

A Method-Level Test Generation Framework for
Debugging Big Data Applications

Huadong Feng, Jaganmohan Chandrasekaran, Yu Lei
Department of Computer Science & Engineering

The University of Texas at Arlington
Arlington, USA

{huadong.feng, jaganmohan.chandrasekaran}@mavs.uta.edu,
ylei@cse.uta.edu

Raghu Kacker, D. Richard Kuhn
Information Technology Lab

National Institute of Standards and Technology
Gaithersburg, USA

{raghu.kacker, d.khun}@nist.gov

Abstract—When a failure occurs in a big data application,
debugging with the original dataset can be difficult due to the
large amount of data being processed. This paper introduces a
framework for effectively generating method-level tests to
facilitate debugging of big data applications. This is achieved by
running a big data application with the original dataset and by
recording the inputs to a small number of method executions,
which we refer to as method-level tests, that preserve certain
code coverage, e.g., edge coverage. The size of each method-level
test is further reduced if needed, while maintaining code
coverage. When debugging, a developer could inspect the
execution of these method-level tests, instead of the entire
program execution with the original dataset. We applied the
framework to seven algorithms in the WEKA tool. The initial
results show that in many cases a small number of method-level
tests are sufficient to preserve code coverage. Furthermore, these
tests could kill between 57.58% to 91.43% of the mutants
generated using a mutation testing tool. This suggests that the
framework could significantly reduce the efforts required for
debugging big data applications.

Keywords—Testing; Unit Testing; Big Data Application
Testing; Test Generation; Test Reduction; Debugging; Mutation
Testing;

I. INTRODUCTION

Big data applications are software programs that process
large amounts of data. Debugging big data applications can be
complicated and time-consuming. This is due to the fact that
inspecting the execution of a big data application often
involves long execution time, a large number of method
executions, and/or a large number of objects. For example, a
classification algorithm, called DecisionTable, in the WEKA
tool [12] takes more than two hours to execute the
Heterogeneity Activity Recognition Dataset (HAR) from the
UC Irvine (UCI) Machine Learning Repository [13]. During
the execution, one of the DecisionTable’s methods, named
updateStatsForClassifier, is executed more than half a billion
times. (This method has 66 lines of code, not including
comments and spaces.) If there exists a fault in this method, it
can be very difficult to locate this fault due to the large number
of times this method is executed.

Some approaches have been proposed to reduce the effort
required for testing and debugging big data applications at the
system level [1, 2, 3, 4, 5]. For example, data mining and

machine learning methods are used to reduce the size of the
original dataset or generate synthetic datasets [3, 4] for the
testing purpose. The reduced dataset using such methods are
executed at the system level, which can still be time-
consuming. Furthermore, these methods are not designed to
reproduce the original failure. Debugging approaches such as
delta debugging [8] can identify the minimum failure-inducing
input at the system level, which can reduce the size of the input
while preserving the failure triggered by the original dataset.
However, delta debugging can be very expensive for big data
applications. This is because it requires the input data be
recursively split into smaller chunks, each of which has to be
executed at the system level. For big data applications, there
can be a large number of chunks and system-level execution of
each chunk can be time-consuming.

Our approach consists of two major steps. In the first step,
we re-execute the failing system-level execution to record
method-level tests for suspicious method(s). The main idea is
to evaluate each method execution based on a chosen coverage
criterion. In this paper, we used edge coverage, edge-pair
coverage and edge-set coverage based on the Control Flow
Graph (CFG) [11]. Note that other coverage criteria, e.g.,
prime-path coverage [11], could also be used in our approach.
We record the input to a method execution as a method-level
test when it covers any new coverage element with respect to
the chosen coverage criterion. In the second step, we reduce
method-level tests with large collection-typed variables using
binary reduction. The reduced tests preserve the same coverage
achieved by the originally recorded method-level tests. During
debugging, a developer will first identify suspicious methods
based on his or her understanding of the program. Then, the
developer will only need to re-execute the reduced method-
level tests recorded for these methods, instead of executing the
entire application with the original dataset. Doing so could
significantly speed up the debugging process.

We conducted an experimental evaluation of our approach.
In our experiments, we selected seven methods from four
machine learning algorithms that were implemented in WEKA
using Java. The four machine learning algorithms from WEKA
and two datasets from UCI dataset repository were selected
based on the execution time and size of datasets. Method-level
tests were recorded for these seven methods based on three
coverage criteria, including edge coverage, edge-pair coverage,
and edge-set coverage. (The three coverage criteria are defined

2018 IEEE International Conference on Big Data (Big Data)

978-1-5386-5035-6/18/$31.00 ©2018 IEEE 221

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 18,2020 at 21:54:34 UTC from IEEE Xplore. Restrictions apply.

in Section II-A.) On average, 4.4 tests were recorded for edge
coverage, 5.9 tests for edge-pair coverage, and 18.6 tests for
edge-set coverage. While initially, the seven methods were
executed from 191 to half a billion times. For some of the
recorded method-level tests with large-size inputs, e.g., the
previously mentioned updateStatsForClassifier method in the
DecisionTable algorithm, we further reduced the size of the
inputs using a binary reduction technique while preserving the
same coverage achieved by the original method-level test. For
example, the average input size for updateStatsForClassifier
was reduced to 12.53 MB from 1269.76 GB.

Moreover, test effectiveness was evaluated using PITest
(PIT) [16], a commonly used mutation testing tool. Mutation
testing seeds faults in a systematic manner to simulate mistakes
that developers may make during programming. All 25
available mutant generators were enabled for mutant
generation. When combining each set of tests generated for the
edge, edge-pair, and edge-set coverage for each method, the
mutant killing rate ranges from 57.58% to 91.43%.

