ecoSpold2
requirements. These additions do not affect the LCA results.

To accomplish the mapping, the Mapping Module (MM)
first extracts the input and output names and symbols (captured
as MathML equations) from the E3012 model. For each input
and output, a corresponding exchange in ecoSpold2 will be cre-
ated. The MM uses the symbols to extract the input and output
quantities computed by the MOCA simulation and maps them
to the amount of the respective exchange.

To perform a LCA, each exchange needs to be linked to an
activity. Inputs of the UMP model are linked to exchanges that
are produced by an activity while outputs of the UMP model
are linked to exchanges consumed by an activity. The exchange
representing the reference product, i.e., the resulting product of
the manufacturing process, does not need to be linked. Since
the database could contain thousands of datasets, identifying
the appropriate activity to link is user-assisted. For an exchange
used as an input, the MM will provide activities that contain a
“reference product” exchange matching with the name of the
E3012 input. For an exchange used as an output (excluding
the reference product), the MM is going to provide activities
that consume the exchange as input from the technosphere, and
match with the name of the E3012 output. The user must choose
the appropriate activity from the prompted list.

Since E3012 does not currently handle a way to specify a
reference product, the user is prompted to specify which out-
put relates to the product generated. The reference product ex-
change is treated differently since it needs not to be linked to an
existing activity. Once the appropriate activity has been chosen,
the MM generates a IntermediateExchangeId and includes a ac-
tivityLinkId, which represents the id of the entry to be linked.

For the rest of the fields (Fig. 2, in orange), the user manually
adds information during mapping. For example, the geography
field can be instantiated by finding the appropriate geograph-
ical location in the meta-data files, e.g., the id corresponding
to United States. A similar approach can be used for timePe-
riod, macroEconomicScenario, dataGeneratorAndPublication,
and fileAttributes. Some fields such as technology and modelin-
gAndValidation are required in the ecoSpold2 schema. How-
ever, Brightway2 does not use their content. In other words,
dummy values added for these fields do not affect LCA results.

In our implementation, we assume that all physical inputs
and outputs of manufacturing processes are received from or
generated to the technosphere, representing activities generated
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Fig. 3. Demonstration of the UMP-ecoSpold2 mapping through a milling case study.

4. Case study: integrating a milling UMP with ecoinvent

Figure 3 describes the data used and generated to demon-
strate our UMP-ecoSpold2 mapping methodology. We borrow
all assumptions and modeling procedures, including functional
unit, scope, and system boundaries, from the milling example
(code: MR3) reported by the Unit Process Life Cycle Inventory
(UPLCI) team [18]. We built the model on the UMP Builder5

and consulted the MR3 document as needed. Through the UMP
Builder, an eXtensible Markup Language (XML) document
was generated formally describing the parametric milling UMP
model. This model consists of 25 transformation equations, 3
physical inputs, 3 physical outputs, 2 elements describing the
manufacturing resources referenced in MR3, and a total of 52
entities describing product and process information. For every
variable used in the transformation equations, an accompany-
ing definition of its type, bound, and unit are captured under
product and process information.

The semantic information describing each variable, equa-
tion, and the relationships between them is interpreted with
the MOCA tool to generate operational code in the form of a
Jupyter notebook. We used the MOCA-generated code to eval-
uate the UMP milling model. This case study presented the
energy, waste, and time consumed for milling a straight cut
of 90 000 mm3 of prismatic aluminum (Al) workpiece. For
the case study, the control parameters, depth of cut, spindle
speed, and feed per tooth, were set to 3 mm, 255 rev/min,
and 0.381 mm/tooth, respectively. We recognize that these set-
tings are conservative; however, we aimed to conform exactly
to the UPLCI model. All computed values were compared to
the case study section of the UPLCI MR3 document to validate
our milling model was created and evaluated appropriately.