We summarize the contributions of our paper as follows:

• We present a new framework for debugging big data
applications based on method-level tests. Compared to
executing the original dataset at the system level, these
method-level tests can be much faster to execute and
inspect, which could significantly speed up the debugging
process.

• We built a prototype that implements our framework and
conducted an experimental evaluation of the framework.
The evaluation results suggest that our framework could
significantly reduce the time and effort required for
debugging big data applications.

The rest of the paper is organized as follows. Section II
presents the details of our approach and discusses several
implementation challenges. Section III presents the
experimental design and analysis of the experimental results.
Section IV provides an overview of existing work that is
closely related to ours. Section V provides concluding remarks
as well as several directions for our future work.

II. APPROACH

 Our approach consists of two major steps, recording
method-level tests and reducing the size of the recorded tests.
In this section, Section II-A presents our approach to recording
method-level tests based on a given coverage criterion. Section
II-B presents our approach to reducing the size of a recorded
test.

A. Record Test

In a typical scenario, once a failure occurs, a developer
identifies several suspicious locations based on his or her
understanding of the program. Next, the developer could set up
breakpoints in these locations and then start the debugging
process with the system-level inputs. The breakpoints allow the
developer to inspect the program state during the debugging
process. This approach may not be effective for big data
applications. This is because when the dataset is large, a

breakpoint may be executed for a large number of times before
an incorrect program state is found, and each breakpoint has to
be inspected manually.

In our approach, the developer first identifies suspicious
methods, in a way that is similar to the identification of
suspicious locations. Next, our approach runs the program with
the original dataset and records, for each suspicious method, a
small number of method executions, which we refer to as
method-level tests, based on a specific coverage criterion. The
method-level tests recorded for a given method achieve the
same coverage criterion as the original dataset for the method.
The developer can then debug each method with the recorded
method executions, instead of a potentially large number of
method executions. Since the same coverage criterion is
satisfied, there is a high probability that debugging these
recorded method-level tests would allow us to detect the fault
that may have caused the failure observed at the system level.

Fig. 1. Recording Process at Runtime

After the developer identifies a list of suspicious methods
to be recorded, we instrument these methods to capture the
coverage elements that need to be covered for the selected
coverage criterion. After instrumentation, our recording
process at runtime is shown in Figure 1. While re-executing the
failing system-level execution, each method execution of the
suspicious methods is evaluated to determine whether it is
significant based on the selected coverage criterion. A method
execution is considered to be significant if it covers at least one
new coverage element. When a method execution is deemed to
be significant, its corresponding input for reproducing the
method execution is recorded as a method-level test.
Otherwise, the execution will continue until it reaches the next
significant method execution.

 In this paper, we will use edge coverage [11], edge-pair
coverage [11], and edge-set coverage, as the coverage criteria
based on Control Flow Graph (CFG) to determine if a given
method execution is significant. A CFG is a graphical
representation of all possible paths that might be traversed by a
program at runtime. Thus it captures information about how
the control is transferred in a program.

 Figure 2 shows an example CFG. In a CFG, each node in
the graph represents a basic block, i.e. a sequence of
consecutive statements with a single entry and a single exit
point[11]. A directed edge [11] represents that the control can
flow from one node to another. And a path [11] is a sequence
of nodes, where each pair of adjacent nodes is an edge.

 We record the method executions as method-level tests
when they cover any new coverage elements with respect to

222

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 18,2020 at 21:54:34 UTC from IEEE Xplore. Restrictions apply.

the chosen coverage criterion. For edge coverage, each edge
covered by a method execution is recorded for the method
evaluation. For edge-pair coverage, each edge-pair (reachable
path of length up to two) is recorded for the method evaluation.
Note that when edge-set coverage is used, a method execution
is considered significant if it covers a unique set of edges, i.e.,
no other method executions exactly cover the same set of
edges. Also note that other coverage criteria, e.g., prime-path
coverage [11], could also be used in our approach.

Fig. 2. Example of Control Flow Graph

To record method-level tests, three major tasks need to be
accomplished, including instrumentation, method execution
evaluation, and serialization. We further discuss these tasks in
the following subsections.

1) Instrumentation
We use a tool called Atlas [15], which is an Eclipse plugin

developed by EnSoft Corp to automatically generate CFGs
from the source code of a selected method. Atlas uses each line
of code as a basic block. This is different from the classical
definition [11] that a basic block consists of a sequence of
consecutive statements with a single entry and a single exit
point. Figure 2 shows a simple method and its CFG generated
using Atlas. We modify the generated CFGs from Atlas by
combining blocks that are in a consecutive sequence without
inner branches. Doing so reduces the amount of
instrumentation and thus the runtime overhead when executing
the instrumented code. The red rectangle in Figure 3 marks the
lines of code combined to be a basic block as we previously
defined.

Fig. 3. Example of Modifying Generated Control Flow Graph

Once we have the CFG of a suspicious method, we
instrument the method by adding a few lines of code that

invokes our recording program. Figure 4 shows an example of
how we instrument a sample method. The highlighted
statements are extra code added by instrumentation. The code
from line 3 to line 10 initializes the recording process. They are
inserted at the beginning of a suspicious method. The
ParaArray array contains the list of input parameters used for a
method execution. The ParaTypeArray array contains the
object types of the input parameters, which are needed to
reload the recorded inputs using Java Reflection. When
recording a method execution, we record not only the input
parameters but also the current object on which the suspicious
method was invoked, to store the instance variables accessed
during the execution. They are loaded into our system using the
“R.loadInputs(ParaArray, this);” statement. The statement
“R.enterBlock(#number);” is added before each basic block to
record the index of the basic block when it is executed. The
block number #number is manually determined based on the
previously discussed CFG. Moreover, the statement
“R.endOfProcess();” is added before each return statement or
at the end of a method to notify our program a method
execution is completed, and start the method execution
evaluation process.

Fig. 4. Example of Instrumentation

Recording basic block indexes with multiple entrances at
runtime requires more work than just adding the
“R.enterBlock(#number)” statement in front of it. As shown in
Figure 4, lines 25 to 26 and lines 30 to 31 are the extra codes
added for recording the basic block contains line 24. To record
the basic block indexes correctly for basic blocks with multiple
entrances such as for while loop, for loop, else if, and switch
statements, etc., we are inserting the “R.enterBlock(#number);”
statement before its descendants’ “R.enterBlock(#number);”
statement based on the CFG to capture every execution of such
blocks. For example, if we only add “R.enterBlock(#number);”

223

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 18,2020 at 21:54:34 UTC from IEEE Xplore. Restrictions apply.

statement right before the while statement shown in Figure 4 at
line 24, when the loop comes back to re-evaluate the loop
condition at the while statement, the repeated execution of this
block will not be captured.

2) Method Execution Evaluation
In our implemented framework, we temporarily store the

covered edges, edge-pairs, and edge-set for each method
execution. We consider a method execution to be significant,
and thus record the execution as a method-level test if it covers
any edge, edge-pair or edge-set that has not been covered
before. Note that we check for uncovered edges first for each
method execution. This is because if a method execution
covers any edge that has not been covered before, it must cover
some new edge-pair(s) and a new edge-set. The time
complexity for evaluating each method executions is O(n2)
where n represents the number of coverage elements each
method execution has to evaluate. For each method execution,
each coverage element of the method execution will be
compared to the list of the previously covered elements. If a
method execution covers any new coverage element, the
method execution will be recorded, and the newly covered
elements will be added to the list.

3) Serialization
Once a method execution is determined to be significant,

we record the inputs of the method execution using
serialization. Serialization can be an expensive process, the
built-in serialization support in Java is rather slow when
serializing large objects. We used an alternative tool called
FST [17] that can be ten times faster [17] to improve the
performance of our test recording. In our experiments, FST
was able to serialize and deserialize objects correctly.
However, there are some reported cases [17] where FST was
unable to correctly serialize and deserialize objects that the
built-in Java serialization could. In comparison, FST provides
better performance, but FST does not provide serialization
ability that is as strong as the Java built-in serialization.

While our performance is improved using FST, there are
still some situations where we experience significant overhead.
To ensure an exact copy of the input objects is created, we
perform deep copy on the objects by serializing and
deserializing these objects. This is needed because the value of
an input object could potentially change during a method
execution, especially for void methods that operate on
instance variables.

 However, most of the stored input objects will not be
recorded if the method execution does not cover any new
coverage element. Thus, much of the time spent to store the
deep copies of objects is unnecessary. These unnecessary time
can be huge when a method takes large inputs and/or is
executed for a large number of times. The recording overhead
can be as high as 7 to 30 times the original system-level
execution time for some of the selected methods. In such cases,
our solution is recording the method-level tests by executing
the entire system twice. In the first execution, we do not store
any inputs. Instead, we only record the IDs of significant
method executions. In the second execution, we only serialize
the selected method executions to store their inputs as method-

level tests. Doing so can significantly reduce the runtime
overhead in cases where a method takes large inputs or is being
executed for a large number of times.

B. Test Reduction

While the recorded method-level tests can be used for
debugging, these tests in some case consist of very large
inputs. For example, one of the selected methods
cutPointsForSubset, its recorded method-level tests have the
average size of 1.62GB, executing these tests can take a lot of
time. And breakpoints in loop statements can be executed for a
large number of times. These inputs are large mostly due to the
fact that they contain large collections of objects. For the three
methods mentioned above, they all have Instances typed
(Implements Collection) variables that contain instances from
the original dataset for processing. Some of the recorded data
could potentially be reduced while still reproducing the method
execution and preserving the coverage elements. The reduction
can further reduce the time for executing the tests, and the
debugging efforts required from developers.

Our binary reduction technique is inspired by the
commonly used binary search technique. For each recorded
method-level test, we divide its collection typed input variables
into halves. Next, we take each half and other non-collection
typed inputs and re-execute them with the suspicious method.
We then check whether a half can preserve the originally
covered coverage elements. If one of the halves does preserve
all the coverage elements, we will continue dividing it into
halves and check for the coverage elements repeatedly, until
the minimal subset of the collection variables that can preserve
the coverage elements are identified. Note that when
preserving the coverage during reduction, we are preserving
the exact covered elements of edge coverage, edge-pair
coverage, and edge-set coverage.

III. EXPERIMENTS

We implemented the initial working prototype of our
framework in Java. Some Manual efforts are required from
developers to instrument the source code of suspicious
methods. After instrumentation, the recording process has been
automated. The reduction approach requires developers to
manually identify the large collection typed input variables.
The re-execution of the recorded and reduced method-level
tests has been automated for debugging. We also conducted
mutation testing to evaluate the fault detection effectiveness of
our recorded and reduced method-level test. The currently
implemented coverage criteria are the edge, edge-pair, and
edge-set coverage.

 In the following, we discuss how we conducted our
experiments and present the experiment results. In Section III-
A, we discuss how we selected datasets, applications, and
methods to be used for our experiments. Section III-B presents
the statistics of the recorded method-level tests. Section III-C
presents the statistics of the reduced method-level tests. Section
III-D presents how we conducted a mutation testing
experiment and the results of our mutation testing for both the
recorded tests, and the reduced tests. And finally, Section III-E
presents the performance analysis of our framework. All the

224

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 18,2020 at 21:54:34 UTC from IEEE Xplore. Restrictions apply.

source code, recorded method-level tests, reduced method-
level tests and mutation reports are publicly available at
https://www.dropbox.com/sh/3k4kjwqjpa9i2qv/AAAkeYYNa
QOVfT9WGe4OUp_Pa?dl=0 for review. The machine we
used for our experiment is a workstation with two Xeon E5-
2630V3 8 core CPUs @ 2.40GHz, 64GB DDR4 2133 MT/s
memory, and a Samsung 850 EVO 500GB SSD.