To generate an ecoSpold2 file corresponding to the UMP
model, the MM extracts semantic information from the milling
XML document, including units, symbols, and names. The MM
also obtains numerical data from the text file generated from
MOCA, including values associated with metrics of interest
(e.g., waste generated). Here, each representing metrics of inter-

5 Public version of UMP Builder (see: https://umpbuilder.nist.gov/)

est, the computed energy consumption, cycle time, aluminum
waste generated, and CO2 emissions are 0.334 kWh, 90.3 s,
0.244 kg, and 0.196 kg CO2, respectively. Through the use of
the semantic data, the MM queries onto the ecoinvent database,
a commercial LCI database, to link entities of the milling UMP,
e.g., aluminum 6061, cutting fluid, and electricity, to database
activities that either generates the UMP input or consumes the
UMP outputs. This is necessary to perform a complete LCA. In
the generated “MillingExample.spold” file, the functional unit
of a single cut is set to a dimension of 90,000 mm3 (or 0.24489
kg of Al). Energy consumed, waste generated, and cycle time
were scaled based on the size of the cut. We rely on Bright-
way2 to evaluate the milling process’s environmental impacts
using the Tool for Reduction and Assessment of Chemicals and
other Environmental Impacts (TRACI) methods6. After verify-
ing that the milling UMP can be used to generate LCA data, we
conducted an initial validation study to test whether our model
is producing realistic, feasible values as compared with com-
mercial models present in the ecoinvent 3.4 database. In this
use case, we compare the values generated by our milling UMP
against aluminum milling, small parts RoW, which is an entry
in the ecoinvent database, since the metadata description within
the ecoinvent file seemed to match the intent of the UPLCI MR3
milling descriptions. While comparing to the dataset aluminum
milling, small parts, there were some important considerations.
The ecoinvent database selects the weight of the material cut
from the part as a functional unit, making the initial shape of
the part a fundamental consideration in the equation. In our test
case, we use a single horizontal cut instead, allowing us to ob-
tain a more precise and scalable measure.

To compare results between the TRACI impacts of the
milling case study with the existing database (DB) entry, we
conducted nine Monte Carlo (MC) simulations (50 000 runs
each) with the Brightway2 framework using the uncertainty
properties from the ecoSpold2 file of the DB entry. The main
idea was to perturb each individual exchange of the aluminum,
small parts RoW based on their individual uncertainty charac-
teristics, fit a probability density function (PDF) to the results

6 TRACI was developed by the Environmental Protection Agency (EPA). See
https://tinyurl.com/yde3bjno
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Fig. 4. Results of a Monte Carlo simulation (50,000 runs) of aluminum, small parts RoW with comparison of results to our Milling UMP (blue dotted line). The
green dotted line signifies results of an LCA conducted with only the nominal values available in the DB entry.

Table 1. Our test case compared against similar activity in ecoinvent
*Refers to values from database entry, aluminum milling, small parts RoW

TRACI category (units) DB* CDFDB* UMP CDFUMP

acidification (mol H+ eq) 1.28 0.162 0.486 6.32e-7
ecotoxicity (CTUe) 1.68 0.132 0.990 8.53e-5
eutrophication (kg N eq) 1.10e-3 0.213 3.71e-4 2.22e-4
global warming (kg CO2 eq) 4.29 0.214 1.49 0.0
ozone dep. (kg CFC-11 eq) 1.72e-7 0.251 1.83e-7 0.292
smog (kg O3 eq) 9.53e-3 0.121 3.72e-3 5.41e-10
carcinogenics (CTUh) 9.47e-3 6.30e-2 4.91e-3 0.0
non-carcinogenics (CTUh) 14.8 3.39e-4 12.4 3.15e-14
resp. effects (kg PM10 eq) 7.68e-3 0.143 2.67e-3 0.0

based on the TRACI categories, and observe if our test case data
falls within the bounds of the PDF. According to the DB en-
try, each exchange is modeled as a lognormal random variable.
Here, we assume that the MC results can be approximated as a
lognormal distribution. Though difficult to prove, it has been
observed that linear combinations of lognomal random vari-
ables effectively approximate to a lognormal distribution [6].