A. Subjects

 We design our experiments to reflect real-world situations
for evaluating the effectiveness of our framework. First, we
randomly selected ten algorithms that are implemented in the
WEKA tool. WEKA is one of the most widely used tools for
data mining by practitioners. Next, we selected one collection
of dataset with the largest number of instances (accessed on
08/18/2018) from the UCI Machine Learning Repository that
consists of 440 real-world collected datasets as a start. The
selected collection of datasets, Heterogeneity Activity
Recognition (HAR), contains four datasets for four different
types of devices with a total of 43,930,257 instances and 16
attributes. The HAR collection includes several data types,
including multivariate, time-series and real numbers. The
datasets can be used for both classification and clustering.
Among the four datasets, the largest dataset,
Phones_gyroscope, is used to execute the ten algorithms.

 Phones_gyroscope dataset has the size of 1.37GB, it is too
large for two of our selected algorithms EM and LibSVM to
finish their execution within a day. The execution time is too
long for our experimentation purpose due to our limited time
and resources. For these two algorithms, we reduced the size of
the Phones_gyroscope dataset by dividing the dataset in half
and continue to divide in half until the execution time for EM
and LibSVM are reduced to be near an hour. The reduced
Phones_gyroscope dataset for EM and LibSVM now has the
size of 3.3 MB. EM will now take 5352 seconds (1.49 Hours)
to execute and 4491 seconds (1.25 Hours) for LibSVM.

TABLE I. SELECTED METHOD INFORMATION

Method Algorithm

of
Covered
Lines of

Code

of
Total
Lines

of
Code

of
Execution

Count

buildClusterer EM 115 165 1,910

cutPointsForSubset DecisionTable 62 64 29,564

EM_Init EM 47 53 191

handleNumericAttribute J48 51 53 28,314

select_working_set LibSVM 50 52 417,989

selectModel J48 50 58 12,391

updateStatsForClassifier DecisionTable 46 66 557,305,280

 After two datasets (original Phone_gyroscope dataset and
the reduced dataset) and ten algorithms’ implementations
(Apriori, DecisionTable, EM, HierarchicalClusterer, J48,
LibSVM, LinearRegression, MakeDensityBasedClusterer,

RandomTree, SimpleKMeans) have been selected. We select
methods with a larger number of executed statements, and a
larger number of executions for our experiments. This is
because longer methods and methods that have been executed
for a larger number of times often require more effort to debug.
A total of seven methods are selected. The selected methods
and their information are shown in Table I. These methods are
then instrumented as previously described in Section II.

B. Recorded Method-Level Tests

For our experiments, we have recorded method-level tests
for all of the seven selected methods for preserving edge
coverage, edge-pair coverage, and edge-set coverage of the
original system-level execution. Some important information
about the recorded method-level tests is shown in Table II.
Note that the statement coverage column in Table II is for all
three types of recorded tests, as well as the original failing
system-level execution. This is because edge coverage
subsumes statement coverage, once all edges are preserved, all
the statement coverage will be preserved as well, and edge-
pair coverage and edge-set coverage both subsume edge
coverage.

Based on the results shown in Table II, we can see that
only a small number of method-level tests are sufficient for
preserving coverage for a suspicious method. Empirical
studies show that there exists a high correlation between code
coverage and fault detection effectiveness. The actual fault
detection ability of our recorded method-level tests will be
further evaluated using mutation testing in Section III-D.
Thus, when failures occur on a system level, it is likely that
executing the method-level tests for the suspicious methods
would trigger the failure observed during the execution with
the original dataset. Thus, the use of method-level tests could
potentially save developers a lot of time and efforts.

C. Reduced Method-Level Tests

 As shown in Table III, while some of the tests have a
reasonable size, three methods, cutPointsForSubset,
selectModel and updateStatsForClassifier have significantly
large inputs for their recorded method-level tests. While
debugging with these tests is easier than debugging with the
original dataset at the system level, loading and debugging
these tests could still take a lot of time. We further reduce the
size of these tests using our binary reduction approach as
discussed in Section II. In Table III, we compare the
differences between the recorded method-level tests before and
after they were reduced.

 For size reduction, our binary reduction technique was able
to reduce the input size of tests for five out of seven methods.
Our result shows that the reduction amount is often above 95%.
Most of the method-level tests can be reduced significantly
while still preserving our selected coverage elements. The
coverage element refers to the edges, edge-pairs, and edge-set
covered by each recorded method-level test. While one of the
tests for selectModel can be reduced to 1.7 KB from 1.63 GB,
some tests still have a fair amount of input data remaining,
such as the reduction from 1.63GB to 37.22 MB for one of the

225

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 18,2020 at 21:54:34 UTC from IEEE Xplore. Restrictions apply.

TABLE II. RECORDED METHOD EXECUTION INFORMATION

tests of cutPointsForSubset. Furthermore, we were unable to
reduce any test inputs for two methods, buildClusterer and
EM_Init. We further investigated this by looking into how the
variables of collection type are accessed and used. We noticed
mainly three different scenarios that may have contributed to
our results.

The first scenario is when a collection variable is partially
used as inputs. When the partially accessed instances are in a
consecutive sequence in the collection variable, or when only
one instance is accessed, our binary reduction technique will
reduce such collection variable to its minimal subset.
However, if the accessed instances are spread across the
collection variable, our binary reduction will not be able to
identify only the accessed instances. Hence, the reduction may
not be minimal, many unnecessary data based on the coverage
elements may remain.

Fig. 5. Collection Variable Used at Branching Condition

The second scenario is when the collection variable is
accessed in branching statements, e.g. for the tests recorded
for buildClusterer and EM_Init. The collection variables
identified for these two methods were used at a few branching
statements and passed to other methods that return value to the
execution as well. In this situation, maintaining the exact
coverage elements can be difficult to achieve for our binary
reduction technique. As an example, part of the code of
buildClusterer is shown in Figure 5. The instances variable
was used at an if statement and in the conditions of a for loop.

Reducing the instance variable using our binary reduction
approach will compromise the originally covered coverage
elements (edges, edge-pairs, edge-set) of the method-level
tests recorded for the buildClusterer method.

The third scenario is when the collection variable is not
accessed at all. In our implementation, to reduce manual
efforts required for instrumentation and reproduce method
executions precisely, we automatically record both the
parameters passed to the method and the object where the
method was invoked from, ensuring all possible inputs are
recorded. However, not all recorded information is used as
inputs, such as for some instance variables of the object where
the method was invoked from. In this situation, our binary
reduction technique may be able to reduce unnecessary
collection variables to empty, while still preserving the
coverage elements.

The first and second scenario can potentially use delta
debugging [8] or preserving superset of the coverage elements
to further the reduction. However, delta debugging could
significantly increase the reduction overhead, and preserving
superset of the coverage elements may lose or introduce some
coverage elements that could potentially have a large impact
on the reduced method-level test. For the third scenario, we
can implement systematic static analysis in the future to help
our framework identify and record only the necessary inputs
for reproducing method executions.

For execution time reduction, many of the recorded set of
method-level tests are now taking seconds instead of minutes
after the binary reduction. When debugging with these
reduced tests, not only the tests will be short and easier to
debug, the execution time is also easy to manage.

D. Mutation Testing

For mutation testing, we used PITest (PIT) [16], a
mutation testing tool for Java, to evaluate the fault detection
effectiveness of our recorded method-level tests. In PIT,
different types of faults (or mutants) are automatically seeded

Method

Edge Coverage Edge-Pair Coverage Edge-Set Coverage
Total # of
Recorded

Tests

of
Original

Execution
Count

Statement
Coverage # of Tests

of Covered
Edges

of Tests

of
Covered

Edge-
Pairs

of Tests
of

Covered
Edge-Sets

buildClusterer 3 83 4 181 3 3 4 1,910 69.70%

cutPointsForSubset 8 30 9 64 17 17 18 29,564 96.88%

EM_Init 1 24 3 55 1 1 3 191 88.68%

handleNumericAttribute 4 32 5 70 33 33 33 28,314 96.23%

select_working_set 7 41 11 111 61 61 63 417,989 96.15%

selectModel 5 35 5 74 6 6 6 12,391 86.21%

updateStatsForClassifier 3 26 5 59 9 9 11 557,305,280 69.70%

226

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 18,2020 at 21:54:34 UTC from IEEE Xplore. Restrictions apply.

TABLE III. TEST REDUCTION RESULTS

Method
Total # of

Tests

of
Large

Collection
Variables

Average
Input Size (MB)

Total
Input Size (MB)

Maximum
Input Size (MB)

Minimum
Input Size (MB)

Test Execution
Time (Seconds)

Recorded Reduced Recorded Reduced Recorded Reduced Recorded Reduced Recorded Reduced

buildClusterer 4 1 3.18 3.18 12.75 12.75 3.23 3.23 3.16 3.16 5 s 5 s

cutPointsForSubset 18 2 1628.16 9.77 29306.81 176.25 1628.16 37.22 1628.16 0.001 1836 s 5 s

EM_Init 3 1 4.71 4.71 14.12 14.12 4.34 4.34 5.18 5.18 5 s 5 s

handleNumericAttribute 33 1 54.00 0.74 1781.76 24.42 1300.48 1.75 0.0012 0.001 155 s 2 s

select_working_set 63 2 39.50 0.08 2488.32 5.04 41.9 0.29 1.83 0.002 176 s 1 s

selectModel 6 2 1392.64 0.02 8357.04 0.11 1628.16 0.01 1320.96 0.001 682 s 1 s

updateStatsForClassifier 11 1 1269.76 12.53 13967.34 138.06 1269.76 44.86 1269.76 0.51 875 s 3 s

into the source code. Each mutation (a mutated version of
source code) simulates a single fault and is executed against
the unit tests that developers provide.

Mutation testing requires the provided unit tests to be
passing tests. This is because only when the mutant’s output
differs from the expected output, a mutant is said to be killed.
In our experiments, when a method-level test is executed, we
record the outputs as the expected output for mutation testing
purpose. The output for each test contains not only the
returned object if there is one, but also the object where the
method was invoked from and the input parameters of the
method. This is because the values of these parameters and the
object where the method was invoked from could change and
should be considered as part of the output.

PIT provides a total of 25 different mutators to mutate
different type of code. When conducting mutation testing, we
have enabled all 25 mutators in PIT for generating mutants in
our selected methods. PIT also provides an option to set a
timeout factor for executing each test against each mutant. The
default is 1.25 times the original test execution time. We
increased the timeout factor to 10 times the original execution
time, as an effort to avoid false positives killing of mutants.
This is because a timed-out mutant is also considered as a
killed mutant. We have also increased the Java heap size to
60GB and stack size to 128MB using JVM configuration in
PIT, to avoid false positive killing of memory error mutants.

Table IV shows the mutation testing result of our recorded
and reduced method-level tests. Note that PIT currently does
not support the mutant generation of only covered statements.
Because the mutation generation of PIT is done statically, it
will generate mutants for all the statements of a selected
method, instead of only the reachable ones. In other words, if
a mutant is located at a statement that was not covered by any
of the tests, the mutant will not be exercised, and thus is
impossible to be killed. Such mutants will not be considered in
our experiments. This is because if a mutant is not exercised
by our recorded tests, it is not exercised by the original
system-level execution. The total number of mutants
generated for each selected method in Table IV are calculated

manually which consist of only exercised mutants by our tests.
This is done by removing mutants that are labeled as
NO_COVERAGE in the mutation testing report generated
using PIT, such as shown in Figure 6.