Figure 4 summarizes the result of the nine MC simulation
runs for each TRACI impact category. The PDFs fitted to the
simulation data, the values of the milling UMP test case, and
the values of the DB entry are shown in red, blue, and green,
respectively. The values from the UMP results are consider-
ably lower than those for the database entry, except for results
for ozone depletion. To understand the degree of their differ-
ence, we evaluated the cumulative distribution function (CDF)
at each value, as shown in Table 1. As seen in the CDF evalua-
tion for the UMP values, with the exception of the ozone deple-
tion result, the UMP results fall outside the uncertainty bounds
of the database entry. In other words, the CDF evaluations are
practically zero. In three cases, i.e., global warming, carcino-
genics, and respiratory effects, the evaluation of the CDF was
zero (shown in bold). Interestingly, the discrete values from the

database entry seem to represent a rather liberal estimation of
the results, falling to the left tail of the PDF.

Here, we offer an explanation for the differences observed.
The complexity of both models are considerably different. The
UMP milling example carries 6 exchanges while the database
entry has 27 exchanges. If we were to include, for example, im-
pacts associated with compressed air and other auxiliary man-
ufacturing resources (similar to the ecoinvent entry), we would
expect to obtain closer values. However, it is not clear which
of the 9 resulting values (i.e., which impact category) would
be most affected. These issues get to the center of the differ-
ence between a parametric approach and using “pre-computed”
LCI data. The “pre-computed” data is heavily aggregated and
incorporates effects from industry-wide exchanges regardless
of whether the process utilizes every one. This is evident in the
low CDF values of the database entry itself against the MC sim-
ulations. However, we recognize that parametric models built
using the E3012 data model require more rigorous testing and
validation than what was done for the milling UMP example.
Characterizing the validation requirements of such UMP mod-
els to be as trusted as “pre-computed” LCI models is a neces-
sary step to push this work forward.

5. Future directions and closing remarks

In this paper, we discussed the mapping of the E3012 and
ecoSpold2 data models and demonstrated its utility in a tradi-
tional LCA workflow using Brightway2. Through this exercise,
we informed the on-going revision of the E3012 standard. For
example, we included units and bound equations for Input and
Output entities in the UMP to ease the integration with LCA
tools. We also identified an opportunity to integrate a defini-
tive “functional unit” and clearer classifications of waste into
the UMP information model. However, these concepts require
additional research to be addressed properly.
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Our work is not without its limitations. Our pipeline relies
on significant human input for some of the mapping, as dis-
cussed in Section 3. Selecting appropriate database entries is an
expert-driven exercise and, hence, is prone to human error. An-
other limitation is that we do not yet integrate the design of ex-
periments simulations from MOCA with Brightway2. In other
words, we do not fully leverage the rich information describing
the control variables to simulate LCA data. If such integration
was realized, relating LCA results to product design decisions
would be feasible. Additionally, we assume in this work that
a single UMP model maps in a one-to-one fashion to a sin-
gle LCI database entry. We do not address pooling information
from multiple UMP sources to a single LCI process.

Other limitations of this work relate to the E3012 informa-
tion model and support around it. As of now, we have yet to
demonstrate validation protocols for UMP models. To integrate
information from several UMP models, consistency in model
topography is critical, including considerations related to nam-
ing conventions, units, and shared content (e.g., equations). De-
veloping a “master data” context similar to how ecoinvent han-
dles this issue could be a reasonable research direction.

To conclude, we plan to relate the LCI data generation back
to the control variables defined in the UMP to enable system-
tradespace exploration. One of the key challenges with effec-
tively making environmentally-efficient decisions at the design
stage is having the appropriate data representations speak to
one another. From that perspective, previous design tools and
frameworks have not been ideal [4]. We envision that integrat-
ing the UMP information model will help realize a new suite of
tools that can explore “what-if scenarios” tied to design deci-
sions and how their effects propagate through the lifecycle. In
other words, we will extend the pipeline to relate UMP mod-
els to parametric design attributes. For example, how does the
number of teeth in a gear design change the machining strat-
egy and what is its impact on the environment? Developing a
automated pipeline to reflect on such questions would facili-
tate deeper design space exploration. We believe that such an
achievement would demonstrate the impact and scalability of
the UMP modeling approach.
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