Fig. 6. Sample Mutation Testing Report

For recorded method-level tests without reduction shown
in Table IV, we can see that most of the recorded tests for
different methods and coverage criteria have a high mutant
killing rate. Even without comparing to the original system-
level execution, a small number of tests show high
effectiveness in detecting potential faults that could occur in
the selected methods. For four out of seven selected methods,
recorded tests achieve over 80% of mutant killing rate for all
the selected coverage criteria. The average mutant killing rate
across seven methods are around 80% for all four different
sets of tests that achieve edge coverage, edge-pair coverage,
edge-set coverage, and these three combined. By only using
edge coverage, the recorded method-level tests can achieve
reasonably high mutant killing rate. With edge-pair and edge-
set coverage, the mutant killing rate is further improved
slightly in some cases. This indicates the method-level tests
generated using our framework can effectively help
developers to debug and find faults they are looking for, while
significantly reducing the time and efforts required from
developers for debugging.

For reduced method-level tests, their mutant killing rates
are nearly the same as their original recorded tests. With
differences no larger than 5% of their original killing rate. We
even see some cases with increased mutant killing rate, such
as for the edge-pair coverage of method
“cutPointsForSubset”. While coverage elements of our

227

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 18,2020 at 21:54:34 UTC from IEEE Xplore. Restrictions apply.

TABLE IV. MUTATION TESTING RESULTS

Method

of
Mutants

Generated
for

Covered
Code

Statement
Coverage

Edge Coverage
Mutant Killing

Rate

Edge-Pair
Coverage Mutant

Killing Rate

Edge-Set Coverage
Mutant Killing

Rate

Combined
Recorded Tests
Mutant Killing

Rate

Recorded Reduced Recorded Reduced Recorded Reduced Recorded Reduced

buildClusterer 269 69.70% 79.18% 79.18% 79.18% 79.18% 79.18% 79.18% 79.18% 79.18%

cutPointsForSubset 164 96.88% 81.71% 81.1% 81.71% 82.32% 85.98% 85.98% 85.98% 85.98%

EM_Init 102 88.68% 87.25% 87.25% 87.25% 87.25% 87.25% 87.25% 87.25% 87.25%

handleNumericAttribute 140 96.23% 89.29% 88.57% 90.71% 90.71% 91.43% 91.43% 91.43% 91.43%

select_working_set 128 96.15% 71.88% 75% 73.44% 75% 75% 78.91% 75% 78.91%

selectModel 132 86.21% 57.58% 57.58% 57.58% 57.58% 62.88% 62.88% 62.88% 62.88%

updateStatsForClassifier 122 69.70% 86.07% 81.15% 86.07% 84.43% 86.89% 86.07% 86.89% 86.89%

Average 79.00% 78.55% 79.42% 79.49% 81.23% 81.67% 81.23% 81.79%

specifically selected coverage criteria are maintained, other
elements from other coverage criteria could become lost, or
may be newly introduced after our binary reduction, such as
combinations of the different branches being executed. The
mutation testing results of the reduced tests show that even
after the input sizes are significantly reduced, the coverage
elements and also the fault detection effectiveness are still
preserved. Our binary reduction technique on method-level
tests can further help developers to reduce efforts for
debugging while maintaining the debugging effectiveness of
the method-level tests.

TABLE V. SYSTEM-LEVEL MUTATION TESTING

Method Algorithm

of Mutants
Killed by

System-Level
Execution

of
Propagatable

Mutants Killed
by Combined
Method-Level

Tests

select_working_set LibSVM 58 51

selectModel J48 61 56

We also investigated the two methods select_working_set
and selectModel with the lowest mutant killing rate by
comparing their results to the mutation testing results of their
system-level execution. We have planned on comparing all
recorded method-level tests’ mutation testing results with their
corresponding system-level execution. However, while
mutation testing is a very effective method to evaluate the
quality of tests, mutation testing is a rather expensive method
to use. In this paper, we only have two system-level mutation
testing results for select_working_set and selectModel.
Moreover, their system-level mutation tests both took over
one week to complete. Note that some mutants that can be
killed with method-level tests are not propagatable on the
system level, i.e., a mutant may cause a method execution
producing incorrect output, but such incorrect output on the

method level did not cause an incorrect system-level output.
We considered the option of recording all method executions
of a method during its system-level execution. However, it is
impractical, because of our selected methods have been
executed with a large number of times, and many of them
have large inputs as well. For comparing mutation testing
results between method-level tests and system-level execution,
we will only be considering the propagatable mutants for the
method-level tests.

The system-level mutation testing results for
select_working_set and selectModel are shown in Table V.
For LibSVM, the system-level execution was able to kill 58
mutants, the combined method-level test of
select_working_set was able to kill 51 out 58 propagatable
mutants with a propagatable mutant killing rate of 87.93%.
For J48, the system-level execution was able to kill 61
mutants, the combined method-level tests of selectModel were
able to kill 56 out of 61 propagatable mutants with a
propagatable mutant killing rate of 91.80%. The further
investigation shows the reason why method-level tests
recorded for select_working_set and selectModel have a lower
mutant killing rate. It is likely because their original system-
level execution has a lower mutant killing rate.

After investigating the un-killed propagatable mutants in
the recorded method-level tests, we discovered three un-killed
propagatable mutants from select_working_set and one from
selectModel were mutations related to modifying boundary
conditions. This means by adding more coverage criteria
related to boundary conditions, a higher mutant killing rate
can be achieved for the method-level test. With a few basic
coverage criteria implemented for our framework, method-
level tests produced by our framework can be very effective in
detecting faults during debugging.

E. Performance Evaluation

We evaluate the performance of our implementation by
investigating the original system-level execution time, the

228

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 18,2020 at 21:54:34 UTC from IEEE Xplore. Restrictions apply.

time taken to evaluate and record the method-level tests, time
taken to reduce tests, and the time taken to execute the
recorded method-level tests. The results are shown in Table
VI. Recall that in the experiments for mutation testing, both
inputs and outputs of the selected method executions are
recorded. However, the results shown in Table VI are only for
recording the inputs and executing the recorded method-level
tests with only inputs without comparing their outputs. This is
because, in real-world use of our framework, outputs of the
method executions do not need to be recorded.

As previously mentioned in Section II, we have two
solutions for recording selected method executions. One
approach is to serialize and temporarily store the inputs for
each method execution and record the inputs locally when a
method execution is determined to be significant. This method
requires executing the entire system only once. However, in
cases where a method has large inputs or is executed for a
large number of times, this approach may have a significant
performance issue due to all the unnecessary serialization. The
other approach is to execute the entire system twice. In the
first execution, we evaluate each method execution and store
the execution IDs of the method executions. An execution ID
is the index of a method execution based on the order of each
method executions that happened during the system-level
execution. In the second system-level execution, we only
serialize and record the inputs of the selected method
executions based on their execution IDs. The numbers marked
with “*” indicates that the method-level tests were recorded
using the second recording approach as shown in Table VI.
The execution time is computed by subtracting the execution
end time by the execution start time that was created using the
Java System.CurrentTimeMillis() function.

TABLE VI. PERFORMANCE EVALUATION RESULTS

Method
Original

Execution
Time

Total Test
Recording

Time

Total Test
Execution Time

Total Test
Reduction

Time Recorded Reduced

buildClusterer 5352 s 6303 s 5 s 5 s 27 s

cutPointsForSubset 9559 s *21615 s 1836 s 5 s 7558 s

EM_Init 5356 s 5361 s 5 s 5 s 22 s

handleNumericAttribute 6357 s *14624 s 155 s 2 s 1965 s

select_working_set 4491 s *11531 s 176 s 1 s 2763 s

selectModel 6357 s *14212 s 682 s 1 s 3122 s

updateStatsForClassifier 9559 s *30513 s 875 s 3 s 4088 s

In Table VI, we see that recording method-level tests using
our framework can take up to three times of the initial system
execution. Additional test reduction time could take as much
as two hours based on the size of the inputs (Our binary
reduction utilizes serialization for deep copy as well). The
reduced tests can be executed for many times during the
debugging, the reduction time is a one-time investment, we
believe the time is manageable for developers. Moreover, our

approach is automated, allowing developers to work on other
tasks while running our approach. For executing the recorded
method-level tests, we see that it usually takes much less time
than executing the entire system, especially for the reduced
tests, the execution time can range from as little as one second
to five seconds. Overall, we believe that recording and
reducing method-level tests using our framework will help
developers save a lot of time and efforts in debugging big data
applications.

IV. RELATED WORK

We first review previous work related to generating tests
for big data applications. Csallner et al. proposed an approach
that uses dynamic symbolic execution to automatically
generate tests for general MapReduce programs [1]. Morán et
al. proposed MRFlow, a testing technique tailored to test
MapReduce programs [5]. MRFlow uses data flow test criteria
and oriented to transformations analysis between the input and
the output in order to detect defects in MapReduce programs.
Morán et al. also proposed a technique to generate different
infrastructure configurations for a given MapReduce program
that can be used to reveal functional faults [4]. They also
proposed an automatic test framework that can detect
functional faults automatically [3]. Chandrasekaran et al.
proposed an approach to generate test input data using
combinatorial testing for testing big data applications [6].
Previous work reported in [1, 2, 3, 4, 5] focuses on generating
tests that help to identify functional faults, i.e., faults that will
cause the program to generate unexpected outputs. In contrast,
our work focuses on reducing debugging efforts for big data
applications. Our tests are recorded in an effort to reproduce
failures using a small number of method-level tests.

Second, some work has been reported on debugging big
data applications. Gulzar et al. developed a tool, BigDebug,
that simulates breakpoints to enable a developer to inspect a
program without actually pausing the entire computation [7].
To help a user inspect millions of records passing through a
data-parallel pipeline, BigDebug provides guarded
watchpoints, which dynamically retrieve only those records
that match a user-defined guard predicate. Chandrasekaran et
al. proposed a technique that uses different annotators to
debug the tracking data independently and their debugging
results were collected for joint correction propagation for later
analysis [9]. Our work is similar to Gulzar [7] and Li [9] in
terms of only focusing on a subcomponent of the system.
However, our work focuses on recording significant method-
level executions to be replayed for debugging suspicious
methods. Gulzar [7] and Li [9] focuses on tracking the
changes made to certain objects using data flow analysis
approach.

 Third, our work is also related to existing work that
records program information and uses the information to
generate unit tests. Pasternak et al. proposed a technique that
records interactions that take place during the execution of
Java programs and uses these interactions to construct unit
tests automatically using GenUTest [10]. Orso et al. proposed

229

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 18,2020 at 21:54:34 UTC from IEEE Xplore. Restrictions apply.

a technique and conducted a feasibility study using SCARPE,
a prototype tool, for selective capture and replay of program
executions [6]. Similar to our work presented in this paper,
Orso’s technique [6] can be used to automatically generate
unit tests based on the recorded information for testing
purpose. Our work is similar to Pasternak [10] and Orso [6] in
terms of recording method-level tests based on the system-
level execution. However, our work focuses on recording unit
tests for debugging one or more failures that have been
observed instead of generating tests for triggering failures that
have not been observed yet. Furthermore, our work also does
not require complex instrumentation techniques on the target’s
bytecode [6]. Instead, we only employ simple instrumentation
that keeps track of code coverage.

Finally, we review work related to reducing input size for
the debugging purpose. Zeller et al. proposed Delta
Debugging [8] technique to isolate failure-inducing inputs on
the system level to reduce work required for debugging.
Clause [14] et al. presented a technique based on dynamic
tainting for automatically identifying subsets of a program’s
inputs that are relevant to a failure. These techniques reduce
the debugging effort at the system level, in terms that the
reduced datasets need to be executed at the system level. This
is in contrast with our work that reduces the debugging effort
at the method level.

V. CONCLUSION & FUTURE WORK

 In this paper, we presented a framework to provide
developers with method-level tests that were recorded from a
failed system-level execution with the original dataset. These
method-level tests preserve a given coverage criterion, e.g.
edge, edge-pair, and edge-set coverage, and thus are likely to
reproduce the failure observed at the system level. The binary
reduction is used to further reduce method-level tests with
large input. The set of method-level tests that are provided by
our approach could help developers to effectively debug
suspicious methods against properties of the original input
dataset, and significantly reduce time and effort required for
debugging big data applications.

 There are two major directions for future work. First, we
plan to conduct more experimental evaluation of our approach
using more big data applications, datasets, and coverage
criteria. Second, we plan to further automate our approach. In
particular, we will develop techniques that can fully automate
the instrumentation process. Our current approach still needs
manual effort in modifying CFG generated by Atlas, inserting
code for instrumentation, and identifying collection typed
variables for reduction. It is our plan to make the tool publicly
available.

VI. ACKNOWLEDGMENT

 This work is supported by a research grant
(70NANB15H199) from Information Technology Lab of
National Institute of Standards and Technology (NIST).

 Disclaimer: Certain software products are identified in this
document. Such identification does not imply
recommendation by the NIST, nor does it imply that the
products identified are necessarily the best available for the
purpose.

REFERENCES
[1] Csallner, C., Fegaras, L., & Li, C. (2011, September). New ideas track:

testing mapreduce-style programs. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on
Foundations of software engineering (pp. 504-507). ACM.

[2] Jaganmohan Chandrasekaran, Huadong Feng, Yu Lei, Richard Kuhn,
Raghu Kacker, "Applying combinatorial testing to data mining
algorithms", Software Testing Verification and Validation Workshops
(ICSTW) 2017 IEEE Fourth International Conference on-6th
International Workshop on Combinatorial Testing (IWCT), 2017.

[3] Morán, J., Bertolino, A., de la Riva, C., & Tuya, J. (2017, July).
Towards Ex Vivo Testing of MapReduce Applications. In Software
Quality, Reliability and Security (QRS), 2017 IEEE International
Conference on (pp. 73-80). IEEE.

[4] Morán, J., Rivas, B., De La Riva, C., Tuya, J., Caballero, I., & Serrano,
M. (2016, August). Infrastructure-aware functional testing of mapreduce
programs. In Future Internet of Things and Cloud Workshops
(FiCloudW), IEEE International Conference on (pp. 171-176). IEEE.

[5] Morán, J., Riva, C. D. L., & Tuya, J. (2015, August). Testing data
transformations in MapReduce programs. In Proceedings of the 6th
International Workshop on Automating Test Design, Selection and
Evaluation (pp. 20-25). ACM.

[6] Orso, A., & Kennedy, B. (2005, May). Selective capture and replay of
program executions. In ACM SIGSOFT Software Engineering Notes
(Vol. 30, No. 4, pp. 1-7). ACM.

[7] Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo, Sai Deep
Tetali, Tyson Condie, Todd Millstein, Miryung Kim. BigDebug:
Debugging Primitives for Interactive Big Data Processing in Spark.
Proceeding ICSE '16 Proceedings of the 38th International Conference
on Software Engineering, Pages 784-795

[8] A. Zeller and R. Hildebrandt, “Simplifying and Isolating Failure-
Inducing Input”, IEEE Transactions on Software Engineering28(2),
February 2002, pp. 183-200.

[9] Mingzhong Li, Zhaozheng Yin. Debugging Object Tracking by a
Recommender System with Correction Propagation. In IEEE
Transactions on Big Data (Volume: 3, Issue: 4, Dec. 1 2017)

[10] Pasternak, B., Tyszberowicz, S., & Yehudai, A. (2009). GenUTest: a
unit test and mock aspect generation tool. International journal on
software tools for technology transfer, 11(4), 273.

[11] N. Li, U. Praphamontripong, and J. Offutt, “An experimental
comparison of four unit test criteria: Mutation, edge-pair, all-uses and
prime path coverage,” in Second International Conference on Software
Testing Verification and Validation, ICST 2009, Denver, Colorado,
USA, April 1-4, 2009, Workshops Proceedings, 2009, pp. 220–229.

[12] Eibe Frank, Mark A. Hall, and Ian H. Witten (2016). The WEKA
Workbench. Online Appendix for "Data Mining: Practical Machine
Learning Tools and Techniques", Morgan Kaufmann, Fourth Edition,
2016.

[13] Dua, D. and Karra Taniskidou, E. (2017). UCI Machine Learning
Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of
California, School of Information and Computer Science.

[14] J. Clause and A. Orso. Penumbra: Automatically identifying failure
relevant inputs using dynamic tainting. In ISSTA, pages 249–260, 2009.

[15] “Atlas Platform, EnSoft Corp.” http://www.ensoftcorp.com.

[16] “PITest.” http://pitest.org/.

[17] “FST, fast-serialization.” https://github.com/RuedigerMoeller/fast-
serialization.

230

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 18,2020 at 21:54:34 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

